
Better Real-time Response for Time-share Scheduling

Scott A. Banachowski and Scott A. Brandt
Computer Science Department

University of California, Santa Cruz�
sbanacho,sbrandt � @cse.ucsc.edu

Abstract

Time-share CPU schedulers permeate general-purpose
computer systems, yet provide little support for real-time
constraints. We demonstrate that by making inferences from
the behavior of applications, soft real-time scheduling per-
formance is achievable using a best-effort policy in which
the scheduler has no a priori knowledge of application re-
source needs. In a typical time-share scheduler, recent
CPU usage is accounted for in a dynamic scheduling pri-
ority, so the behavior pattern of a process implicitly im-
pacts the timeliness of future allocations. To improve the
performance of latency-sensitive processes, we developed a
CPU scheduler that explicitly uses past behavior to make
short-term scheduling decisions, while still preserving the
long-term goal of fairness. In this paper, we show that this
scheduler, called BeRate, outperforms Linux when schedul-
ing workloads that contain applications with periodic dead-
lines.

1 Introduction

Modern computer systems of all types are growing in
complexity and it is desirable for such systems to con-
currently manage combinations of non-real-time, soft real-
time, and hard real-time processes. Many general-purpose
operating systems use CPU schedulers adapted from time-
share systems. Time-share schedulers implement a best-
effort policy. As the term “best-effort” implies, the sched-
uler provides no facilities for meeting specific performance
guarantees. As a result, processes with temporal constraints
such as real-time and multimedia applications, may not re-
ceive timely allocation of CPU required to meet deadlines.
This paper discusses a system that serves soft real-time and
non-real-time processes using a best-effort policy.

Best-effort policies are attractive due to their simplic-
ity and ease of use; applications do not require system in-
terfaces for reserving CPU bandwidth, and the scheduler
need not incorporate admission control or service guaran-

tees. Although not suitable for hard real-time platforms
where missed deadlines equate to system failure, best-effort
policies may suit soft real-time applications that allow de-
graded performance. Recognizing that best-effort schedul-
ing is a desirable policy for general-purpose systems and
that soft real-time applications are becoming ubiquitous on
these systems, our research aims to improve soft real-time
performance using time-share schedulers.

The Best-effort Rate CPU scheduler (BeRate) enhances
performance for soft real-time applications while provid-
ing adequate progress and response to all applications. The
scheduler provides periodic applications with better latency
response, while preserving the behavior of traditional time-
sharing schedulers for non-periodic processes.

2 Background and Motivation

Time-share scheduling algorithms were not designed for
periodic deadline processing, and without service guaran-
tees the performance of real-time applications degrade in
the presence of scheduling latency caused by concurrent
execution of applications. We wish to improve the respon-
siveness of best-effort schedulers when serving workloads
containing periodic deadlines. Previous research on the
DQM system [7] demonstrates that it is possible to robustly
execute soft real-time applications on best-effort systems.
DQM allows applications to dynamically adjust their re-
source usage to available resources. By adjusting demand
so that a set of applications uses less than 100% of re-
sources, a best-effort scheduler is able to provide reasonable
soft real-time performance.

2.1 Process resource characterization

DQM and other soft real-time systems support schedul-
ing with deadline constraints, but lose a primary advantage
of the best-effort model by requiring a priori specification
of application resource needs. The interface to the sched-
uler is exposed; either programmers or users must negotiate

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7

%
 C

P
U

Level

Average CPU Load

jigsaw
vinge

(a) CPU load as a function of QoS level.

0

5

10

15

20

25

0 50 100 150 200

%
 C

P
U

Time (seconds)

X Server Load

level 1 level 2 level 3 level 4 level 5 level 6 level 7

jigsaw
vinge

(b) X server load during cycles through QoS level.

Figure 1. CPU load incurred by quality levels of a video playback, collected on two different systems.

with the scheduler to control scheduling policies. The pro-
gramming or run-time model lacks generality, and restricts
the portability of applications.

It is difficult to characterize resource needs, because ap-
plications perform inconsistently on different systems. To
demonstrate this, we use a video player capable of changing
its CPU load by adjusting image quality. We measured the
load incurred by seven discrete levels of descending quality.
Figure 1(a) shows the average load per level. On the sys-
tem jigsaw, higher levels correspond to decreased load, but
on vinge load remains constant across levels even though
quality is diminished. This is explained by observing the
X window server application: its CPU usage is plotted in
Figure 1(b). On jigsaw the X server load remains rela-
tively constant (with brief load peaks at level transitions).
On vinge, changing the video quality effects X’s load; on
this system the player offloads its image processing to the
X server’s video driver. If we had predicted the CPU re-
quirements of the application on one platform, it wouldn’t
scale in the same manner on another system, with the addi-
tional unexpected side-effect on another application.

A contribution of our research is to eliminate the diffi-
culty associated with resource characterization by using on-
line detection of timeliness requirements. If resource de-
mands are determined online as a process executes, it is not
essential for usage or deadline requirements to be commu-
nicated to the scheduler. Because most soft real-time pro-
cesses use operating system primitives for synchronization,
the rate at which they enter runnable state is observable by
the kernel. BEST [2] is a best-effort Linux scheduler that
improves performance for soft-real time processes by mak-

ing the assumption that applications with periodic deadlines
enter a runnable state when they begin a periodic compu-
tation. By observing when a process becomes runnable we
may infer its period. By assuming a predicted period is a
deadline, and allocating in order of earliest deadline, pro-
cesses with periodic deadlines receive timely allocation of
resources.

BEST is effective but violates fairness, so BeRate was
developed to overcome this shortcoming. The assumption
that resources be divided equally among processes is im-
plicit in time-sharing schedulers. Because BEST deems pe-
riodic processes most important, user-assigned priorities are
ignored. During overload the absence of fairness leads to
instability or inability to provide adequate performance to
other important processes [3]. Even worse, if a non-periodic
process is more important than a periodic process, there is
no way for BEST to enforce it. BeRate uses techniques sim-
ilar to BEST, but instead of explicitly measuring deadline, it
determines the rate a process recently consumed CPU, and
predicts a deadline that allows the process to proceed within
its allocated fair-share.

2.2 Time-share scheduling anomalies

Time-share schedulers allocate resources so that mul-
tiple tasks appear to execute simultaneously. The sched-
uler attempts to provide fast response time for latency-
sensitive processes, while maintaining fairness of CPU al-
location over long-term. To improve the responsiveness,
schedulers estimate processes’ recent CPU usage, and as-
sign I/O-bound processes a higher, but short-lived, dynamic

priority. BSD uses multi-level feedback queues [19], and
Linux mimics this behavior, although dynamic priority cal-
culations differ [6].

Although a goal of time-share systems is low response
latency, it does not mean that applications will meet dead-
lines. In the Linux or BSD scheduler, the performance of a
process with periodic deadlines is impacted by the phasing
of the period with the system clock (since the kernels do ac-
counting during the system clock interrupt) and the phasing
of quanta execution in relation to other processes. A process
with deadlines will typically block between computations,
appearing I/O-bound, and receiving a higher priority. Nev-
ertheless, the scheduler does not always assign CPU in time
for deadlines to be met. During a clock interrupt, charging a
tick to a process may reduce its short-term priority, causing
lower responsiveness in a subsequent period. The opposite
effect, where a process is rarely billed for CPU use is also
possible. Etsion [11] found a case where a periodic task in
Linux is billed for only 2% of its CPU consumption. In ex-
periments with BSD, we found situations where a task with
short periodic deadlines consumed 3 times its share of CPU
because its use was under-accounted.

Increasing the frequency the kernel gathers statistics
helps alleviate sampling problems, but does not entirely
solve scheduler latency, as soft real-time processes still miss
deadlines when they should be able to make them; we ob-
serve this in our experiments of Section 5. Our solution is
to change the scheduling algorithm: instead of using clock-
driven samples to characterize a process, we explicitly mea-
sure behavior when it awakens. A BeRate scheduler mea-
sures the rates of processes, dynamic priority becomes a
function of both rate and period. Using this technique al-
lows soft real-time processes to meet deadlines, while pre-
serving the default behavior of time-share schedulers.

3 Related Work

The goal of BeRate is to improve latency of soft real-
time scheduling in time-share environments. Some time-
share systems provide hard real-time capability [15, 30] by
allowing real-time tasks to run with high static priority, and
assigning other tasks remaining bandwidth. However, using
static real-time priorities is inadequate for handling continu-
ous sound or video [22]; it causes pathologies due to unfair-
ness (lower priority processes may never make progress),
and it requires workload-dependent tuning which is diffi-
cult, especially when the workload is as dynamic and un-
predictable in desktop systems.

Researchers use several hierarchical scheduling tech-
niques to adapting multi-level scheduling to soft real-time
systems [8, 9, 12, 13, 16, 24, 26]. The architectural ap-
proach of dividing schedulers into levels creates flexibility
when running a mix of applications of differing processing

needs; with it comes the problem of choosing ideal config-
urations, which as research indicates is not trivial. We do
not introduce the complexity of multiple levels in BeRate.
However, using the BeRate scheduler does not preclude in-
tegration into multi-level schemes.

Proportional-share schedulers assign processing band-
width so that processes receive CPU within bounded
rates [4, 10, 17, 20, 23, 27, 28, 29]. To meet deadlines, a
proportional scheduler must know the rate requirements of
processes. This information is usually fed to the scheduler
through system APIs. However, it may be difficult to de-
termine rate if the performance of the target processor is
unknown [14]. The BeRate scheduler does not need to be
informed of processes’ rates, making the development and
use of soft real-time applications easier. It uses techniques
similar to proportional schedulers by generating deadlines
from processes’ allocated shares, by observing past execu-
tion patterns and inferring deadlines.

Several projects aim to reduce the latency of context
switching in the Linux kernel. The low-latency patch re-
duces the size of uninterpretable execution paths inside the
kernel by adding opportunities for preemption [21]. The
preemptable Linux patch allows multiple threads to execute
in the kernel simultaneously, so that preemption need not
be disabled inside the kernel [18]. Both developments re-
duce latency in the kernel, and are important for support-
ing real-time applications. However, neither approach fixes
latency caused by inappropriate scheduling decisions. Be-
Rate is complementary to these techniques, reducing la-
tency caused by the scheduler’s decisions.

Scheduling latency may be reduced by increasing the
system clock frequency [1]. In BeRate, we increased the
timer resolution of Linux by a factor of 8. The default Linux
clock is 100 Hz; for a video stream of 33 frames/second the
average period is 3 ticks, so a measurement error of 1 tick
is a significant percentage of its period. By increasing the
timer resolution to 800 Hz, on-line measurements are finer
grained, and provide a better estimate of application peri-
ods. The processing power of modern systems is able to
tolerate this slight increase in overhead due to interrupt pro-
cessing [11].

4 Implementation

To develop the BeRate scheduler we had a number of
specific design criteria. Neither users nor developers need
to provide any a priori information about processes. When
processes do not miss deadlines, they have the opportunity
to wait for the next period, allowing the kernel to measure
usage and increasing the likelihood of consistent and de-
tectable patterns. The default behavior of the BeRate rea-
sonably conforms to time-sharing scheduler policies: in the
long-term all processes receive a fair-share of resources (ad-

justable with nice), but in short-term favor I/O-bound over
CPU-bound processes.

4.1 Linux scheduler overview

We implemented the BeRate scheduling algorithm in the
Linux 2.4.9 kernel. A brief description of the unmodified
Linux scheduler follows.

The function schedule() allocates the CPU to a pro-
cess. It selects the process with highest dynamic priority
from the runnable queue. The execution of schedule()
is triggered two ways: explicitly when a running process is
put to sleep, or upon return from an interrupt or trap. The
function goodness() calculates dynamic priorities. The
dynamic priority is the process’s remaining time quantum,
and decreases as the process executes. When all runnable
processes consume their quantum, schedule() recom-
putes their dynamic priority using pri � pri � 2 � nice, where
nice is a positively scaled user-settable scheduling priority.
At this time, a blocked process with a non-zero time quan-
tum receives a priority boost, increasing its responsiveness
in when it awakens.

Linux maps nice values of processes to execution quanta.
With a workload of n CPU-bound processes, Linux exe-
cutes each for its quantum duration in round-robin fashion.
We call an epoch of one round-robin period the load L; the
epoch lasts L � ∑i � n qi ticks, where each process i has quan-
tum qi. Each process receives a CPU share of qi � L.

4.2 BeRate scheduler details

The BeRate scheduling algorithm is simple. Every pro-
cess has a periodic deadline, and the schedule() func-
tion selects the runnable process with the earliest deadline.
Since actual deadlines are unknown, a heuristic estimates
deadlines for periodic processes and pseudo-deadlines for
other processes. There is no guarantee that assigned dead-
lines are met, rather deadline is used for ordering and pre-
emption. Conceptually, deadlines are assigned so that pro-
cesses receive the same CPU share and scheduling quanta as
in unmodified Linux. However, processes with timeliness
constraints need to be allocated shares in frequent, shorter
periods instead of longer quanta, so have shorter deadlines.

When BeRate sets a deadline for a process, it assigns a
deadline expiration which decrements as the process exe-
cutes. Two events trigger a new deadline to be computed:
either its previous deadline expires, or the process wakes
from blocking. When a deadline expires, if the newly com-
puted deadline is no longer earliest, another process be-
comes eligible to run and is scheduled. By setting the ex-
piration timer to the same value Linux uses for quanta, a
CPU-bound process resets its deadline after every quanta of
execution preserving Linux’s notion of long-term fairness.

Assuming that jobs executions are shorter than periods
and that processes sleep between jobs, soft real-time (SRT)
processes consume CPU in series of short CPU bursts in-
stead of longer, single quanta. An SRT process i does a
sequence of periodic job computations, each job having a
deadline di. The average job length is ēi (individual jobs
may vary in length). In order to meet deadlines, the CPU
utilization of an SRT process must be less than its fair share:
ēi � di � qi � L.

A key component of BeRate’s algorithm is the prediction
of deadline di. BeRate does not know deadlines, but for
each process it knows qi (and therefore load L) and may
measure ēi from past behavior. The scheduler records the
number of ticks ei consumed in each process’s period, and
averages it with previous measurements using ēi ��� ei � w 	
ēi
 ��� 1 � w
 (w is a constant weight factor). Using these

values, deadline is estimated as di � ēi � L
qi

.
For a process that meets periodic deadlines within its

share, ēi reflects its average job time, and its deadline es-
timate is a lower bound of its actual deadline. For a CPU-
bound process, ēi � qi, so deadline becomes L, meaning
it should complete quanta in the epoch of a round-robin
sequence; when running a workload entirely consisting of
CPU-bound processes, BeRate chooses the same schedule
as Linux. For I/O bound processes, ēi depends on the rate
and duration of CPU bursts, and will be � qi, generally lead-
ing to deadlines earlier than CPU-bound processes, for im-
proved latency response.

5 Experimental Results

We conducted experiments comparing the performance
of the BeRate scheduler with that of the Linux scheduler.
Our soft real-time workload is statistically driven, so we re-
peated each experiment until the percent of missed dead-
lines per run was known to the nearest 10th of a percent,
with confidence interval of 95%. We experimented using
both simulations of the Linux and BeRate algorithms, and
the actual Linux and BeRate implementations.

The figures in the following section represent a single
run from our simulations, whereas in our discussion we re-
fer to the aggregate results of many runs. Table 1 summa-
rizes all these results. The table shows the increased perfor-
mance when raising the Linux system clock from 100 Hz to
800 Hz, which alleviates some latency problems discussed
in Section 2.2. In the simulations, the Linux clock is also set
to 800 Hz, and although the simulation and real implemen-
tation performance slightly differ, the relative performance
is similar.

Two synthetic workload applications were used. The
process CPU-bound consumes CPU by crunching math op-
erations, creating load in competition with SRT processes.
The soft real-time application srtsim generates a periodic

Table 1. Summary of percentage of deadlines missed in all experiments. Experiments were repeated
and missed deadlines averaged over several runs (percent missed deadlines are to the nearest tenth
of percent with a 95% confidence interval).

Simulated Scheduler Actual Scheduler
Experiment Process Linux BeRate Linux 100 Hz Linux 800 Hz BeRate

1 1 CPU-bound process
srtsim (25fps 50%) 7.7 0.3 19.7 10.7 0.0

2 2 CPU-bound processes
srtsim (25fps 25%) 7.7 0.2 21.5 5.1 0.0
srtsim (25fps 25%) 7.2 0.2 21.5 5.1 0.0

3 2 CPU-bound processes figure not shown
srtsim (25fps 25%) 10.0 0.1 27.6 7.0 0.0
srtsim (33fps 25%) 7.6 0.1 31.2 5.2 0.0

4 3 CPU-bound processes
srtsim (25fps 25%) 5.6 0.0 17.8 0.9 0.0

5 1 CPU-bound process with nice +10
srtsim (33fps 67%) 11 0.2 32.4 0.8 0.0

6 1 CPU-bound process
srtsim (25fps 50%) 31.8 14.4 45.4
srtsim (50fps 50%) 21.0 14.3 43.5
 15 †
 14 †

† When overloaded, number of missed deadlines did not converge.

deadline workload that models frame-to-frame variability
common with decoding MPEG video streams [3, 5].

We find in general, the Linux scheduler performs reason-
ably well when the total demand of soft real-time processes
is less than 100% of the CPU and a process i requires no
more than than si ��� qi � ∑x � n qx
 of the CPU, where n is
the set of running processes, and qx is the share allocated
to x. As the processing need of a soft real-time (SRT) pro-
cess approach its load share, Linux is less effective at meet-
ings deadlines, because it may service processes in arbi-
trary order. Time-share scheduling algorithms are unaware
of resource requirements or deadlines, and well-intentioned
scheduling decisions may result in some processes missing
deadlines that could otherwise be met.

Our results show that BeRate alleviates the problem seen
in Linux when an SRT process requires a CPU allocation
close to its fair share. Figure 2 plots the progress when a
CPU-bound and a SRT process requiring 50% CPU share
the processor bandwidth. Because the Linux scheduler pro-
vides approximately equal CPU to each application, the
SRT process should meet its deadlines. However, the SRT
process misses 7.7% of its deadlines. Although the process
receives enough CPU allocation, it does not always receive
it in time. In the BeRate scheduler the SRT task misses
0.3% of deadlines while providing the equal resources to
each application. We found that we must reduce the average
usage of srtsim to below 40% before the Linux scheduler
meets performance of the BeRate scheduler. In Figure 3,

we doubled the number of both CPU-bound and SRT tasks,
with each SRT process requiring a quarter of CPU band-
width. Like in the previous experiment, in Linux each SRT
process missed more than 7% of its respective deadlines,
while in BeRate neither process missed more than 0.2%.
We repeated the experiment, assigning the two SRT pro-
cesses different frame rates, with similar results (figure not
shown, but the results are summarized in Table 1).

Figure 4 shows finer-grain detail of the allocation by
plotting on a shorter scale. Three CPU-bound processes
compete with a single SRT process (requiring 25% CPU).
The Linux scheduler provides a quarter of CPU to each pro-
cess, but like the previous experiment, the SRT process is
unable to meet deadlines, missing 5.6% of them, while in
BeRate it misses almost none. In Linux, at several instances
the SRT process misses a deadline because it is halted while
a CPU-bound processes executes. This is due to phasing of
dynamic priorities assigned by the Linux scheduler. The
SRT process’s dynamic priority decays at a slower rate than
CPU-bound processes, and usually upon waking it preempts
the currently executing process. However, when all quanta
expire the dynamic priorities of processes are recomputed,
and occasionally the SRT process is not greater upon wak-
ing, allowing a CPU-bound process to complete an entire
quantum without interruption. The BeRate scheduler elim-
inates this problem, resulting in evenly spaced CPU alloca-
tions.

UNIX users may adjust the relative priorities of pro-

cesses using the nice utility, setting a priority in the range
-20 to +19. In the Linux implementation nice scales a pro-
cess’s time quantum. A process with a nice of +10 receives
1
2 of the default quantum, so when competing with another
process of default nice of 0 its allocation is reduced to 1

3
of the CPU. In Figure 5 the SRT process with frame rate
of 33 frames/second requires an average of 2

3 of the CPU to
meet its deadlines, which we allocate by assigning the CPU-
bound process a nice of +10. Even though the Linux sched-
uler provides the SRT process enough share to meet dead-
lines, it does not receive them in a timely manner and misses
11%. In the BeRate scheduler the SRT process misses few
(� 0.2%) deadlines.

In the last experiment, we compare BeRate to our BEST
scheduler [2]. BEST attempts to meet any deadlines it can
detect, while the goal of BeRate is only to meet those which
may be met within the process’s fair share. Because Be-
Rate does not attempt to allocate more than a processes’
fair share of resource, an SRT process needing more than
its nominal share to meet deadlines may not perform well.
Figure 6 shows the performance with three processes, one
CPU-bound, and two SRTs that require 50% of CPU (but
differ in frame rate). In this experiment, not all deadlines
can be met. The BEST scheduler performs well, missing
only 1.6% of each processes deadlines, but the CPU-bound
process makes little progress. As expected, BeRate is not
capable of meeting deadlines, but performed similarly to
Linux, preserving the fair-share strategy during overload.

6 Conclusion

Best-effort schedulers make no resource guarantees, and
are thought to perform poorly for soft real-time applica-
tions. Nevertheless, the best-effort model continues to be
attractive for both application developers and users because
it is simple to use. BeRate is a CPU scheduler that adheres
to a best-effort scheduling policy while improving the re-
sponsiveness of periodic soft real-time processes.

Like the Linux scheduler, BeRate schedules without a
priori knowledge of resource needs, and with fairness spec-
ified by user-assigned priorities. The BeRate scheduler uses
the best-effort model, so no process is ever refused admis-
sion or provided a service guarantee. Like other best-effort
systems, if the user overburdens the system, the user will
experience degraded system performance [25]. However, in
the presence of other applications or heavy (but not over-
burdened) use, the BeRate scheduler effectively meets soft
real-time deadlines. Our experiments show that BeRate is
effective at allocating CPU with less scheduling latency to
processes that exhibit periodic behavior, and exceeds the
performance of Linux in situations where deadlines can be
met.

Acknowledgments We gratefully acknowledge Lonnie Welch
and Hermann Härtig for technical discussions of this research.
This research was funded by a DOE High-Performance Computer
Science Fellowship.

References

[1] L. Abeni, A. Goel, C. Krasic, J. Snow, and J. Walpole. A
measurement-based analysis of the real-time performance of
the linux kernel. In Real-Time Technology and Applications
Symposium (RTAS02), Sept. 2002.

[2] S. Banachowski and S. Brandt. The BEST scheduler for
integrated processing of best-effort and soft real-time pro-
cesses. In Proceedings of Multimedia Computing and Net-
working 2002 (MMCN ’02), pages 46–60, Jan. 2002.

[3] S. A. Banachowski. Using the best-effort scheduling model
to support soft real-time processing. Master’s thesis, Uni-
versity of California, Santa Cruz, Aug. 2002.

[4] A. Bavier and L. L. Peterson. BERT: A scheduler for best
effort and real-time tasks. Technical Report TR-587-98,
Princeton University, Aug. 1998.

[5] A. C. Bavier, A. B. Montz, and L. L. Peterson. Predicting
MPEG execution times. In Proceedings of the 1998 SIG-
METRICS Conference, pages 131–140, June 1998.

[6] M. Beck, H. Bohme, M. Dziadzka, U. Kunitz, R. Magnus,
and D. Verworner. Linux Kernel Internals. Addison–Wesley,
2nd edition, 1998.

[7] S. Brandt and G. Nutt. Flexible soft real-time processing in
middleware. Real-Time Systems, pages 77–118, 2002.

[8] G. M. Candea and M. B. Jones. Vassal: Loadable scheduler
support for multi-policy scheduling. In Proceedings of the
2nd USENIX Windows NT Symposium, pages 157–166, Aug.
1998.

[9] H. Chu and K. Nahrstedt. A soft real time scheduling server
in UNIX operating system. In European Workshop on Inter-
active Distributed Multimedia Systems and Telecommunica-
tion Services, Sept. 1997.

[10] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time
(BVT) scheduling: Supporting latency-sensitive threads in a
general-purpose scheduler. In Proceedings of the 17th ACM
Symposium on Operating System Principals, Dec. 1999.

[11] Y. Etsion, D. Tsafrir, and D. G. Feitelson. Effects of clock
resolution on the scheduling of real-time and interactive pro-
cesses. Technical Report 2001-14, School of Computer Sci-
ence and Engineering, The Hebrew University of Jerusalem,
Nov. 2001.

[12] B. Ford and S. Susarla. CPU inheritance scheduling. In
Proceedings of the 2nd Symposium on Operating Systems
Design and Implementation, pages 91–105, Oct. 1996.

[13] P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU sched-
uler for multimedia operating systems. In Proceedings of
the Second Symposium on Operating Systems Design and
Implementation, Oct. 1996.

[14] K. Jeffay and D. Bennett. A rate-based execution abstrac-
tion for multimedia computing. In Proceedings of the 5th
International Workshop on Network and Operating System
Support for Digital Audio and Video, Apr. 1995.

[15] S. Khanna, M. Sebrée, and J. Zolnowsky. Realtime schedul-
ing in SunOS 5.0. In USENIX Winter 1992 Technical Con-
ference, pages 375–390, Jan. 1992.

[16] C. Lin, H. Chu, and K. Nahrstedt. A soft real-time schedul-
ing server on the Windows NT. In Proceedings of the 2nd
USENIX Windows NT Symposium, Aug. 1998.

[17] G. Lipari and S. K. Baruah. Efficient scheduling of real-time
multi-task applications in dynamic systems. In Proceedings
of the Real-Time Technology and Applications Symposium
(RTAS00), pages 166–175, May 2000.

[18] R. M. Love. Linux preemptable kernel patch.
http://www.tech9.net/rml/linux, Oct. 2002.

[19] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarter-
man. The Design and Implementation of the 4.4 BSD Oper-
ating System. Addison–Wesley, 1996.

[20] C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity
reserves: Operating system support for multimedia applica-
tions. In Proceedings of the IEEE International Conference
on Multimedia Computing and Systems, pages 90–99, May
1994.

[21] A. Morton. Linux scheduling low-latency patch.
http://www.zip.com.au/ akpm/linux/schedlat.html, Jan.
2001.

[22] J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A. Wall.
SVR4UNIX scheduler unacceptable for multimedia applica-
tions. In Proceedings of the Fourth International Workshop
on Network and Operating System Support for Digital Audio
and Video, 1993.

[23] J. Nieh and M. Lam. The design, implementation and eval-
uation of SMART: A scheduler for multimedia applications.
In Proceedings of the 16th ACM Symposium on Operating
Systems Principles (SOSP ’97), Oct. 1997.

[24] M. A. Rau and E. Smirni. Adaptive CPU scheduling policies
for mixed multimedia and best-effort workloads. In Pro-
ceedings of the 7th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS ’99), Mar. 1999.

[25] J. Regehr, M. B. Jones, and J. A. Stankovic. Operating
system support for multimedia: The programming model
matters. Technical Report MSR-TR-2000-98, Microsoft Re-
search, Sept. 2000.

[26] J. Regehr and J. A. Stankovic. HLS: A framework for com-
posing soft real-time schedulers. In Proceedings of the 22nd
IEEE Real-Time Systems Symposium (RTSS 2001), pages 3–
14, London, UK, Dec. 2001. IEEE.

[27] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Buruah, J. E.
Gehrke, and C. G. Plaxton. A proportional share resource
allocation algorithm for real-time, time-shared systems. In
Proceedings of the Real-Time Systems Symposium, pages
288–299, Dec. 1996.

[28] C. A. Waldspurger. Lottery and Stride Scheduling: Flexi-
ble Proportional-Share Resource Management. PhD thesis,
Massachusetts Institute of Technology, Sept. 1995.

[29] D. K. Yau and S. S. Lam. Adaptive rate-controlled schedul-
ing for multimedia applications. In ACM Multimedia Con-
ference, Nov. 1996.

[30] V. Yodaiken and M. Barabanov. Real-time Linux. In Pro-
ceedings of Linux Applications Development and Deploy-
ment Conference (USELINUX), Jan. 1997.

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

srt (25 frame/s 50%)
CPU-bound

missed deadline

0

5

10

15

20

25

30

0 10 20 30 40 50 60
pr

og
re

ss
 (

C
P

U
 s

ec
on

ds
)

time (seconds)

BeRate Scheduler

srt (25 frame/s 50%)
CPU-bound

missed deadline

Figure 2. The progress of applications, with Linux and BeRate running (1) CPU-bound and (2) srtsim
25fps 50%. The crosses below the progress line indicate missed deadlines.

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

srt (25 frame/s 25%)
srt (25 frame/s 25%)

CPU-bound
CPU-bound

missed deadline

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BeRate Scheduler

srt (25 frame/s 25%)
srt (25 frame/s 25%)

CPU-bound
CPU-bound

missed deadline

Figure 3. The progress of applications, with Linux and BeRate running (1-2) CPU-bound and (3-4)
srtsim 25fps 25%. The crosses below the progress line indicate missed deadlines.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

3 3.2 3.4 3.6 3.8 4

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

srt (25 frame/s 25%)
CPU-bound
CPU-bound
CPU-bound

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

3 3.2 3.4 3.6 3.8 4
pr

og
re

ss
 (

C
P

U
 s

ec
on

ds
)

time (seconds)

BeRate Scheduler

srt (25 frame/s 25%)
CPU-bound
CPU-bound
CPU-bound

Figure 4. Progress of applications, with Linux and BeRate schedulers running (1-3) 3 CPU-bound
processes and (4) srtsim 25fps 25%.

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

srt (33 frame/s 67%)
CPU-bound nice 10

missed deadline

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BeRate Scheduler

srt (33 frame/s 67%)
CPU-bound nice 10

missed deadline

Figure 5. The progress of applications, with Linux and BeRate running (1) CPU-bound (w/ nice 10)
and (2) srtsim 33fps 67%. Linux misses many deadlines, indicated by the bunches of crosses below
the progress line.

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler

srt (25 frame/s 50%)
srt (50 frame/s 50%)

CPU-bound
missed deadline

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BeRate Scheduler

srt (25 frame/s 50%)
srt (50 frame/s 50%)

CPU-bound
missed deadline

Figure 6. The progress of applications, with the BEST and BeRate schedulers with (1) CPU-bound,
(2) srtsim 25fps 50% and (3) srtsim 50fps 50%

