
3
Statements and Control Flow

The program examples presented until now have executed from top to bottom with-
out making any decisions. In this chapter, we have programs select among two or
more alternatives. We also demonstrate how to write programs that repeatedly exe-
cute the same sequence of instructions. Both instructions to computers and instruc-
tions in everyday life are filled with conditional and iterative statements. A conditional
instruction for your microwave oven might say “If you wish to defrost press the
defrost button; otherwise, press the full power button.” An iterative instruction for
baking a loaf of bread might say “Let the dough rise in a warm place until it has dou-
bled in size.” Conditional and iterative statements are controlled by boolean expres-
sions. A boolean expression is either true or false. “If it is raining, wear your raincoat”
is an instruction given by many parents and is followed if it is true that it is raining. In
Java, expressions that evaluate as true or false are of type boolean. To direct the flow
of control properly you need to learn how to write boolean expressions.

3.1 EXPRESSION, BLOCK, AND EMPTY STATEMENTS

Java has many kinds of statements. Most of the statements that we have shown have
specified the evaluation of an expression. We’ll soon look at statements that select
between two alternatives and statements that repeat many times. Before doing that,
we need to look more closely at the statements that we have been using. The normal
flow of instructions in Java is to execute the statements of the program in sequential
order from top to bottom.

All the statements used so far have been either variable declaration statements
or expression statements. Variable declaration statements begin with a type, such as
int or String, and end with a semicolon, as in

C++ by Dissection: Statements and Control Flow3.1 Expression, Block, and Empty Statements 57
int width, height, area;
String hello = "Hello, world!";
double size = 1.5, x;

The first declares three variables of type int. The second declares one variable of
type String and initializes it. The third declares and initializes the variable size, but
not the variable x. Declaration statements start with a type and are followed by a
comma separated by a list of variables. The variables may be initialized by using the
equals sign followed typically by a literal. In Java all variables need to be declared.

Expression statements are formed by adding a semicolon to the end of an expres-
sion. Expressions are basic to performing computations. Not all expressions are valid in
expression statements. The two types of expressions used so far that are valid in
expression statements are assignment expressions and method call expressions. An
assignment expression is any expression involving the assignment operator. A method
call expression does not involve an assignment operator. The following are examples of
expression statements.

area = width * height; //simple assignment statement
System.out.println(...); //method call expression

A statement used for grouping a number of statements is a block. A block is a
sequence of one or more statements enclosed by braces. A block is itself a statement. A
simple example is

{
x = 1;
y = 2 * x + 1;
System.out.println(y);
System.out.println(x);

}

Statements inside a block can also be blocks. The inside block is called an inner
block, which is nested in the outer block. An example is

{ //outer block
x = 1;
{ //inner block
y = 2;
System.out.println(y);

} //end of inner block
System.out.println(x);

}

This example merely demonstrates the syntax of a block; we wouldn’t normally put a
block inside another block for no reason. Most nested blocks involve declaration state-
ments that create local variables. A simple example of a block with declarations is

C++ by Dissection: Statements and Control Flow 3.2 Boolean Expressions 58
{
int i = 5 + j;
//i is created in this block, j is from elsewhere
...

} //end of block i disappears

In this example the int variable i is created when this block is executed. When this
block is started, i is placed in memory with its initial value calculated as 5 plus the
value of j. When the block is exited, the variable disappears.

Blocks are not terminated by semicolons. Rather they are terminated by a closing
brace, also called the right brace. Recall that the semicolon, when used, is part of the
statement, not something added to the statement. For example, the semicolon turns an
expression into a statement. Understanding this will make it much easier for you to cre-
ate syntactically correct programs with the new statement types that we introduce in
this chapter.

3.1.1 Empty Statement

The simplest statement is the empty statement, or null statement. It is just a semicolon
all by itself and results in no action. A semicolon placed after a block is an empty state-
ment and is irrelevant to the program’s actions. The following code fragment produces
exactly the same result as the nested block example in the preceding section. The string
of semicolons simply create seven empty statements following the inner block.

{
x = 1;
{
y = 2;
System.out.println(y);

};;;;;;;
System.out.println(x);

}

3.2 BOOLEAN EXPRESSIONS

A boolean expression is any expression that evaluates to either true or false. Java
includes a primitive type boolean. The two simplest boolean expressions are the bool-
ean literals true and false. In addition to these two literals, boolean values result from
expressions involving either relational operators for comparing numbers or logical
operators that act on boolean values.

3.2.1 Relational and Equality Operators

All conditional statements require some boolean expression to decide which execution
path to follow. Java uses four relational operators: less than, < ; greater than, > ; less
than or equal, <= ; and greater than or equal, >= . Java also contains two equality

C++ by Dissection: Statements and Control Flow 3.2 Boolean Expressions 59
operators: equal, == ; and not equal, != . They can be used between any two numeric
values. The equality operators may also be used when comparing nonnumeric types.
They are listed in the following table.

The relational operators can be used in assignment to boolean variables, as in

int i = 3, j = 4;
boolean flag;
flag = 5 < 6; //flag is now true
flag = (i == j); //flag is now false
flag = (j + 2) <= 6; //flag is now true

3.2.2 Logical operators

Once you have a boolean value, either stored in a variable representing a primitive bool-
ean value (for example, boolean done = false;) or as the result of an expression
involving a relational operator (for example, (x < y)), you can combine these boolean
values by using the logical operators. Java provides three logical operators, “and,” “or,”
and “not.” The meaning of these operators is given in the following table.

For example, if you wanted to determine whether a person in a database was an adult
but not a senior citizen, you could check if their age was greater than or equal to 18 and
their age was less than 65. The following Java code fragment will print out “full fare
adult is true” if this condition is met; otherwise, it prints “full fare adult is false”.

Operator Name Example

< Less than 10 < 20 is true.

> Greater than 10 > 20 is false.

== Equal 10 == 20 is false.

<= Less than or equal 10 <= 10 is true.

>= Greater than or equal 11 >= 10 is true.

!= Not equal 10 != 20 is true.

Operator Name Description Example—Assume x is
10 and y Is 20

&& and
The expression x && y is true if
both x AND y are true and false

otherwise.

(x < 20) && (y < 30)
is true.

|| or
The expression x || y is true if
either x OR y (or both) is true

and false otherwise.

(x < 20)||(y > 30)
is true.

! not
The expression !x is true if
x is false and false otherwise.

!(x < 20)
is false.

C++ by Dissection: Statements and Control Flow 3.3 The if Statement 60
boolean b = (ageOfPerson >= 18 && ageOfPerson < 65);
System.out.println("full fare adult is " + b);

For an example of the use of “or,” consider the opposite situation as above where
you wanted to find out if a reduced fair was appropriate. You might write

b = (ageOfPerson < 18 || ageOfPerson >= 65);
System.out.println("reduced fare is " + b);

The logical operators && and || use short-circuit evaluation. In the preceding example
of a logical “and” expression, if the ageOfPerson were 10, then the test for
ageOfPerson < 65 would be omitted. Used partly for efficiency reasons, this
approach is helpful when the second part of such an expression could lead to an unde-
sirable result, such as program termination.

As with other operators, the relational, equality, and logical operators have rules
of precedence and associativity that determine precisely how expressions involving
these operators are evaluated, as shown in the following table.

Note that with the exception of the boolean unary operator negation, the relational,
boolean, and equality operators have lower precedence than the arithmetic operators.
Only the assignment operators have lower precedence.

3.3 THE if STATEMENT

Computers make decisions by evaluating expressions and executing different state-
ments based on the value of the expression. The simplest type of decision is one that
can have only two possible outcomes, such as go left versus go right or continue versus
stop. In Java, we use boolean expressions to control decisions that have two possible
outcomes.

Operator Precedence and Associativity

Operators Associativity

() ++ (postfix) -- (postfix) Left to right

+ (unary) - (unary) ++ (prefix) -- (prefix) ! Right to left

* / % Left to right

+ - Left to right

< <= > >= Left to right

== != Left to right

&& Left to right

|| Left to right

= += -= *= /= etc. Right to left

C++ by Dissection: Statements and Control Flow 3.3 The if Statement 61
The if statement is a conditional statement. An if statement has the general
form

if (BooleanExpr)
Statement

If the expression BooleanExpr is true, then the statement, Statement, is executed; other-
wise, Statement is skipped. Statement is called the then statement. In some program-
ming languages, but not Java, then is used to signal the then statement. After the if
statement has been executed, control passes to the next statement. The flow of execu-
tion can skip around Statement as shown in the following diagram.

Note the absence of semicolons in the general form of the if statement. Recall that the
semicolon, when required, is part of the Statement and is not used to separate state-
ments, as in

if (temperature < 32)
System.out.println("Warning: Below Freezing!");

System.out.println("It’s " + temperature + "degrees");

The message Warning: Below Freezing! is printed only when the temperature is
less than 32. The second print statement is always executed. This example has a semi-
colon at the end of the if statement because the statement inside the if statement is
an expression statement that ends with a semicolon.

When the Statement inside an if statement is a block, you get if statements that
look like

if (temperature < 32)
{
System.out.println("Warning Warning Warning!");
System.out.println("Warning: Below Freezing!");
System.out.println("Warning Warning Warning!");

}

Here you can see the importance of the block as a means of grouping statements. In this
example, what otherwise would be three separate statements are grouped, and all are
executed when the boolean expression is true. The formatting shown of the if state-
ment with a block as the Statement aligns vertically with the braces of the block state-
ment. An alternative formatting—and the one that we use—places the opening brace on
the same line as the keyword if and then aligns the closing brace with the keyword as
shown here.

False

True BooleanExpr

Execution enters if statement

Continue with rest of program

Statement

C++ by Dissection: Statements and Control Flow 3.3 The if Statement 62
if (temperature < 32) {
System.out.println("Warning Warning Warning!");
System.out.println("Warning: Below Freezing!");
System.out.println("Warning Warning Warning!");

}

At the end of this chapter, we discuss further which style to choose.

3.3.1 Problem Solving with the if statement

A different number is initially placed in each of three boxes, labeled a, b, and c, respec-
tively. The problem is to rearrange or sort the numbers so that the final number in box
a is less than that in box b and that the number in box b is less than that in box c. Initial
and final states for a particular set of numbers are as follows.

Pseudocode for performing this sorting task involves the following steps.

PSEUDOCODE FOR THREE-NUMBER SORT

1. Place the first number in box a.

2. Place the second number in box b.

3. Place the third number in box c.

4. If the number in a is not larger than the number in b, go
to step 6.

5. Interchange the number in a with that in b.

6. If the number in b is larger than the number in c, then go
to step 7; otherwise, halt.

7. Interchange the numbers in b and c.

8. If the number in a is larger than that in b, then go to step
9; otherwise, halt.

9. Interchange the numbers in a and b.

10.Halt.

Let’s execute this pseudocode with the three specific numbers previously given: 17, 6,
and 11, in that order. We always start with the first instruction. The contents of the
three boxes at various stages of execution are shown in the following table.

17

Before

a

6b

11c

6

After

a

11b

17c

C++ by Dissection: Statements and Control Flow 3.3 The if Statement 63
.

To execute step 1, we place the first number, 17, in box a; similarly, at the end of
instruction 3, the 6 has been inserted into box b, and box c contains the 11. As 17 is
larger than 6, the condition tested in step 4 is false, and we proceed to instruction 5;
this step switches the values into boxes a and b so that box a now contains the 6 and
box b has the 17. Step 6 has now been reached, and we compare the number in box b
(17) to that in box c (11); 17 is greater than 11, so a transfer is made to step 7. The num-
bers in boxes b and c are then interchanged so that box b has the 11 and box c has the
17. The test in step 8 fails (6 is not larger than 11) and the computation then halts. The
three numbers have been sorted in ascending sequence (i.e., 6 < 11 < 17). You should
convince yourself by bench testing this algorithm with other values of a, b, and c that
the computation described by the pseudocode will work correctly for any three num-
bers. A flowchart of the sorting algorithm is shown in the following diagram.

Note that we decomposed the operation of interchanging two numbers into three more
primitive instructions. Box t is used as temporary storage to hold intermediate results.
In order to interchange or switch the two numbers a and b, we first temporarily store
one of the numbers, say, a, in t (t ¨ a); next the other number is stored in a (a ¨ b), and,
last, the first number is placed in b (b ¨ t). Note that the instruction sequence “a ¨ b; b ¨
a” will not interchange a and b because the first instruction effectively destroys the old

Box Step 1 Step 2 Step 3 Step 5 Step 7

a 17 17 17 6 6

b 6 6 17 11

c 11 11 17

a first

a > b

b second

Halt

c third

t a

Yes
Yes

Yes

No

a b
b t

b > c

t b
b c
c t

a > b

t a
a b
b t

No

No

C++ by Dissection: Statements and Control Flow 3.3 The if Statement 64
value in a. In computer terms, the labeled boxes are analogous to memory or storage
areas that can contain values.

Next we code in Java the pseudocode version of our sorting program.

// SortInput.java - sort three numbers
import tio.*; // use the package tio

class SortInput {
public static void main (String[] args) {
int a, b, c, t;

System.out.println("type three integers:");
a = Console.in.readInt();
b = Console.in.readInt();
c = Console.in.readInt();
if (a > b) {
t = a;
a = b;
b = t;

}
if (b > c) {
t = b;
b = c;
c = t;

}
if (a > b) {
t = a;
a = b;
b = t;

}
System.out.print("The sorted order is : ");
System.out.println(a + ", " + b + ", " + c);

}
}

D I S S E C T I O N O F T H E SortInput P R O G R A M

❏ int a, b, c, t;

This program declares four integer variables. The variables a, b, and c are
inputs to be sorted, and t is to be used for temporary purposes, as
described in the pseudocode.

❏ System.out.println("type three integers:");

This line is used to prompt the user to type the three numbers to be sorted.
Whenever a program is expecting the user to do something, it should print
out a prompt telling the user what to do.

http://www.cse.ucsc.edu/~pohl/JBD/chap3/SortInput.java

C++ by Dissection: Statements and Control Flow 3.3 The if Statement 65
❏ a = Console.in.readInt();
b = Console.in.readInt();
c = Console.in.readInt();

The method call expression Console.in.readInt() is used to obtain the
input from the keyboard. Three separate integers need to be typed. The val-
ues read will be stored in the three variables.

❏ if (a > b) {
t = a;
a = b;
b = t;

}
if (b > c) {
t = b;
b = c;
c = t;

}
if (a > b) {
t = a;
a = b;
b = t;

}

The if statements and resulting assignments are Java notation for the
same actions described in the sort flow chart. To comprehend these actions
you need to understand why the interchange or swapping of values
between two variables, such as a and b, requires the use of the temporary t.
Also note how the three assignments are grouped as a block, allowing each
if expression to control a group of actions.

❏ System.out.print("The sorted order is : ");
System.out.println(a + ", " + b + ", " + c);

}

If the input values were 10, 5, and 15, the output would be

The sorted order is : 5, 10, 15

C++ by Dissection: Statements and Control Flow 3.4 The if-else Statement 66
3.4 THE if-else STATEMENT

Closely related to the if statement is the if-else statement. An if-else statement
has the following general form:

if (BooleanExpr) Statement1 else Statement2

If the expression BooleanExpr is true, then Statement1 is executed and Statement2 is
skipped; if BooleanExpr is false, then Statement1 is skipped and Statement2 is executed.
Statement2 is called the else statement. After the if-else statement has been exe-
cuted, control passes to the next statement. The flow of execution branches and then
rejoins, as shown in the following diagram.

Consider the following code:

if (x < y)
min = x;

else
min = y;

System.out.println("min = " + min);

If x < y is true, then min will be assigned the value of x; if it is false, then min will be
assigned the value of y. After the if-else statement is executed, min is printed.

As with the if statement, either branch of an if-else statement can contain a
block, as shown in the following example.

if (temperature < 32) {
System.out.println("Warning Warning Warning!");
System.out.println(32 - temperature + "(F) below Freezing!)";
System.out.println("Warning Warning Warning!");

}
else {
System.out.println("It’s " + temperature +

"degrees fahrenheit.");
}

True FalseBooleanExpr

Execution enters if-else statement

Continue with rest of program

Statement1 Statement2

C++ by Dissection: Statements and Control Flow 3.4 The if-else Statement 67
C O M M O N P R O G R A M M I N G E R R O R

A semicolon is used to change an expression to an expression statement.
All statements do not end in semicolons, and extraneous semicolons can
cause subtle errors. Look carefully at the following code fragment. What
is printed when it executes if x is 3 and y is 4?

if (x < y);
System.out.println("The smaller is " + x);

if (y < x);
System.out.println("The smaller is " + y);

The answer is

The smaller is 3
The smaller is 4

Note the extra semicolon after the close parenthesis in each if state-
ment. The indentation is misleading: All four lines should be indented
the same to reflect what is actually going to happen. The true branch of
each if statement is the empty statement “;”. The example code is syn-
tactically correct but semantically incorrect.

Another common error is to be misled by indentation and to try to
include two statements in one branch without using a block. Consider
this example.

if (temperature < 32)
System.out.print("It is now");
System.out.print(32 - temperature);
System.out.println(" below freezing.");

System.out.println("It's " + temperature + "degrees");

A user might mistakenly think that, if temperature is 32 or above, the
code will execute only the last print statement displaying temperature.
That is almost certainly what was intended. Unfortunately, if tempera-
ture is 32 or above, only the first print() would be skipped. If temper-
ature is 45 the following confusing message would be printed:

-13 below freezing.
It's 45 degrees

C++ by Dissection: Statements and Control Flow 3.4 The if-else Statement 68
3.4.1 Nested if-else Statements

The if statement is a full-fledged statement and can be used anywhere a statement is
expected, so you could put another if statement in either branch of an if statement.
For example, you could rewrite the earlier air fare checking statement as

if (ageOfPerson >= 18)
if (ageOfPerson < 65)
System.out.println("full fare adult");

If the expression (ageOfPerson >= 18) is true, then the statement

if (ageOfPerson < 65)
System.out.println("full fare adult");

is evaluated. The true branch for the ageOfPerson >= 18 if statement is itself an if
statement. In general, if the true branch of an if statement contains only another if
statement, writing it as a single if statement is more efficient, combining the expres-
sions with the operator &&, as we did in Section 3.2.2 Logical operators. Using && in
most cases is also clearer.

These nested if statements can’t always be collapsed. Consider the following
variation on our earlier example involving temperature.

if (temperature < 32) {
System.out.println("Warning Warning Warning!");
if (temperature < 0)
System.out.println((-temperature) + "(F) below Freezing!");

else
System.out.println(32 - temperature +

"(F) below Freezing!");
System.out.println("Warning Warning Warning!");

}
else {
System.out.println("It is " + temperature +

"degrees fahrenheit.");
}

To get the behavior suggested by the indentation shown, a block must be
used, as in

if (temperature < 32) {
System.out.print("It is now");
System.out.print(32 - temperature);
System.out.println(" below freezing.");

}
System.out.println("It's " + temperature + "degrees");

C++ by Dissection: Statements and Control Flow 3.4 The if-else Statement 69
The then statement for the outer if-else statement is a block containing another if-
else statement.

3.4.2 if-else-if-else-if ...

In the preceding example, the nesting was all done in the then statement part of the
if-else statement. Now we nest in the else statement part of the if-else statement:

if (ageOfPerson < 18)
System.out.println("child fare");

else {
if (ageOfPerson < 65)
System.out.println("adult fare");

else
System.out.println("senior fare");

}

The braces are not needed; we added them only for clarity. This form is so common that
experienced programmers usually drop the braces. In addition, the else and the follow-
ing if are usually placed on the same line, as in

if (ageOfPerson < 18)
System.out.println("child fare");

else if (ageOfPerson < 65)
System.out.println("adult fare");

else
System.out.println("senior fare");

Note that the second if statement is a single statement that constitutes the else branch
of the first statement. The two forms presented are equivalent. You should be sure that
you understand why they are. If you need to, look back at the general form of the if
statement and recall that an entire if-else statement is a statement itself. This fact is

C O M M O N P R O G R A M M I N G E R R O R

In algebra class you came across expressions such as 18 # age < 65.
This expression tempts many new programmers to write

if (18 <= age < 65) ...

In evaluating the expression, Java first evaluates (18 ¸<= age)—let’s
call it part1—which is either true or false. It then tries to evaluate
(part1 < 65), which is an error because relational operators are used
to compare two numbers, not a boolean and a number. The only good
thing about this type of mistake is that the compiler will catch it. Our
example earlier for printing full fare adult showed the proper way
to handle this situation.

C++ by Dissection: Statements and Control Flow 3.4 The if-else Statement 70
illustrated in the following figure, wherein each statement is surrounded by a box. As
you can see, there are five different statements.

Sometimes this chain of if-else-if-else-if-else... can get rather long, tedious, and
inefficient. For this reason, a special construct can be used to deal with this situation
when the condition being tested is of the right form. If you want to do different things
based on distinct values of a single expression, then you can use the switch statement,
which we discuss in Section 3.8 The switch Statement.

3.4.3 The Dangling else Problem

When you use sequences of nested if-else statements, a potential problem can arise
as to what if an else goes with, as for example in

if (Expression1)
if (Expression2)

Statement1
else

Statement2

The indenting suggests that Statement2 is executed whenever Expression1 is false; how-
ever, that isn’t the case. Rather, Statement2 is executed only when Expression1 is true
and Expression2 is false. The proper indenting is

if (Expression1)
if (Expression2)

Statement1
else

Statement2

The rule used in Java is that an else is always matched with the nearest preceding if
that doesn’t have an else. To cause Statement2 to be executed whenever Expression1 is
false, as suggested by the first indenting example, you can use braces to group the
statements as shown.

if (ageOfPerson < 18)

System.out.println("child fare");

else if (ageOfPerson < 65)

System.out.println("adult fare");

else

System.out.println("senior fare");

C++ by Dissection: Statements and Control Flow 3.5 The while Statement 71
if (Expression1) {
if (Expression2)

Statement1
}
else

Statement2

The braces are like parentheses in arithmetic expressions that are used to override the
normal precedence rules. The nested, or inner, if statement is now inside a block that
prevents it from being matched with the else.

3.5 THE while STATEMENT

We have added the ability to choose among alternatives, but our programs still execute
each instruction at most once and progress from the top to the bottom. The while state-
ment allows us to write programs that run repeatedly.

The general form of a while statement in Java is

while (BooleanExpr)
Statement

Statement is executed repeatedly as long as the expression BooleanExpr is true, as
shown in the following flowchart.

This flowchart is the same as the one for the if statement, with the addition of an
arrow returning to the test box.

Note that Statement may not be executed. That will occur when BooleanExpr eval-
uates to false the first time. Note also, that like the description of the if-else state-
ment, there are no semicolons in the general form of the while statement. The
semicolon, if any, would be part of the statement that follows the parenthesized bool-
ean expression.

A simple example for use on Valentine’s Day is

True

False

BooleanExpr

Execution enters while statement

Continue with rest of program

Statement

C++ by Dissection: Statements and Control Flow 3.5 The while Statement 72
// Valentine.java - a simple while loop
class Valentine {
 public static void main(String[] args) {
 int howMuch = 0;

 while (howMuch++ < 5)
 System.out.println("I love you.");
 }
}

The output is

When the body of the loop is a block you get

while (BooleanExpr) {
Statement1
Statement2
...

}

Modifying our earlier example gives

int howMuch = 0;
while (howMuch++ < 5) {
System.out.print("I love you.");
System.out.println {" @----->- my rose.");

}

which results in the output

Most while statements are preceded by some initialization statements. Our example
initialized the loop counting variable howMuch.

I love you.
I love you.
I love you.
I love you.
I love you.

I love you. @----->- my rose.
I love you. @----->- my rose.
I love you. @----->- my rose.
I love you. @----->- my rose.
I love you. @----->- my rose.

http://www.cse.ucsc.edu/~pohl/JBD/chap3/Valentine.java

C++ by Dissection: Statements and Control Flow 3.5 The while Statement 73
3.5.1 Problem Solving with Loops

Suppose that you wanted to have a program that could read in an arbitrary number of
nonzero values and compute the average. If you were to use pseudocode, the program
might look like the following.

PSEUDOCODE FOR AVERAGE, USING goto

1. Get a number.

2. If the number is 0 go to step 6.

3. Add the number to the running total.

4. Increment the count of numbers read in.

5. Go back to step 1.

6. Divide the running total by the count of numbers in
order to get the average.

7. Print the average.

In this pseudocode, step 5 goes back to the beginning of the instruction sequence, form-
ing a loop. In the 1950s and 1960s many programming languages used a goto statement
to implement step 5 for coding such a loop. These goto statements resulted in pro-
grams that were hard to follow because they could jump all over the place. Their use
was sometimes called spaghetti code. In Java there is no goto statement. Java includes
goto as a keyword that has no use so that the compiler can issue an error message if it
is used inadvertently by a programmer familiar with C or C++. Today structured control
constructs can do all the good things but none of the bad things that you could do with
goto statements.

A loop is a sequence of statements that are to be repeated, possibly many times.
The preceding pseudocode has a loop that begins at step 1 and ends at step 5. Modern
programs require that you use a construct to indicate explicitly the beginning and the
end of the loop. The structured equivalent, still in pseudocode, might look like the fol-
lowing.

PSEUDOCODE FOR AVERAGE, WITHOUT USING goto

get a number
while the number is not 0 do the following:

add the number to the running total
increment the count of numbers read in
get a number

(when the loop exits)
divide the running total by the count of numbers to

get the average
print the average

The loop initialization in this case is reading in the first number. Somewhere within a
loop, typically at the end, is something that prepares the next iteration of the loop—get-
ting a new number in our example. So, although not part of the required syntax, while
statements generally look like the following

C++ by Dissection: Statements and Control Flow 3.5 The while Statement 74
Statementinit // initialization for the loop
while (BooleanExpr) {

Statement1
Statement2
...
Statementnext // prepare for next iteration

}

The while statement is most often used when the number of iterations isn’t
known in advance. This situation might occur if the program was supposed to read in
values, processing them in some way until a special value called a sentinel was read in.
Such is the case for our “compute the average” program: It reads in numbers until the
sentinel value 0 is read in.

We can now directly translate into Java the pseudocode for computing an
average.

// Average.java - compute average of input values
import tio.*;

public class Average {
public static void main(String[] args) {
double number;
int count = 0;
double runningTotal = 0;
// initialization before first loop iteration
System.out.println("Type some numbers, " +

"the last one being 0");
number = Console.in.readDouble();

while (number != 0) {
runningTotal = runningTotal + number;
count = count + 1;
// prepare for next iteration
number = Console.in.readDouble();

}
System.out.print("The average of the ");
System.out.print(count);
System.out.print(" numbers is ");
System.out.println(runningTotal / count);

}
}

http://www.cse.ucsc.edu/~pohl/JBD/chap3/Average.java

C++ by Dissection: Statements and Control Flow 3.5 The while Statement 75
D I S S E C T I O N O F T H E Average P R O G R A M

❏ double number;
int count = 0;
double runningTotal = 0;

The variable number is used to hold the floating point value typed in by the
user. No initial value is given in the declaration because it gets its initial
value from user input. The variable count is used to count the number of
nonzero values read in. Counting is done efficiently and accurately with
whole numbers, so the variable count is an int initialized to zero. The vari-
able runningTotal is used to accumulate the sum of the numbers read in
so far and is initialized to zero. Similar to assignment statements, these are
declaration statements with initial values. Later we show how declaration
statements can be used but assignment statements can’t.

❏ System.out.println("Type some numbers, " +
"the last one being 0");

number = Console.in.readDouble();

A message should always be printed to prompt the user when the user is
expected to enter data. We could have initialized number when it was
declared, but it is central to the loop so we initialized it just before entering
the loop. These two statements correspond to the first line of our
pseudocode. All the preceding code is supporting syntax required by Java.

❏ while (number != 0) {

The loop will continue while the value stored in the variable number is not
0. The value 0 is used to detect the end of the loop. It acts as a sentinel to
keep the loop from running forever. A sentinel is an important technique
for terminating loops correctly.

❏ runningTotal = runningTotal + number;
count = count + 1;
number = Console.in.readDouble();

}

The first statement in the loop body would look strange in a mathematics
class unless number was 0. Recall that the symbol = is not an equals sign; it
is the assignment operator. It means: Evaluate the expression on the right
and then assign that value to the variable on the left. The result in this case
is to add the value of number to the value of runningTotal and store the
result in runningTotal. This type of expression is common in computer
programs: It computes a new value for a variable, using an expression that
includes the old value of the variable. Similarly, we increment the value of
count. The last statement in the body of the loop gets ready for the next

C++ by Dissection: Statements and Control Flow 3.6 The for Statement 76
iteration by reading in a new value from the user and storing it in number.
This action overwrites the old value, which is no longer needed. At this
point the computer will go back and evaluate the boolean expression to
determine whether the loop should execute again (i.e., number isn’t 0) or
continue with the rest of the program.

❏ System.out.println(runningTotal / count);

When the user finally types a 0, the program prints the answer and exits.
We have already used the print() and println() methods with a string
and with a number. Here we show that the number can be an expression.
Recall that the symbol / is the symbol for division. If the first number
typed is 0, this program will terminate by printing

The average of the 0 numbers is NaN

The symbol NaN stands for not a number and results from dividing zero by
zero. A better solution might be to test, using an if-else statement, for this
special case and print a more appropriate message. We leave that for you to
do as an exercise.

3.6 THE for STATEMENT

You can use the while construct to create any loop you will ever need. However, Java,
like most modern programming languages, provides two alternative ways to write loops
that are sometimes more convenient. The for statement is a looping statement that cap-
tures the initialization, termination test, and iteration preparation all in one place at the
top of the loop. The general form of the for statement is

for (ForInit; BooleanExpr ; UpdateExpr)
Statement

As part of the syntax of the for statement, the semicolons are used to separate the
three expressions. Note the absence of a semicolon between UpdateExpr and the closing
parenthesis.

C++ by Dissection: Statements and Control Flow 3.6 The for Statement 77
EXECUTION OF A FOR STATEMENT

1. ForInit is evaluated once—before the body of the loop.

2. BooleanExpr is tested before each iteration and, if true,
the loop continues (as in the while statement).

3. The loop body Statement is executed.

4. UpdateExpr is evaluated at the end of each iteration.

5. Go to step 2.

The following diagram also shows the flow of execution.

Compare this general form and the flow with that of the while statement. In the for
statement, the initialization expression represented by ForInit and the iteration expres-
sion represented by UpdateExpr frequently involve the use of an assignment operator,
but one is not required.

The for statement applies most naturally to situations involving going around a
loop a specific number of times. For example, if you wanted to print out the square
roots of the numbers 1 through 10 you could do so as follows.

// SquareRoots.java - print square roots of 1 - 10
public class SquareRoots {
public static void main(String[] args) {
int i;
double squareRoot;

for (i = 1; i <= 10; i++) {
squareRoot = Math.sqrt(i);
System.out.println("the square root of " + i +

" is " + squareRoot);
}
System.out.println("That's All!");

}
}

True

False

BooleanExpr

Execution enters for statement

Continue with rest of the program

Statement

ForInit

UpdateExpr

http://www.cse.ucsc.edu/~pohl/JBD/chap3/SquareRoots.java

C++ by Dissection: Statements and Control Flow 3.6 The for Statement 78
D I S S E C T I O N O F T H E SquareRoots P R O G R A M

❏ for (i = 1; i <= 10; i++) {

The expression i = 1 is evaluated only once—before the loop body is
entered. The expression i <= 10 is evaluated before each execution of the
loop body. The expression i++ is evaluated at the end of each loop body
evaluation. Recall that i++ is shorthand for i = i + 1.

❏ squareRoot = Math.sqrt(i);
System.out.println("the square root of " + i +

" is " + squareRoot);
}

The body of the loop is one statement—in this case a block. The braces are
part of the block syntax, not part of the syntax of a for statement.

❏ System.out.println("That's All!");

When the loop exits, program execution continues with this statement.

We can redo the square root printing loop by using a while statement as follows.

// SquareRoots2.java - replace for with while
public class SquareRoots2 {
public static void main(String[] args) {
int i;
double squareRoot;
i = 1; // initialization-expr
while (i <= 10) {
squareRoot = Math.sqrt(i);
System.out.println("the square root of " + i +

" is " + squareRoot);
i++; // iteration-expr

}
System.out.println("That's All!");

}
}

In both versions of this program, the same sequence of steps occurs.

http://www.cse.ucsc.edu/~pohl/JBD/chap3/SquareRoots2.java

C++ by Dissection: Statements and Control Flow 3.6 The for Statement 79
USING LOOPS

1. The variable i is initialized to 1.
2. The boolean expression i <= 10 is tested, and if true,

the loop body is executed. If the expression is false, the
loop statement is completed and execution continues
with the next statement in the program, the final print
statement.

3. After executing the print statement within the loop, the
statement incrementing the variable i is executed, in
preparation for the next loop iteration.

4. Execution continues with step 2.

3.6.1 Local Variables in the for Statement

The ForInit part of the for statement can be a local declaration. For example, let’s write
a loop that reads characters and prints them as uppercase.

char c;
for (int i = 1; i <= 10; i++) {
c = (char)Console.in.readChar();
if (c >= 'a' && c <= 'z')
c = (char)(c - ('a' - 'A'));

System.out.print(c);
}

In this case, the int variable i declared in the for statement is limited to the for state-
ment, including the body of the loop. The variable’s existence is tied to the for state-
ment code; outside the for statement it disappears. If you want the variable i to exist
independently of the for statement you must declare it before the for statement. It
then is available throughout the block containing the for statement. The variable is said
to have local scope. We discuss scope further in Section 4.4 Scope of Variables.

In the preceding example, we used a property of the character codes for the
English alphabet. The property is that the difference between any lowercase letter and
its uppercase equivalent is always the same. You compute that difference with the
expression ('a' - 'A'). You could just as easily use the expression ('z' - 'Z') or
any other pair of matching uppercase and lowercase letters. Also, recall that when you
use Console.in.readChar() from tio it returns an int value and hence a cast is
needed. When you use (c - ('a' - 'A')) a cast to char is necessary because the
resulting expression is converted to the wider int type.

C++ by Dissection: Statements and Control Flow3.7 The break and continue Statements 80
3.7 THE break AND continue STATEMENTS

Two special statements,

break; and continue;

interrupt the normal flow of control. The break statement causes an exit from the
innermost enclosing loop. The break statement also causes a switch statement to ter-
minate. (We discuss the switch statement in Section 3.8 The switch Statement.) In the
following example, a test for a negative argument is made. If the test is true, then a
break statement is used to pass control to the statement immediately following the
loop.

while (true) { //seemingly an infinite loop
System("Enter a positive integer:")
n = Console.in.readInt();
if (n < 0)
break; // exit loop if n is negative

System.out.print("squareroot of " + n);
System.out.println(" = " + Math.sqrt(n));

}

// break jumps here

This use of the break statement is typical. What would otherwise be an infinite loop is
made to terminate upon a given condition tested by the if expression.

The continue statement causes the current iteration of a loop to stop and causes
the next iteration of the loop to begin immediately. The following code adds continue
to the preceding program fragment in order to skip processing of negative values.

// BreakContinue.java - example of break and continue
import tio.*;

class BreakContinue {
public static void main(String[] args) {
int n;

while (true) { //seemingly an infinite loop
System.out.print("Enter a positive integer ");
System.out.print("or 0 to exit:");
n = Console.in.readInt();

http://www.cse.ucsc.edu/~pohl/JBD/chap3/BreakContinue.java

C++ by Dissection: Statements and Control Flow3.7 The break and continue Statements 81
if (n == 0)
break; // exit loop if n is 0

if (n < 0)
continue; //wrong value

System.out.print("squareroot of " + n);
System.out.println(" = " + Math.sqrt(n));
//continue lands here at end of current iteration

}
//break lands here
System.out.println("a zero was entered");

}
}

The output of this program, assuming that the user enters the values 4, 21, 9, and 0, is

The continue statement may only occur inside for, while, and do loops. As the exam-
ple shows, continue transfers control to the end of the current iteration, whereas
break terminates the loop.

The break and continue statements can be viewed as a restricted form of a goto
statement. The break is used to go to the statement following the loop and the con-
tinue is used to go to the end of the current iteration. For this reason, many program-
mers think that break and continue should be avoided. In fact, many uses of break
and continue can be eliminated by using the other structured control constructs. For
example, we can redo the BreakContinue example, but without break and continue,
as follows.

// NoBreakContinue.java - avoiding break and continue
import tio.*;

class NoBreakContinue {
public static void main(String[] args) {
int n;

os-prompt>java BreakContinue
Enter a positive integer or 0 to exit:4
squareroot of 4 = 2.0
Enter a positive integer or 0 to exit:-1
Enter a positive integer or 0 to exit:9
squareroot of 9 = 3.0
Enter a positive integer or 0 to exit:0
a zero was entered
os-prompt>

http://www.cse.ucsc.edu/~pohl/JBD/chap3/NoBreakContinue.java

C++ by Dissection: Statements and Control Flow 3.8 The switch Statement 82
System.out.print("Enter a positive integer ");
System.out.print("or 0 to exit:");
n = Console.in.readInt();
while (n != 0) {
if (n > 0) {

System.out.print("squareroot of " + n);
System.out.println(" = " + Math.sqrt(n));

}
System.out.print("Enter a positive integer ");
System.out.print("or 0 to exit:");
n = Console.in.readInt();

}

System.out.println("a zero was entered");
}

}

The loop termination condition is now explicitly stated in the while statement and not
buried somewhere inside the loop. However, we did have to repeat the prompt and the
input statement—once before the loop and once inside the loop. We eliminated con-
tinue by changing the if statement to test for when the square root could be com-
puted instead of testing for when it could not be computed.

3.8 THE switch STATEMENT

The switch statement can be used in place of a long chain of if-else-if-else-if-
else statements when the condition being tested evaluates to an integer numeric type.
Suppose that we have an integer variable dayOfWeek that is supposed to have a value of
1 through 7 to represent the current day of the week. We could then print out the day as

if (dayOfWeek == 1)
System.out.println("Sunday");

else if (dayOfWeek == 2)
System.out.println("Monday");

else if (dayOfWeek == 3)
System.out.println("Tuesday");

else if (dayOfWeek == 4)
System.out.println("Wednesday");

else if (dayOfWeek == 5)
System.out.println("Thursday");

else if (dayOfWeek == 6)
System.out.println("Friday");

else if (dayOfWeek == 7)
System.out.println("Saturday");

else
System.out.println("Not a day number " + dayOfWeek);

An alternative is to use a switch statement as follows.

C++ by Dissection: Statements and Control Flow 3.8 The switch Statement 83
switch (dayOfWeek) {
case 1:
System.out.println("Sunday");
break;

case 2:
System.out.println("Monday");
break;

case 3:
System.out.println("Tuesday");
break;

case 4:
System.out.println("Wednesday");
break;

case 5:
System.out.println("Thursday");
break;

case 6:
System.out.println("Friday");
break;

case 7:
System.out.println("Saturday");
break;

default:
System.out.println("Not a day number " + dayOfWeek);

}

Unlike the if-else and looping statements described earlier in this chapter, the braces
are part of the syntax of the switch statement. The controlling expression in parenthe-
ses following the keyword switch must be of integral type. Here it is the int variable
dayOfWeek. After the expression has been evaluated, control jumps to the appropriate
case label. All the constant integral expressions following the case labels must be
unique. Typically, the last statement before the next case or default label is a break
statement. If there is no break statement, then execution “falls through” to the next
statement in the succeeding case. Missing break statements are a frequent cause of
error in switch statements. For example, if the break; was left out of just case 1 and
if dayOfWeek was 1, the output would be

instead of just

There may be at most one default label in a switch statement. Typically, it
occurs last, although it can occur anywhere. The keywords case and default can’t
occur outside a switch.

Sunday
Monday

Sunday

C++ by Dissection: Statements and Control Flow 3.9 Using the Laws of Boolean Algebra 84
Taking advantage of the behavior when break; is not used, you can combine sev-
eral cases as shown in the following example.

switch (dayOfWeek) {
case 1:
case 7:
System.out.println("Stay home today!");
break;

case 2:
case 3:
case 4:
case 5:
case 6:
System.out.println("Go to work.");
break;

default:
System.out.println("Not a day number " + dayOfWeek);
break;

}

Note that the break statement—not anything related to the case labels—causes execu-
tion to continue after the switch statement. The switch statement is a structured goto
statement. It allows you to go to one of several labeled statements. It is then combined
with the break statement, which does another goto, in this case “go to the statement
after the switch.”

THE EFFECT OF A switch STATEMENT

1. Evaluate the switch expression.
2. Go to the case label having a constant value that

matches the value of the expression found in step 1; or,
if a match is not found, go to the default label; or, if
there is no default label, terminate switch.

3. Continue executing statements in order until the end of
switch is reached or a break is encountered.

4. Terminate switch when a break statement is encoun-
tered, or terminate switch by “falling off the end.”

3.9 USING THE LAWS OF BOOLEAN ALGEBRA

Boolean expressions can frequently be simplified or more efficiently evaluated by con-
verting them to logically equivalent expressions. Several rules of Boolean algebra are
useful for rewriting boolean expressions.

C++ by Dissection: Statements and Control Flow 3.10 Programming Style 85
In the expression x || y, y will not be evaluated if x is true. The value of y in that case
doesn’t matter. For this reason, it may be more efficient to have the first argument of a
boolean or expression be the one that most often evaluates to true. This is the basis for
short-circuit evaluation of the logical or operator.

while (a < b || a == 200) {
...

}
while (a == 200 || a < b) {
...

}

For the two controlling expressions, which order is more likely to be efficient? Note that
by the commutative law both while conditions are equivalent.

3.10 PROGRAMMING STYLE

We follow Java professional style throughout the programming examples. Statements
should readily display the flow of control of the program and be easy to read and fol-
low. Only one statement should appear on a line. Indentation should be used consis-
tently to set off the flow of control. After a left brace, the next line should be indented,
showing that it is part of that compound statement. There are two conventional brace
styles in Java. The style we follow in this book is derived from the C and C++ profes-
sional programming community. In this style, an opening or left brace stays on the
same line as the beginning of a selection or iteration statement. The closing or right
brace lines up under the keyword that starts the overall statement. For example,

if (x > y) {
System.out.println("x is larger " + x);
max = x;

}

Laws of Boolean Algebra

Commutative law
 a or b equals b or a
a and b equals b and a.

Distributive and law
 a and (b or c) equals

(a and b) or (a and c).

Distributive or law
 a or (b and c) equals
(a or b) and (a or c).

Double negation not not a equals a.

DeMorgan’s laws
not(a and b) equals (nota or notb)
not(a or b) equals (not a and not b)

C++ by Dissection: Statements and Control Flow 3.10 Summary 86
while (i < 10) {
sum = sum + i;
i++;

}

An alternative acceptable style derives from the Algol60 and Pascal communities. In this
style each brace is kept on a separate line. In those languages the keywords begin and
end were used to set off compound statements and they were placed on their own lines.
For example,

if (x > y)
{
System.out.println("x is larger " + x);
max = x;

}

However, be consistent and use the same style as others in your class, group, or com-
pany. A style should be universal within a given community. A single style simplifies
exchanging, maintaining, and using each others’ code.

SUMMARY

❏ An expression followed by a semicolon is an expression statement. Expression
statements are the most common form of statement in a program. The simplest
statement is the empty statement, which syntactically is just a semicolon.

❏ A group of statements enclosed by braces is a block. A block can be used anywhere
a statement can be used. Blocks are important when you need to control several
actions with the same condition. This is often the case for selection or iteration
statements such as the if-else statement or the for statement, respectively.

❏ All statements don’t end with a semicolon. The only statements covered in this
chapter that end with a semicolon are expression statements and declaration state-
ments.

❏ The general form of an if statement is

if (BooleanExpr)
 Statement

❏ The general form of an if-else statement is

if (BooleanExpr)
Statement1

else
Statement2

❏ When nesting an if statement inside an if-else statement or vice-versa, the else
will always be matched with the closest unmatched if. This precedence can be

C++ by Dissection: Statements and Control Flow 3.10 Review Questions 87
overridden with a block statement to enclose a nested if statement or if-else
statement.

❏ The general form of the while statement is

while (BooleanExpr)
Statement

❏ The general form of the for statement is

for (ForInit ; BooleanExpr ; UpdateExpr)
Statement

❏ Java includes the usual logical operators and, or, and not.

❏ The break statement can be used to terminate abruptly the execution of either a
switch statement or a looping statement. When a break is executed inside any of
those statements, the enclosing switch or loop statement is immediately termi-
nated and execution continues with the statement following the switch or loop.

❏ The continue statement is used only inside a looping statement. When a continue
is executed, the remaining portion of the surrounding loop body is skipped and the
next iteration of the loop is begun. In the case of the while statement, the loop ter-
mination expression is tested as the next operation to be performed after the con-
tinue. In the case of the for statement, the update expression is evaluated as the
next operation, followed by the loop termination test.

❏ The switch statement is an alternative to a sequence of if-else-if-else...
statements. The switch statement can be used only when the selection is based on
an integer-valued expression.

REVIEW QUESTIONS

1. True or false? An expression is a statement.

2. How do you turn an expression into a statement?

3. True or false? All statements end with a semicolon. If false, give an example to show
why.

4. True or false? An if statement is always terminated with a semicolon. If false, give
an example to show why.

5. What are the values of the following Java expressions?

true && false
true || false

6. Write a Java expression that is true whenever the variable x is evenly divisible by
both 3 and 5. Recall that (x % y) is zero if y evenly divides x.

7. What is printed by the following program fragment?

C++ by Dissection: Statements and Control Flow 3.10 Review Questions 88
x = 10;
y = 20;
if (x < y)
System.out.println("then statement executed");

else
System.out.println("else statement executed");
System.out.println("when is this executed?");

8. What is printed by the following program, if 3 and 12 are entered as x and y? Now if
you change the order and enter 12 and 3, what is printed?

// PrintMin.java - print the smaller of two numbers
import tio.*;

class PrintMin {
public static void main(String[] args) {
System.out.println("Type two integers.");
int x = Console.in.readInt();
int y = Console.in.readInt();

if (x < y)
System.out.println("The smaller is " + x);

if (y < x)
System.out.println("The smaller is " + y);

if (x == y)
System.out.println("They are equal.");

}
}

9. For the declarations shown, fill in the value of the expression or enter *illegal*.

int a = 2, b = 5, c = 0, d = 3;

10. What is printed by the following program fragment? How should it be indented to
reflect what is really going on?

Expression Value

b % a

a < d

(c != b) && (a > 3)

a / b > c

a * b > 2

http://www.cse.ucsc.edu/~pohl/JBD/chap3/PrintMin.java

C++ by Dissection: Statements and Control Flow 3.10 Review Questions 89
x = 10;
y = 20;
z = 5;
if (x < y)
if (x < z)
System.out.println("statement1");
else
System.out.println("statement2");
System.out.println("statement3");

11. How many times will the following loop print testing?

int i = 10;
while (i > 0) {
System.out.println("testing");
i = i - 1;

}

12. How many times will the following loop print testing?

int i = 1;
while (i != 10) {
System.out.println("testing");
i = i + 2;

}

13. What is printed by the following loop? See Review Question 6.

int i = 1;
while (i <= 100) {
if (i % 13 == 0)
System.out.println(i);

i = i + 1;
}

14. Rewrite the loop in the previous question using a for statement.

15. Rewrite the following loop, using a while statement.

for (i = 0; i < 100; i++) {
 sum = sum + i;
}

16. True or false? Anything that you can do with a while statement can also be done
with a for statement and vice-versa.

17. How many times will the following loop go around? This is a trick question—look at
the code fragment carefully. It is an example of a common programming error.

C++ by Dissection: Statements and Control Flow 3.10 Exercises 90
int i = 0;
while (i < 100) {
System.out.println(i*i);

}

18. What is printed by the following program?

// Problem18.java
class Problem18 {
public static void main(String[] args) {
int i, j = 0;

for (i = 1; i < 6; i++)
if (i > 4)

break;
else {

j = j + i;
System.out.println("j= " + j + " i= " + i);

}
System.out.println("Final j= " + j + "i= " + i);

}
}

EXERCISES

1. Write a program that asks for the number of quarters, dimes, nickels, and pennies
you have. Then compute the total value of your change and print the amount in the
form $X.YY. See Exercise 16 in Chapter 2 Program Fundamentals.

2. Write a program that reads in two integers and then prints out the larger one. Use
Review Question 8, as a starting point and make the necessary changes to class
PrintMin to produce class PrintMax.

3. Modify the class Average from this chapter to print a special message if the first
number entered is 0.

4. Write a program that reads in four integers and then prints out yes if the numbers
were entered in increasing order and prints out no otherwise.

5. Write a program that prompts for the length of three line segments as integers. If
the three lines could form a triangle, the program prints “Is a triangle.” Otherwise,
it prints “Is not a triangle.” Recall that the sum of the lengths of any two sides of a
triangle must be greater than the length of the third side. For example, 20, 5, and 10
can’t be the lengths of the sides of a triangle because 5 + 10 is not greater than 20.

6. Write a program that tests whether the formula a2 + b2 = c2 is true for three integers
entered as input. Such a triple is a Pythagorean triple and forms a right-angle trian-
gle with these numbers as the lengths of its sides.

http://www.cse.ucsc.edu/~pohl/JBD/chap3/Problem18.java

C++ by Dissection: Statements and Control Flow 3.10 Exercises 91
7. An operator that is mildly exotic is the conditional operator ?:. This operator takes
three arguments and has precedence just above the assignment operators, as for
example in

s = (a < b)? a : b;
// (a < b) true then s assigned a else s assigned b

Rewrite the code for class PrintMin, in Review Question 8, using this operator to
eliminate the first two if statements. We chose not to use this operator because it
is confusing to beginning programmers. It is unnecessary and usually can readily
and transparently be replaced by an if statement.

8. Write a program that reads in integers entered at the terminal until a value of 0 is
entered. A sentinel value is used in programming to detect a special condition. In
this case the sentinel value is used to detect that no more data values are to be
entered. After the sentinel is entered, the program should print out the number of
numbers that were greater than 0 and the number of numbers that were less than 0.

9. Write a program that reads in integers entered at the terminal until a sentinel value
of 0 is entered. After the sentinel is entered, the program should print out the
smallest number, other than 0, that was entered.

10. Rewrite Exercise 8 to print the largest number entered before the sentinel value 0 is
entered. If you already did that exercise, only a few changes are needed to complete
this program. Now code a further program that ends up printing both the smallest
or minimum value found and the largest or maximum value found.

11. Rewrite Exercise 5 to continue to test triples until the sentinel value 0 is entered.

12. Write a program that reads in characters and prints their integer values. Use the
end-of-file value -1 as a guard value to terminate the character input. For Unix sys-
tems, the end-of-file character can be generated by hitting Ctrl+D on the keyboard.
For Windows systems, the end-of-file character can be generated by hitting Ctrl+Z
on the keyboard. Note again that readChar() returns an int value. This action
allows you to test the end-of-file value. If you convert this value to a char, negative
numbers would not be representable. Explain why.

13. Write a program to input values as in Exercise 12. This time run it with the input
taken as a file through redirection. If the compiled Java program is TestChar.class,
then the command

java TestChar < myFile

will use myFile for input. Redirection is possible with Unix or the Windows console
window.

14. Write a program to print every even number between 0 and 100. Modify the pro-
gram to allow the user to enter a number n from 1 through 10 and have the pro-
gram print every nth number from 0 through 100. For example, if the user enters 5,
then 0 5 10 15 20...95 100 are printed.

C++ by Dissection: Statements and Control Flow 3.10 Exercises 92
15. Write a program that will print out a box drawn with asterisks, as shown.

Use a loop so that you can easily draw a larger box. Modify the program to read in a
number from the user specifying how many asterisks high and wide the box should
be.

16. Write a program that reads in numbers until the same number is typed twice in a
row. Modify it to go until three in a row are typed. Modify it so that it first asks for
“how many in a row should I wait for?” and then it goes until some number is typed
that many times. For example, for two in a row, if the user typed “1 2 5 3 4 5 7” the
program would still be looking for two in a row. The number 5 had been typed
twice, but not in a row. If the user then typed 7, that would terminate the program
because two 7s were typed, one directly after the other.

17. Write a program that prints all the prime numbers in 2 through 100. A prime num-
ber is an integer that is greater than 1 and is divisible only by 1 and itself. For exam-
ple, 2 is the only even prime. Why?

PSEUDOCODE FOR FINDING PRIMES

for n = 2 until 100
for i = 2 until the square root of n
if n % i == 0 the number is divisible by i
otherwise n is prime

Can you explain or prove why the inner-loop test only needs to go up to the square
root of n?

18. Write a program that prints the first 100 prime numbers. Use the same algorithm as
in Exercise 17, but terminate the program upon finding the 100th prime. Assume
that the search needs to go no farther than n = 10,000.

19. Write a program that generates all Pythagorean triples (see Exercise 6) whose small
sides are no larger than n. Try it with n ð 200. (Hint: Use two for loops to enumer-
ate possible values for the small sides and then test to determine whether the result
is an integral square.

20. Write a program that gives you a different message each day of the week. Use a
switch statement. Take as input an integer in the range 1 through 7. For example,
if 6 means Friday, the message might say, Today is Friday, tGif. If the user
inputs a number other than 1 through 7, have the default issue an appropriate mes-
sage.

21. Write a program that gives you a fortune based on an astrological sign. Use a
switch statement to structure the code.

* *
* *
* *

C++ by Dissection: Statements and Control Flow 3.10 Applet Exercise 93
22. Write a program that generates an approximation of the real number e. Use the for-
mula

where k! means k factorial = 1 * 2 * . . . *k. Keep track of term 1/k! by using a dou-
ble. Each iteration should use the previous value of this term to compute the next
term, as in

Run the computation for 20 terms, printing the answer after each new term is com-
puted.

23. Write your own pseudorandom number generator. A pseudorandom sequence of
numbers appears to be chosen at random. Say that all the numbers you are inter-
ested in are placed in a large fishbowl and you reach in and pick out one at a time
without looking where you are picking. After reading the number, you replace it and
pick another. Now you want to simulate this behavior in a computation. You can do
so by using the formula X

n + 1
 = (aX

n
 + c) mod m. Let a be 3,141,592,621, c be 1, and

m be 10,000,000,000 (see Knuth, Seminumerical Algorithms, Addison-Wesley 1969,
p. 86). Generate and print the first 100 such numbers as long integers. Let X

1
= 1.

APPLET EXERCISE

Redo any one of the first ten exercises in this chapter but use an applet for input and
output. You are to do so by modifying the following applet. Recall that the Applet Exer-
cises in Chapter 2, Program Fundamentals, introduced a special kind of Java program
called an applet. Among other things, an applet may be used to create graphical output
such as plots or diagrams. In order to be useful, most programs, including applets, need
some way to receive input. For the regular applications that we’ve created so far, we’ve
used Console.in.readInt(), etc., to read values from the console. This exercise intro-
duces you to the use of a JTextField object to get input from an applet. For this exer-
cise we need to introduce two more methods: init() and actionPerformed(). As with
the earlier applet exercise, for now you need only to concentrate on the body of the
methods init() and actionPerformed(), treating the surrounding code as a template
to be copied verbatim. The following applet reads two numbers and then displays their
sum.

/* <applet code="AppletSum.class"
width=420 height=100></applet> */

// AppletSum.java - Text input with an applet
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

e 1 1
1!
----- 1

2!
----- 1

3!
----- … 1

k!
---- …+ + + + + +≈

Tk 1+ Tk
1

k 1+
------------×=

http://www.cse.ucsc.edu/~pohl/JBD/chap3/AppletSum.java

C++ by Dissection: Statements and Control Flow 3.10 Applet Exercise 94
public class AppletSum extends JApplet
implements ActionListener {

JTextField inputOne = new JTextField(20);
JTextField inputTwo = new JTextField(20);
JTextField output = new JTextField(20);
public void init() {
Container pane = getContentPane();

pane.setLayout(new FlowLayout());
pane.add(new JLabel("Enter one number."));
pane.add(inputOne);
pane.add(
new JLabel("Enter a number and hit return."));

pane.add(inputTwo);
pane.add(new JLabel("Their sum is:"));
pane.add(output);
inputTwo.addActionListener(this);

}

public void actionPerformed(ActionEvent e) {
double first, second, sum;

first = Double.parseDouble(inputOne.getText());
second = Double.parseDouble(inputTwo.getText());
sum = first + second;
output.setText(String.valueOf(sum));

}
}

D I S S E C T I O N O F T H E AppletSum P R O G R A M

❏ import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class AppletSum extends JApplet
implements ActionListener

For now this code is all part of the template for an applet. The only part
that you should change is to replace AppletSum with the name of your
applet. The import statements tell the Java compiler where to find the var-
ious classes used in this program, such as JTextField and JApplet. The
extends JApplet phrase is how we indicate that this class is defining an
applet instead of a regular application. The implements ActionListener
phrase is needed if we want to have our program do something when the
user has finished entering data.

C++ by Dissection: Statements and Control Flow 3.10 Applet Exercise 95
❏ JTextField inputOne = new JTextField(20);
JTextField inputTwo = new JTextField(20);
JTextField output = new JTextField(20);

JTextField is a standard Java class. A JTextField is a graphical user
interface component in which the user can enter text and the program can
then read the text entered by the user. This program will create three text
fields—two for the input values and one to display the sum of the first two.
Note that these variables aren’t declared inside any method. These vari-
ables need to be referenced by both the methods in this applet. You should
think of them as part of the applet class AppletSum and not part of any one
method. (We discuss such declarations in Section 6.5 Static Fields and
Methods.)

❏ public void init() {
Container pane = getContentPane();
pane.setLayout(new FlowLayout());

The method init() is rather like main() for an applet. This method is
called to initialize the applet. The first thing we do in the method is get the
content pane. The content pane is the part of the applet used to display the
various graphical components that we add to the applet. The setLayout()
method is used to adjust the content pane so that when components are
added, they are arranged in lines, like words of text in a word processor.
The components are allowed to “flow” from one line to the next. For now,
just always include the two statements in your init() method.

❏ pane.add(new JLabel("Enter one number."));
pane.add(inputOne);
pane.add(

new JLabel("Enter a number and hit return."));
pane.add(inputTwo);
pane.add(new JLabel("Their sum is:"));
pane.add(output);

The method add() is used to add some labels and text fields to the content
pane of the applet. JLabel is a standard Java class that is used to place
labels in graphical user interfaces. Unlike with a JTextField, the user can’t
enter text in a JLabel when the applet is running. The order in which we
add all the components to the applet is important. The components are
placed in the applet, like words in a word processor. That is, the compo-
nents will be displayed from left to right across the applet until the next
component won’t fit, in which case a new line of components is started.
Later, you’ll learn more about controlling the placement of components,
but for now just add them in the desired order and then adjust the width of
the applet to get the desired appearance. Here is what the applet will look
like.

C++ by Dissection: Statements and Control Flow 3.10 Applet Exercise 96
❏ inputTwo.addActionListener(this);

The last statement in the init() method says that the actionPer-
formed() method in the applet referred to by this should be called when
Return is hit in the text field, inputTwo.

❏ public void actionPerformed(ActionEvent e) {
double first, second, sum;
first = Double.parseDouble(inputOne.getText());
second = Double.parseDouble(inputTwo.getText());
sum = first + second;
output.setText(String.valueOf(sum));

}

This method is called each time the user hits Return with the cursor placed
in the text field inputTwo. The method gets the text that was entered in the
first two text fields by invoking their getText() methods. The resulting
strings are then converted to floating point numbers, using the standard
Java method Double.parseDouble(). Next the two numbers are added
and stored in the variable sum. The floating point value stored in sum is con-
verted to a String, using String.valueOf(), which can be used to con-
vert any primitive value to a String. Finally the method setText() from
the class JTextField is used to set the value of the text displayed in the
JTextField object output.

	Statements and Control Flow
	3.1 Expression, Block, and Empty Statements
	3.1.1 Empty Statement

	3.2 Boolean Expressions
	3.2.1 Relational and Equality Operators
	3.2.2 Logical operators

	3.3 The if Statement
	3.3.1 Problem Solving with the if statement

	3.4 The if-else Statement
	3.4.1 Nested if-else Statements
	3.4.2 if-else-if-else-if�...
	3.4.3 The Dangling else Problem

	3.5 The while Statement
	3.5.1 Problem Solving with Loops

	3.6 The for Statement
	3.6.1 Local Variables in the for Statement

	3.7 The break and continue Statements
	3.8 The switch Statement
	3.9 Using the Laws of Boolean Algebra
	3.10 Programming Style
	Summary
	Review Questions
	Exercises
	Applet Exercise

