
2
Program Fundamentals

In this chapter we introduce programming fundamentals in Java. We write a Java pro-
gram by using different elements of the Java language. The most basic elements are
the tokens of the language. Tokens are the words that make up the sentences of the
program. Programming is comparable to writing. To write an essay we write words
that make up sentences, sentences that make up paragraphs, and paragraphs that
make up essays. In this chapter we concentrate on how to use the “words” and com-
bine them into the program equivalent of useful sentences and paragraphs.

2.1 “HELLO, WORLD!” IN JAVA

A simple first Java program is the classic “Hello, world!” program, so named because it
prints the message Hello, world! on the computer’s screen.

/* HelloWorld.java
* Purpose:
* The classic "Hello, world!" program.
* It prints a message to the screen.
* Author: Jane Programmer
* as derived from Kernighan and Richie
*/

class {
public static void main (String[] args) {
System.out.println("Hello, world!");

}
}

http://www.cse.ucsc.edu/~pohl/JBD/chap2/HelloWorld.java

C++ by Dissection: Program Fundamentals 2.1 “Hello, world!” in Java 15
D I S S E C T I O N O F T H E HelloWorld P R O G R A M

❏ /* HelloWorld.java
* Purpose:
...
*/

Everything between a /* and a */ is a comment. Comments are ignored by
the Java compiler and are inserted to make the program more understand-
able to the human reader. Every program should begin with a comment
such as the one in this example. In our examples, the name of the file
appears in the comment. This example indicates that it is from the file Hel-
loWorld.java. Other things to include in program comments are the func-
tion or purpose of the program, the author of the program, and a revision
history with dates, indicating major modifications to the program.

❏ class HelloWorld {

The word class is a keyword preceding the name of the class. A keyword
has a predefined special purpose. A class is a named collection of data and
instructions. The name of the class being defined in this example is Hel-
loWorld. The left brace “{” begins the definition of a class. A matching
right brace “}” is needed to end the class definition. Forgetting to match
braces is a common error.

❏ public static void main (String[] args) {

This line declares that the class HelloWorld contains a method with the
name main. A method is a named group of instructions within a class. In
this example, only one method, named main, is defined for the class Hel-
loWorld. In Chapter 4, Methods: Functional Abstraction, we create classes
that contain several methods in a single class. When we use the name of a
method, we add parentheses at the end to remind you that it is a method.
This convention comes from actual Java code, wherein the name of a
method is always followed by parentheses. The method defined by this line
is thus referred to as main().

There are two kinds of Java programs: stand-alone applications and applets.
The method main() appears in every stand-alone Java program indicating
where program execution will begin. Later we use a different line that serves
a similar purpose for applets. An explanation of the words public, static,
and void in this line is left until later.

❏ {
System.out.println("Hello, world!");

}

The entire body of the method main(), the real instructions to the com-

C++ by Dissection: Program Fundamentals2.2 Compiling and Running Your Java Program 16
puter, appears between the braces. In this example, just one instruction
prints the desired message. You can memorize this instruction and use it as
an incantation to get something printed out on your computer screen. What
gets printed is between the quotation marks.

2.2 COMPILING AND RUNNING YOUR JAVA PROGRAM

You will be dealing with two different representations of your programs: the part you
write and a form more suitable for the computer to use when it finally runs your pro-
gram. The text you write to give the computer instructions is called the source code or
simply the source. This source code will be compiled by the Java compiler into a form
more suitable as instructions to the computer called object code. The source code form
of the program is represented in the language Java that you will be learning. Informally,
you can think of the source code as the raw form of the program in contrast to the
object code, which is the cooked or compiled form. In Java, all source code file names
have the suffix .java, such as HelloWorld.java. The result of correctly compiling Hel-
loWorld.java is the object code HelloWorld.class. In some situations, the name of the file
without the .java and the name of the class defined in the file must be the same.
Although this requirement does not apply to the programs in the first part of this book,
we follow that practice even when it isn’t required and suggest that you do the same.

There are many names and forms for the machine representation of a program
after it has been processed somewhat by the computer. A common first step in process-
ing source code is to compile it, which means to translate it into a form more suitable
for the computer. For most common programming languages, this compiled form is
called the machine code, object code, or binary form. When you buy a piece of software
you usually get binaries or an executable image. For Java, this form is a bit different and
is called Java Bytecode. These bytecodes are the same whether you are running on a
Macintosh, on an Intel machine with Microsoft Windows, or on a machine from Sun run-
ning Unix. This sameness is an important advantage of Java programs, as they can be
written to be platform independent, which is generally not true for most other program-
ming languages, such as C or COBOL.

In Java, all bytecode files must have a name that ends in .class such as Hello-
World.class. The word class is used because, in Java, programs are broken into chunks
called classes, much like a chapter is broken into sections. The following diagram illus-
trates the compilation process and the conventions just described.

There are two principal methods for compiling and running Java programs. One method
uses an Integrated Development Environment (IDE), of which there are many for Java.

Java Compiler HelloWorld.class
(bytecode)

HelloWorld.java
(source)

C++ by Dissection: Program Fundamentals 2.3 Lexical Elements 17
The actual details of compiling for each of the IDEs vary slightly but the basic steps are
the same.

COMPILING AND RUNNING JAVA PROGRAMS

1. Use the editor that comes with the IDE to create the
source file. These editors generally help with syntax by
using special fonts or colors for keywords and helping
you match braces, and so on.

2. Create some kind of project and add your source file to
the project.

3. Select Run from a menu. The IDE will automatically deter-
mine that the source file needs to be compiled and com-
pile it before trying to run the program.

The other principal method is the command line approach. In it you run the compiler
yourself from the command line of either a DOS or Unix shell program. For both Unix
and DOS shells the steps are the same.

COMMAND LINE APPROACH

1. Use your favorite text editor to create the source file.

2. Compile the program with the command javac followed
by the source file name—for example, javac Hel-
loWorld.java.

3. If the program compiles without errors, run the program
with the command java followed by the name of the
class. Do not append .class, as in HelloWorld.class; use
only the class name— for example, java HelloWorld.

The last two steps are shown as follows for the program HelloWorld.

2.3 LEXICAL ELEMENTS

As with any language there are certain rules about how words in the Java programming
language are formed and what constitutes a legal sentence. In addition, Java has rules
about how sentences can be put together to form a complete program, somewhat like
the less formal rules about how to format a formal letter with the address of the recipi-

os-prompt>javac HelloWorld.java
os-prompt>java HelloWorld
Hello, world!
os-prompt>

C++ by Dissection: Program Fundamentals 2.3 Lexical Elements 18
ent and opening salutation. In this section we begin by looking at the various words and
symbols, called lexical elements, that are used to construct Java programs.

The most fundamental element in the structure of a program is a single character
that can be displayed on a computer screen or typed at a computer keyboard. Prior to
Java, most programming languages, such as C and C++, used the ASCII character set. It
provides for 127 different characters, which is enough to represent all the characters on
the conventional English language keyboard. This set may seem like a lot, but when you
consider all the human languages in the world and the various symbols they use, it is
inadequate. Because Java was designed to be used throughout the world, not just in
English-speaking countries, Java developers adopted the Unicode character set. It pro-
vides for more than 64,000 different characters.

When a Java compiler first begins to analyze a Java program, it groups the indi-
vidual characters into larger lexical elements, usually called tokens. Some tokens—such
as the plus sign, +, which is the Java symbol used to add two numbers—are only one
character long. Other tokens—such as the keywords class and public—are many char-
acters long. These basic tokens are then combined into larger language forms, such as
expressions.

There are five types of tokens: keywords, identifiers, literals, operators, and punc-
tuation. White space and comments are two additional lexical elements that are dis-
carded early in the compilation process.

2.3.1 White Space

White space in Java refers to the space character, which you get when you strike the
space bar on the keyboard; the tab character, which is actually one character, although
it may appear as several spaces on your screen; and the newline character which you get
when you hit the Return or Enter key on the keyboard. White space is used primarily to
make the program look nice and also serves to separate adjacent tokens that are not
separated by any other punctuation and would otherwise be considered a single, longer
token. For example, white space is used to separate the following three tokens:

public static void

in the HelloWorld program. In such situations, where one white space character is
required, any number of white space characters can be used. For example, we could
have put each of the words public, static, and void on separate lines or put lots of
spaces between them as in

public static void main(...

Except for string literals, which we discuss shortly, any number of adjacent white space
characters—even mixing tab, space, and newline characters—is the same as just one
white space character as far as the structure and meaning of the program are con-
cerned. Stated another way, if you can legally put in one space, you can put in as many
spaces, tabs, and newlines as you want. You can’t put white space in the middle of a
keyword or identifier, such as a variable or class name. We discuss keywords, identifi-
ers, and variables later in this chapter.

C++ by Dissection: Program Fundamentals 2.3 Lexical Elements 19
2.3.2 Comments

Comments are very important in writing good code and are too often neglected. The pri-
mary purpose of a comment is to provide additional information to the person reading
a program. It serves as a concise form of program documentation. As far as the com-
puter is concerned, the comment does not result in a token; it separates other tokens or
is ignored completely when it isn’t needed to separate tokens. Java has three ways to
specify comments.

A single line comment begins with // and causes the rest of the line—all charac-
ters to the next newline—to be treated as a comment and ignored by the compiler. It is
called a single line comment because the comment can’t be longer than a single line. By
definition, the comment ends at the end of the line containing the //.

A multiline comment can extend across several lines in a program. The beginning
of the comment is marked with /* and the end of the comment is marked with */.
Everything between the marks and the marks themselves is a comment and is ignored.
Here is the multiline comment from our first Java program.

/* HelloWorld.java
* Purpose:
* This is the classic "Hello, world!" program.
* It simply prints a message to the screen.
* Author:
* Jane Programmer
* as derived from Kernighan and Richie
*/

The single asterisks on the intermediate lines are not required and are used merely to
accent the extent of the comment. These comments are also called block comments.

The third style of comment is a minor variation on the multiline comment. The
beginning marker has an additional asterisk; that is, the beginning of the comment is
marked with /** and the end of the comment is marked with */. These comments are
identical to the multiline comment except that they are recognized by a special program
called javadoc that automatically extracts such comments and produces documentation
for the program organized as an HTML document. See Section 4.13 Programming Style
for more about javadoc.

2.3.3 Keywords

Keywords, also known as reserved words, have a predefined special purpose and can’t
be used for any but that purpose. Each of the 47 keywords in Java has a special meaning
to the Java compiler. A keyword must be separated from other keywords or identifiers
by white space, a comment, or some other punctuation symbol. The following table
shows all the Java keywords.

C++ by Dissection: Program Fundamentals 2.3 Lexical Elements 20
The keywords const and goto have no meaning in Java. They are keywords in C++, a
language that was a precursor to Java. They are included as keywords to facilitate error
reporting when programmers with C++ experience accidentally use them. In addition,
the words null, true, and false look like keywords in that they have a predefined
meaning, but they are in fact literals, as discussed later.

2.3.4 Identifiers

Identifiers are the names used to specify different elements of a Java program, such as
a class, method, or variable. (We discuss variables in Section 2.4.1 Variables.) An identi-
fier in our first program was HelloWorld, a name we picked for the class. Another
identifier was the library method name println, a name picked by the Java developers.
In both cases, the name gives a clue as to the use of that element of the program. An
identifier is any sequence of Java letters and digits, the first of which must be a Java let-
ter, with two exceptions. A keyword can’t be an identifier, and the special literal terms
true, false, and null can’t be used as identifiers. The Java letters and digits include
the letter and digit symbols for many modern written languages. The Java letters
include the English language uppercase and lowercase letters, the $, and the _ (under-
score). The last two are included because of Java’s close kinship to the programming
language C, which included these symbols as legal characters in identifiers. The Java
digits are 0 through 9. In our examples, we use only English letters and digits. The fol-
lowing are some examples of legal identifiers along with comments providing some
explanation.

data //variable name conveying its use
HelloWorld //class name
youCanAlmostMakeASentence //unlikely
readInt //method name from tio
x //simple variable usually double
__123 //obscure name-a poor choice

abstract default if private throw

boolean do implements protected throws

break double import public transient

byte else instanceof return try

case extends int short void

catch final interface static volatile

char finally long super while

class float native switch

const for new synchronized

continue goto package this

C++ by Dissection: Program Fundamentals 2.3 Lexical Elements 21
The following are some illegal identifiers, along with comments indicating what the
sequence of symbols really is.

3 //a digit or integer literal
x+y //an expression where x and y are identifiers
some***name //illegal internal characters
no Space //intended was noSpace
1floor //cannot start with a digit
class //keyword - cannot be used as an identifier

2.3.5 Literals

Java has built-in types for numbers, characters, and booleans. Java also has a standard
class type for strings. The type of a data value tells the computer how to interpret the
data. These built-in types are called primitive types in Java. Literals, also called con-
stants, are the literal program representations of values for the primitive numeric types,
the primitive type boolean, the primitive character type char, and the standard class
string type String. Without going into the details of these various types, the following
are some examples of literal values.

Like keywords, the symbols true and false can’t be used as identifiers. They are
reserved to represent the two possible boolean values. We explain later, in more detail,
what constitutes an acceptable literal for each data type.

2.3.6 Operators and Punctuation

In addition to keywords, identifiers, and literals, a Java program contains operators and
separators or punctuation. The operators are things like “+”, and the separators are
things like the “;” that terminates some statements and the braces “{ }” used to group
things. To fully understand operators, you need to understand type, precedence, and
associativity. Type determines the kind of value computed, such as int or double. Pre-
cedence determines among operators, such as + and / used in an expression, which is
done first. Associativity is the order in which operators of the same precedence are eval-
uated and is usually left-most first—for example,

int n = 1;
n = n * 3 + 2; //an assignment expression

Java Type Explanation Examples

int Integers—numbers without fractional parts 123 -999 0

double Double precision numbers with fractional parts 1.23 -0.01

String Arbitrary strings of characters "Oh J" "123"

boolean Logical values true or false true false

char Single characters 'a' '1'

C++ by Dissection: Program Fundamentals 2.4 Data Types and Variable Declarations 22
The variable n is an integer variable initialized to 1. Next n is multiplied by the integer
literal 3. This result is added to 2, and finally this value is assigned to n. The result is 5,
which is then assigned to n. Precedence of the multiplication operator * is higher than
+, so the multiplication is done before the addition. Precedence of the assignment oper-
ator = is lowest, so assignment occurs as the last action in this expression. We discuss
precedence and associativity of operators further in Section 2.13 Precedence and Asso-
ciativity of Operators.

2.4 DATA TYPES AND VARIABLE DECLARATIONS

In order to do something useful, computer programs must store and manipulate data.
Many programming languages, including Java, require that each data item have a
declared type. That is, you must specify the kind of information represented by the
data, or the data’s type. The data’s type determines how data is represented in the com-
puter’s memory and what operations can be performed on the data.

Different programming languages support different data types. A data type can
be as fundamental as a type for representing integers or as complex as a type for repre-
senting a digital movie. Some examples of data types found in Java are shown below

JAVA DATA TYPES

❏ int—for representing integers or whole numbers;

❏ double—for representing numbers having a fraction;

❏ String—for representing text;

❏ Button—for representing a push button in a graphical
user interface; and

❏ Point—for representing points in a plane.

The types of data that are created, stored, and manipulated by Java programs can be
separated into two main groups: primitive types and class types, or simply classes. There
are eight primitive types:

C++ PRIMITIVE TYPES

❏ the numeric types byte, short, int, long, float, and
double for storing numeric values;

❏ the character type char for storing a single alphabetic
character, digit, or symbol; and

❏ the type boolean for storing true or false.

Primitive data values can be created by using literals such as 100, -10.456, 'a', and
true. Primitive values can also be operated on by using built-in operators such as + for

C++ by Dissection: Program Fundamentals 2.4 Data Types and Variable Declarations 23
addition and - for subtraction of two numeric values, producing a new primitive value.
For example,

2 + 3

uses + (addition) to operate on the two numeric literal values, 2 and 3, to produce the
new primitive value, 5.

Standard Java has more than 1500 classes. The String, Button, and Point types
mentioned previously are standard Java classes. You will learn in Chapter 6, Objects:
Data Abstraction, that you can create your own classes. Also, in Chapter 5, Arrays, we
discuss arrays, which are a special case of class types.

The data values that are class types are called objects. You can create object data
values by using the special operator new followed by the class name and possibly some
additional values needed to create the new object. For example,

new Button("Quit")

creates a new object describing a button with the label “Quit.”
You can create new objects of type String, as a special case, by using the string

literal notation that surrounds the text of the string with double quotation marks. For
example, "Hello, world!" creates a new string object.

In most cases, the operations supported for the particular class are given a name
and invoked by placing the name after the object value, separated by a dot. For exam-
ple,

"Hello, world!".length()

operates on the literal string "Hello, world!" and evaluates to 13—the number of
characters in this string, including any blanks. Operations such as length() defined for
a particular class are called methods. We discuss methods in great detail in subsequent
chapters.

2.4.1 Variables

In all but the most trivial programs, such as HelloWorld, you will declare variables that
are identifiers used to refer to data values that are stored in the computer’s memory.
These are called variables because a variable actually refers to a particular place in the
computer’s memory, and the value stored in the computer’s memory can vary as the
program runs. A variable declaration always begins with a type and ends with a semico-
lon. The type is used to identify the kind of data that will be stored in the memory loca-
tion associated with the variable being declared. Some examples of variable declarations
are

int i, j;
String sentence;
boolean flag1, flag2, flag3;
Button clickToExit;

Note that you can declare several variables of the same type by separating the names
with a comma. Good choice of variable names is important to writing clearly under-

C++ by Dissection: Program Fundamentals 2.5 An Example: String Concatenation 24
standable code. Stylistically, choose variable names that are meaningful. Also, variable
names usually start in lowercase, and if they are multiword, the internal words start
with an uppercase character, as in clickToExit.

2.4.2 Variable Initialization

Variables can be given initial values. The preceding set of declarations given initial val-
ues for each variable becomes

int i = 2, j = 3;
String sentence = "I am a camera.";
boolean flag1 = true, flag2 = true, flag3 = false;
Button clickToExit = new Button("Exit");

Initializing variables with literals of their respective type is normal. In this example, the
int variable i is initially given the value 2. The boolean variable flag1 is initially true.
The String variable sentence is initialized with a string literal.

With the exception of String, Java has no literals for creating object values. You
initialize the Button variable by creating a Button object, using new as discussed
briefly earlier. We discuss object creation in Chapter 6, Objects: Data Abstraction.

2.5 AN EXAMPLE: STRING CONCATENATION

The following example is a complete program that declares three variables: word1,
word2, and sentence. Values are then assigned to the parts of the computer memory
referred to by those variables.

// HelloWorld2.java - simple variable declarations
class HelloWorld2 {
 public static void main (String[] args) {
 String word1; // declare a String variable
 String word2, sentence; // declare two more

 word1 = "Hello, ";
 word2 = "world!";
 sentence = word1.concat(word2);
 System.out.println(sentence);
 }
}

http://www.cse.ucsc.edu/~pohl/JBD/chap2/HelloWorld2.java

C++ by Dissection: Program Fundamentals 2.5 An Example: String Concatenation 25
D I S S E C T I O N O F T H E HelloWorld2 P R O G R A M

❏ String word1; // declare a String variable
String word2, sentence; // declare two more

Whenever you introduce a new identifier you must declare it. You declare
that an identifier is a variable by first writing the name of the kind of value
the variable refers to, called the type. The type is String in this example.
Insert the name of the new variable after the type. For variables in Java, the
computer must always know the type of value to be stored in the memory
location associated with that variable. As shown in the second line, you can
declare more than one variable at a time by giving first the type and then a
comma separated list of new identifiers.

❏ word1 = "Hello, ";
word2 = "world!";

The symbol = is called the assignment operator and is used to store values
in variables. Read the first statement as “word1 gets the value Hello, ” or
“word1 is assigned the value Hello, ”. Here it is used to assign the String
literals "Hello, " and "world!" to the newly declared variables word1
and word2, respectively. The variable name will always be on the left and
the new value to be assigned to the variable will always be on the right. Say-
ing “assign the value "Hello, " to the variable word1” really means to
store the String value "Hello, " in the computer memory location asso-
ciated with the variable word1.

❏ sentence = word1.concat(word2);

This statement contains an expression used to create a third String value,
which is then assigned to the variable sentence. This expression uses the
method concat(), which is defined for values of type String. Recall that
operations on objects are called methods. This particular operation requires
a second String value placed between the parentheses. The method name
concat is short for concatenation. The concatenation of two strings is a new
string that contains the symbols from the first string followed by the sym-
bols from the second string. Note that the first string, word1, contains a
space at the end. Thus, when we concatenate the two strings, we get the new
string "Hello, world!", which is assigned to the variable sentence.

❏ System.out.println(sentence);

The program then prints out the string in the variable sentence, which now
is "Hello, world!".

C++ by Dissection: Program Fundamentals 2.5 An Example: String Concatenation 26
As we showed earlier, when a variable is declared, it can be given an initial value. This
approach essentially combines an assignment with the declaration. Using this notation,
you can now write the body of main() in HelloWorld2 as

String word1 = "Hello, ";
String word2 = "world!";
String sentence = word1.concat(word2);
System.out.println(sentence);

You could even combine two initializations in a single statement,

String word2 = "world!", sentence = word1.concat(word2);

although, as a general rule, multiple complex initializations such as this should be
placed on separate lines.

2.5.1 Strings Versus Identifiers Versus Variables

A string is a particular data value that a program can manipulate. A variable is a place in
the computer’s memory with an associated identifier. The following example uses the
identifier hello to refer to a variable of type String. The identifier stringVary refers
to a second variable of type String. We first assign stringVary the value associated
with the String variable hello. Later we reassign it the string value "hello".

// StringVsId.java - contrast strings and identifiers
class StringVsId {
public static void main(String[] args) {
String hello = "Hello, world!";
String stringVary;
stringVary = hello;
System.out.println(stringVary);
stringVary = "hello";
System.out.println(stringVary);

}
}

The output of this program is

The program demonstrates two important points. First it shows the difference
between the identifier hello, which in fact refers to the string "Hello, world!", and
the string "hello", which is referred to at one point by the variable stringVary. This
example also shows that a variable can vary. The variable stringVary first refers to the
value "Hello, world!" but later refers to the value "hello".

Hello, world!
hello

http://www.cse.ucsc.edu/~pohl/JBD/chap2/StringVsId.java

C++ by Dissection: Program Fundamentals 2.6 User Input 27
2.6 USER INPUT

In the programs presented so far, we have generated output only by using Sys-
tem.out.println(). Most programs input some data as well as generate output. There
are lots of ways to input data in Java, but the simplest is to use a class provided in the
text input–output package tio, as shown in the following example. This package isn’t a
standard Java package but is provided for use with this text. The complete source for
tio is listed in Appendix C, The Text I/O Package tio.

// SimpleInput.java - reading numbers from the keyboard
import tio.*; // use the package tio

class SimpleInput {
public static void main (String[] args) {
int width, height, area;

System.out.println("type two integers for" +
" the width and height of a box");

width = Console.in.readInt();
height = Console.in.readInt();
area = width * height;
System.out.print("The area is ");
System.out.println(area);

}
}

D I S S E C T I O N O F T H E SimpleInput P R O G R A M

❏ import tio.*; // use the package tio

This line tells the Java compiler that the program SimpleInput uses some
of the classes defined in the package tio. The * indicates that you might
use any of the classes in the package tio. The class used here is Console,
allowing you to write Console.in.readInt(), which we explain shortly.
Because only Console is used f rom tio , you could also write
import tio.Console;, but common practice is to import the entire pack-
age.

❏ int width, height, area;

This program declares three integer variables. The width and height must
be whole numbers; fractional values are not allowed.

http://www.cse.ucsc.edu/~pohl/JBD/chap2/SimpleInput.java

C++ by Dissection: Program Fundamentals 2.6 User Input 28
❏ System.out.println("type two integers for" +
" the width and height of a box");

A string literal must be on one line. You can’t type a newline between the
quotation marks. When the string that you want to print is too long to fit on
a single line, you can break it into pieces and then put them back together,
using the + for string concatenation, as shown here. You can put newlines,
or any amount of white space, around the + symbol. Use println() to
prompt a user to do something—here to type two numbers. Whenever a
program is expecting the user to do something, it should print out a
prompt telling the user what to do.

❏ width = Console.in.readInt();
height = Console.in.readInt();

The statement Console.in is similar to System.out. For now just memo-
rize Console.in.readInt() as an idiom for reading an integer from the
keyboard. The expression Console.in.readInt() is replaced at execution
time by the integer value corresponding to that typed by the user. That
value is stored in the variable whose identifier appears on the left of the
assignment operator. If the user types something other than a string of dig-
its, then the program will print an error message and terminate.

❏ area = width * height;

The asterisk, *, is the Java symbol for multiplication. The result of multi-
plying the values stored in width and height is assigned to the variable
area.

❏ System.out.print("The area is ");

Here System.out.print() is used. Note the absence of ln at the end. This
line is just like System.out.println() except that it doesn’t append a
newline.

❏ System.out.println(area);

Note that you can use System.out.println() to print both an int and a
String. The same applies to System.out.print(). The two outputs will
appear on the same line on the screen. Be sure that the last line in a series
contains the 1n. Nothing will appear on your screen until a newline is
printed.

C++ by Dissection: Program Fundamentals 2.7 Calling Predefined Methods 29
2.7 CALLING PREDEFINED METHODS

A method is a group of instructions having a name. In the programs introduced so far,
we’ve defined a single method called main(). In addition, we’ve used some methods
from other classes that were either standard Java classes or were part of the tio pack-
age provided with this book. The methods have names, which makes it possible for you
to request the computer to perform the instructions that comprise the method. That’s
what we’re doing by using the expression System.out. println("Hello, world!").
We’re calling a method with the name println and asking that the instructions be exe-
cuted. Just as two people can have the same name, two methods can have the same
name. We must therefore, in general, tell Java where to look for the method. Using Sys-
tem.out tells Java that we’re interested in the println() method associated with the
object identified by System.out. (We must still postpone a full explanation of the
meaning of System.out.) As we have shown, the same method can be called several
times in one program. In SimpleInput, we called the method println() twice.

For many methods, we need to provide some data values in order for the method
to perform its job. These values are provided to the method by placing them between
parentheses following the name of the method. These values are called the parameters
of the method, and we say that we are passing the parameters to the method. The
println() method requires one parameter, which is the value to be printed. As we indi-
cated previously, this parameter can be either a string or a numeric value. In the latter
case the numeric value will be converted by the println() method to a string and then
printed. If more than one parameter is required, we separate the parameter values by
commas. For example, the predefined method Math.min() is used to determine the
minimum of two numbers. The following program fragment will print out 3.

int numberOne = 10, numberTwo = 3, smallest;
smallest = Math.min(numberOne, numberTwo);
System.out.println(smallest);

The method min() is contained in the standard Java class Math, which includes other
common mathematical functions, such as Math.sqrt() that is used to find the square
root of a number.

Here are some of the predefined methods that we’ve mentioned so far.

System.out.print(x) //print the value of x
System.out.println(x) //print the value of x

//followed by a newline
Console.in.readInt() //get an int from the keyboard
Math.min(x,y) //find the smaller of x and y
Math.sqrt(x) //find the square root of x
w1.concat(w2) //concatenate the strings w1 and w2
word.length() //find the length of the string word

Java includes a rich set of many more predefined methods. They include methods
for the most common mathematical functions (see Section B.2 The Standard Java Math
Functions), for creating graphical user interfaces (see Chapter 8, Graphical User Inter-

C++ by Dissection: Program Fundamentals 2.8 More on print() and println() 30
faces: Part I and Chapter 9, Graphical User Interfaces: Part II), for reading and writing
information from and to files (see Chapter 10, Reading and Writing Files), for communi-
cating with programs on other computers using a network (see Chapter 13, Concurrent
Programming with Java Threads), and many more. An important aspect of Java is the
ability to use parts of programs created by others.

2.8 MORE ON print() AND println()

As the program SimpleInput shows, methods System.out.print() and Sys-
tem.out.println() can print more than just strings. The print() and println()
methods can print all the primitive types.

We also showed in previous examples how two or more strings can be combined
by using the string concatenation operator +. Using this operator, we can print out a
long line of text without having to have a long line in our program, which would make
the program hard to read. We demonstrated this capability in

System.out.println("type two integers for" +
" the width and height of a box");

Of course we could have achieved the same result by using a print() and then a
println(), as in

System.out.print("type two integers for");
System.out.println(" the width and height of a box");

The earlier version would have allowed us to include even more actual text in the
message to be printed. Recall, however, that you can’t put a newline in the middle of a
string, so the following would not be legal.

System.out.println("type two integers for
the width and height of a box");

In the same way that you can combine two strings with the string concatenation
operator you can also combine one string and one value of any other type. In this case,
the nonstring operand is first converted into a new string and then the two strings are
concatenated. This allows rewriting the printing of the result in SimpleInput from Sec-
tion 2.6 User Input, in the form

System.out.print("The area is " + area);

This version emphasizes that one message will appear on a single line of the output.
The int value area is first converted to a String and then combined with the other
string, using string concatenation.

What about the opposite? What if you wanted to have an output message that
spanned several output lines but with a single println()? You can do so by putting the

C++ by Dissection: Program Fundamentals 2.9 Number Types 31
symbols \n in a string literal to represent internally newlines within the string. Such a
string will print on more than one output line. Thus for

System.out.println("One\nword\nper\nline.");

The output is

The pair of symbols \n, when used in a string literal, mean to put a newline at this point
in the string. This escape sequence allows you to escape from the normal meaning of the
symbols \ and n when used separately. You can find out more about escape sequences
in Section 2.9.3 The char Type.

The method System.out.println() is a convenient variant of Sys-
tem.out.print(). You can always achieve the same effect by adding \n to the end of
what is being printed. For example, the following two lines are equivalent.

System.out.println("Hello, world.");
System.out.print("Hello, world.\n");

Care must be taken when you’re using string concatenation to combine several num-
bers. Sometimes, parentheses are necessary to be sure that the + is interpreted as string
concatenation, not numeric addition. For

int x = 1, y = 2;
System.out.println("x + y = " + x + y);

the output is x + y = 12 because the string "x + y =" is first concatenated with the
string "1", and then "2" is concatenated onto the end of the string "x + y = 1". To
print x + y = 3 you should use parentheses first to force the addition of x and y as
integers and then concatenate the string representation of the result with the initial
string, as in

System.out.println("x + y = " + (x + y));

2.9 NUMBER TYPES

There are two basic representations for numbers in most modern programming lan-
guages: integer representations and floating point representations. The integer types
are used to represent integers or whole numbers. The floating point types are used to

One
word
per
line.

C++ by Dissection: Program Fundamentals 2.9 Number Types 32
represent numbers that contain fractional parts or for numbers whose magnitude
exceeds the capacity of the integer types.

2.9.1 The Integer Types

Some mechanism is needed to represent positive and negative numbers. One simple
solution would be to set aside one bit to represent the sign of the number. However,
this results in two different representations of zero, +0, and -0, which causes problems
for computer arithmetic. Therefore an alternative system called two’s complement is
used.

An 8-bit value called a byte can represent 256 different values. Java supports five
integral numeric types. The type char, although normally used to represent symbolic
characters in a 16-bit format called Unicode, can be interpreted as an integer. As dis-
cussed shortly, the result of combining a char value with another numeric value will
never be of type char. The char value is first converted to one of the other numeric
types. These types are summarized in the following table.

The asymmetry in the most negative value and the most positive value of the integer
types results from the two’s complement system used in Java to represent negative val-
ues.

Literal integer values are represented by a sequence of digits. An integer literal is
either an int or long. An explicit conversion, called a cast, of an int literal must be
used to assign them to the smaller integer types short and byte (see Section 2.10.2
Type Conversion). Integer literals can be expressed in base 10 (decimal), base 8 (octal),
and base 16 (hexadecimal) number systems. Decimal literals begin with a digit 1-9,
octal literals begin with the digit 0, and hexadecimal literals begin with the two-charac-
ter sequence 0x. To specify a long literal instead of an int literal, append the letter el,
uppercase or lowercase, to the sequence of digits.

Type Number of Bits Range of Values

byte 8 –128 to 127

short 16 –32768 to 32767

char 16 0 to 65536

int 32 –2147483648 to 2147483647

long 64
–9223372036854775808 to
9223372036854775807

C++ by Dissection: Program Fundamentals 2.9 Number Types 33
Here are some examples:

2.9.2 The Floating Point Types

Java supports two floating point numeric types. A floating point number consists of
three parts: a sign, a magnitude, and an exponent. These two types are summarized in
the following table.

To represent floating point literals, you can simply insert a decimal point into a
sequence of digits, as in 3.14159. If the magnitude of the number is too large or too
small to represent in this fashion, then a notation analogous to scientific notation is
used. The letter e from exponent is used to indicate the exponent of 10 as shown in the
following examples.

Unless specified otherwise, a floating point literal is of type double. To specify a float-
ing point literal of type float, append either f or F to the literal—for example, 2.17e-
27f.

Literal Evaluation

217 the decimal value two hundred seventeen

0217
an octal number equivalent to 143 in the decimal

system ((2 × 82 + 1 × 81 + 7))

0195
would be illegal because 9 is not a valid octal digit

(only 0–7 are octal digits)

0x217

a hexadecimal number equivalent to 535 in the
decimal system (2 × 162 + 1 × 161 + 7); the hexadecimal
digits include 0–9 plus a = 10, b = 11, c = 12, d = 13,

e = 14, and f = 15.

14084591234L
a long decimal literal; without the L this would be an
error because 14084591234 is too large to store in the

32 bits of an int type integer.

Type Number
of Bits

Approximate Range
of Values

Approximate
Precision

float 32 +/–10245 to +/–10+38 7 decimal digits

double 64 +/–102324 to +/–10+308 15 decimal digits

Java Representation Value

2.17e-27 2.17 × 10–27

2.17e99 2.17 × 1099

C++ by Dissection: Program Fundamentals 2.9 Number Types 34
2.9.3 The char Type

Java provides char variables to represent and manipulate characters. This type is an
integer type and can be mixed with the other integer types. Each char is stored in mem-
ory in 2 bytes. This size is large enough to store the integer values 0 through 65535 as
distinct character codes or nonnegative integers, and these codes are called Unicode.
Unicode uses more storage per character than previous common character encodings
because it was designed to represent all the world’s alphabets, not just one particular
alphabet.

For English, a subset of these values represents actual printing characters. These
include the lowercase and uppercase letters, digits, punctuation, and special characters
such as % and +. The character set also includes the white space characters blank, tab,
and newline. This important subset is represented by the first 128 codes, which are also
known as the ASCII codes. Earlier languages, such as C and C++, worked only with this
more limited set of codes and stored them in 1 byte.

The following table illustrates the correspondence between some character liter-
als and integer values. Character literals are written by placing a single character
between single quotes, as in 'a'.

There is no particular relationship between the value of the character constant
representing a digit and the digit’s intrinsic integer value. That is, the value of '2' is not
2. The property that the values for 'a', 'b', 'c', and so on occur in order is important.
It makes the sorting of characters, words, and lines into lexicographical order conve-
nient.

Note that character literals are different from string literals, which use double
quotes, as in "Hello". String literals can be only one character long, but they are still
String values, not char values. For example, "a" is a string literal.

Some nonprinting and hard-to-print characters require an escape sequence. The
horizontal tab character, for example, is written as \t in character constants and in
strings. Even though it is being described by the two characters \ and t, it represents a
single character. The backslash character \ is called the escape character and is used to
escape the usual meaning of the character that follows it. Another way to write a charac-
ter constant is by means of a hexadecimal-digit escape sequence, as in '\u0007'. This
is the alert character, or the audible bell. These 4 hexadecimal digits are prefixed by the
letter u to indicate their use as a Unicode literal. The 65,536 Unicode characters can be
written in hexadecimal form from '\u0000' to '\uFFFF'.

Some Character Constants and Their Corresponding Integer Values

 'a' 'b' 'c' ... 'z' 97 98 99 ... 112

 'A' 'B' 'C' ... 'Z' 65 66 67 ... 90

 '0' '1' '2' ... '9' 48 49 50 ... 57

 '&' '*' '+' 38 42 43

C++ by Dissection: Program Fundamentals 2.9 Number Types 35
The following table contains some nonprinting and hard-to-print characters.

The alert character is special; it causes the bell to ring. To hear the bell, try executing a
program that contains the line

print('\u0007');

Character values are small integers, and, conversely, small integer values can be charac-
ters. Consider the declaration

char c = 'a';

The variable c can be printed either as a character or as an integer:

print(c); // a is printed
print((int)c); // 97 is printed

2.9.4 Numbers Versus Strings

The sequence of 0s and 1s inside a computer used to store the String value "1234" is
different from the sequence of 0s and 1s used to store the int value 1234, which is dif-
ferent from the sequence of 0s and 1s used to store the double value 1234.0. The
string form is more convenient for some types of manipulation, such as outputing to
screen or combining with other strings. The int form is better for some numeric calcu-
lations, and double is better for others. How does the computer know how to interpret
a particular sequence of 0s and 1s? The answer is: Look at the type of the variable used
to store the value. This answer is precisely why you must specify a type for each vari-
able. Without the type information the sequence of 0s and 1s could be misinterpreted.

We do something similar with words all the time. Just as computers interpret
sequences of 0s and 1s, human beings interpret sequences of alphabetic symbols. How
people interpret those symbols depends on the context in which the symbols appear.

Name of Character Escape int hex

Backslash \\ 92 \u005C

Backspace \b 8 \0008

Carriage return \r 13 \u000D

Double quote \" 34 \u0022

Formfeed \f 12 \u000C

Horizontal tab \t 9 \u0009

Newline \n 10 \u000A

Single quote \' 39 \u0027

Null character 0 \u0000

Alert 7 \u0007

C++ by Dissection: Program Fundamentals 2.10 Arithmetic Expressions 36
For example, at times the same word can be a noun, and at other times it can be a verb.
Also, certain sequences of letters mean different things in different languages. Take the
word pie for example. What does it mean? If it is English, it is something good to eat. If
it is Spanish, it means foot.

From the context of the surrounding words we can usually figure out what the
type of the word is: verb or noun, English or Spanish. Some programming languages do
something similar and “figure out” the type of a variable. These programming lan-
guages are generally considered to be more error prone than languages such as Java,
which require the programmer to specify the type of each variable. Languages such as
Java are called strongly typed languages.

2.10 ARITHMETIC EXPRESSIONS

The basic arithmetic operators in Java are addition +, subtraction -, multiplication *,
division /, and modulus %. You can use all arithmetic operators with all primitive
numeric types: char, byte, short, int, long, float, and double. In addition, you can
combine any two numeric types by using these operators in what is known as mixed
mode arithmetic. Although you can use the operators with any numeric type, Java actu-
ally does arithmetic only with the types int, long, float, and double. Therefore the
following rules are used first to convert both operands into one of four types.

TYPE CONVERSIONS

1. If either operand is a double, then the other is converted
to double.

2. Otherwise, if either operand is a float, then the other is
converted to float.

3. Otherwise, if either operand is a long, then the other is
converted to a long.

4. Otherwise, both are converted to int.

This conversion is called binary numeric promotion and is also used with the binary
relational operators discussed in Section 3.2.1 Relational and Equality Operators.

When both operands are integer types, the operations of addition, subtraction,
and multiplication are self-evident except when the result is too large to be represented
by the type of the operands.

Integer values can’t represent fractions. In Java, integer division truncates toward
0. For example, 6 / 4 is 1 and 6 / (-4) is -1. A common mistake is to forget that inte-
ger division of nonzero values can result in 0. To obtain fractional results you must
force one of the operands to be a floating point type. In expressions involving literals
you can do so by adding a decimal point, as in 6.0 / 4, which results in the floating
point value 1.5. In addition, integer division by zero will result in an error called an
ArithmeticException. An exception, as the name implies, is something unexpected.
Java provides a way for you to tell the computer what to do when exceptions occur. If

C++ by Dissection: Program Fundamentals 2.10 Arithmetic Expressions 37
you don’t do anything and such an error occurs, the program will print an appropriate
error message and terminate. We discuss exceptions in Chapter 11, Exceptions.

Unlike some programming languages, Java doesn’t generate an exception when
integer arithmetic results in a value that is too large. Instead, the extra bits of the true
result are lost, and in some cases pollute the bit used for the sign. For example, adding
two very large positive numbers could generate a negative result. Likewise, subtracting
a very large positive number from a negative number could generate a positive result. If
values are expected to be near the limit for a particular type, you should either use a
larger type or check the result to determine whether such an overflow has occurred.

When one of the operands is a floating point type, but both operands are not of
the same type, one of them is converted to the other as described earlier. Unlike some
programming languages, floating point arithmetic operations in Java will never generate
an exception. Instead three special values can result: positive infinity, negative infinity,
and “Not a Number.” See Section A.1.2 Floating Point Representations for more details.

The modulus operator % returns the remainder from integer division. For exam-
ple, 16 % 3 is 1, because 16 divided by 3 is 5 with a remainder of 1. The modulus oper-
ator is mostly used with integer operands; however, in Java it can be used with floating
point operands. For floating point values x % y is n, where n is the largest integer such
that y * n is less than or equal to x.

2.10.1 An Integer Arithmetic Example: MakeChange.java

The computation in Section 1.2 Algorithms—Being Precise whereby we made change for
a dollar, is a perfect illustration of the use of the two integer division operators, / and %.

// MakeChange.java - change in dimes and pennies
import tio.*; // use the package tio

class MakeChange {
public static void main (String[] args) {
int price, change, dimes, pennies;

System.out.println("type price (0:100):");
price = Console.in.readInt();
change = 100 - price; //how much change
dimes = change / 10; //number of dimes
pennies = change % 10; //number of pennies
System.out.print("The change is : ");
System.out.println(dimes + " dimes " + pennies + " pennies");

}
}

D I S S E C T I O N O F T H E MakeChange P R O G R A M

❏ int price, change, dimes, pennies;

The program declares four integer variables. The type determines the range
of values that can be used with the variables. They also dictate that the pro-
gram use integer arithmetic operations, not floating point operations.

http://www.cse.ucsc.edu/~pohl/JBD/chap2/MakeChange.java

C++ by Dissection: Program Fundamentals 2.10 Arithmetic Expressions 38
❏ price = Console.in.readInt();

The Console.in.readInt() is used to obtain the input from the key-
board. The readInt() method is found in the tio package. At this point
we must type in an integer price. For example, we would type 77 and hit
Enter.

❏ change = 100 - price; //how much change

This line computes the amount of change. This is the integer subtraction
operator.

❏ dimes = change / 10; //number of dimes
pennies = change % 10; //number of pennies

To compute the number of dimes, we compute the integer result of dividing
change by 10 and throw away any remainder. So if change is 23, then the
integer result of 23/10 is 2. The remainder 3 is discarded. The number of
pennies is the integer remainder of change divided by 10. The % operator is
the integer remainder or modulo operator in Java. So if change is 23, then
23 % 10 is 3. In Exercise 18, we ask you to use double for the variables and
to report on your results.

2.10.2 Type Conversion

You may want or need to convert from one primitive numeric type to another. As men-
tioned in the preceding section, Java will sometimes automatically convert the operands
of a numeric operator. These automatic conversions are also called widening primitive
conversions and always convert to a type that requires at least as many bits as the type
being converted, hence the term widening. In most but not all cases, a widening primi-
tive conversion doesn’t result in loss of information. An example that can lose some
precision is the conversion of the int value 123456789 to a float value, which results
in 123456792. To understand this loss of information, see Section A.1.2 Floating Point
Representations. The following are the possible widening primitive conversions:

From To

byte short, int, long, float, or double

short int, long, float, or double

char int, long, float, or double

int long, float, or double

long float or double

float double

C++ by Dissection: Program Fundamentals 2.10 Arithmetic Expressions 39
In addition to performing widening conversions automatically as part of mixed
mode arithmetic, widening primitive conversions are also used to convert automatically
the right-hand side of an assignment operator to the type of the variable on the left. For
example, the following assignment will automatically convert the integer result to a
floating point value.

int x = 1, y = 2;
float z;
z = x + y; // automatic widening from int to float

A narrowing primitive conversion is a conversion between primitive numeric
types that may result in significant information loss. The following are narrowing prim-
itive conversions.

Narrowing primitive conversions generally result only from an explicit type con-
version called a cast. A cast is written as (type)expression, where the expression to be
converted is preceded by the new type in parentheses. A cast is an operator and, as the
table in Section 2.13 Precedence and Associativity of Operators, indicates, has higher
precedence than the five basic arithmetic operators. For example, if you are interested
only in the integer portion of the floating point variable someFloat, then you can store
it in someInteger, as in

int someInteger;
float someFloat = 3.14159;
someInteger = (int)someFloat;
System.out.println(someInteger);

The output is

If the cast is between two integral types, the most significant bits are simply dis-
carded in order to fit the resulting format. This discarding can cause the result to have a

From To

byte char

short byte or char

char byte or short

int byte, short, or char

long byte, short, char, or int

float byte, short, char, int, or long

double byte, short, char, int, long, or float

3

C++ by Dissection: Program Fundamentals 2.10 Arithmetic Expressions 40
different sign from the original value. The following example shows how a narrowing
conversion can cause a change of sign.

int i = 127, j = 128;
byte iAsByte = (byte)i, jAsByte = (byte)j;
System.out.println(iAsByte);
System.out.println(jAsByte);

The output is

The largest positive value that can be stored in a byte is 127. Attempting to force a nar-
rowing conversion on a value greater than 127 will result in the loss of significant infor-
mation. In this case the sign is reversed. To understand exactly what happens in this
example, see Section A.1 Integer Representation.

127

-128

C O M M O N P R O G R A M M I N G E R R O R

Remember that integer division truncates toward zero. For example,
the value of the expression 3/4 is 0.m Both the numerator and the
denominator are integer literals, so this is an integer division. If what
you want is the rounded result, you must first force this to be a float-
ing point division and then use the routine Math.round() to round the
floating point result to an integer. To force a floating point division
you can either make one of the literals a floating point literal or use a
cast. In the following example first recall that floating point literals of
type float are specified by appending the letter f. Then for

int x = Math.round(3.0f/4);

the variable x will get the value 1. Forcing the division to be a floating
point divide is not enough. In the following example, z will be 0.

int z = (int)3.0f/4;

The conversion of 0.75 to an int truncates any fractional part.

C++ by Dissection: Program Fundamentals 2.11 Assignment Operators 41
2.11 ASSIGNMENT OPERATORS

To change the value of a variable, we have already made use of assignment statements
such as

a = b + c;

Assignment is an operator, and its precedence is lower than all the operators we’ve dis-
cussed so far. The associativity for the assignment operator is right to left. In this sec-
tion we explain in detail its significance.

To understand = as an operator, let’s first consider + for the sake of comparison.
The binary operator + takes two operands, as in the expression a + b. The value of the
expression is the sum of the values of a and b. By comparison, a simple assignment
expression is of the form

variable = rightHandSide

where rightHandSide is itself an expression. A semicolon placed at the end would make
this an assignment statement. The assignment operator = has the two operands vari-
able and rightHandSide. The value of rightHandSide is assigned to variable, and that
value becomes the value of the assignment expression as a whole. To illustrate, let’s
consider the statements

b = 2;
c = 3;
a = b + c;

where the variables are all of type int. By making use of assignment expressions, we
can condense these statements to

a = (b = 2) + (c = 3);

The assignment expression b = 2 assigns the value 2 to the variable b, and the assign-
ment expression itself takes on this value. Similarly, the assignment expression c = 3
assigns the value 3 to the variable c, and the assignment expression itself takes on this
value. Finally, the values of the two assignment expressions are added, and the resulting
value is assigned to a.

Although this example is artificial, in many situations assignment occurs natu-
rally as part of an expression. A frequently occurring situation is multiple assignment.
Consider the statement

a = b = c = 0;

Because the operator = associates from right to left, an equivalent statement is

a = (b = (c = 0));

C++ by Dissection: Program Fundamentals 2.11 Assignment Operators 42
First, c is assigned the value 0, and the expression c = 0 has value 0. Then b is assigned
the value 0, and the expression b = (c = 0) has value 0. Finally, a is assigned the
value 0, and the expression a = (b = (c = 0)) has value 0.

In addition to =, there are other assignment operators, such as += and -=. An
expression such as

k = k + 2

will add 2 to the old value of k and assign the result to k, and the expression as a whole
will have that value. The expression

k += 2

accomplishes the same task. The following list contains all the assignment operators.

All these operators have the same precedence, and all have right-to-left associativity.
The meaning is specified by

variable op= expression

which is equivalent to

variable = variable op (expression)

with the exception that if variable is itself an expression, it is evaluated only once. Note
carefully that an assignment expression such as

j *= k + 3 is equivalent to j = j * (k + 3)

rather than

j = j * k + 3

The following table illustrates how assignment expressions are evaluated.

Assignment Operators

= += -= *= /
= %= >>= <<= &= ^= |=

Declarations and Initializations

int i = 1, j = 2, k = 3, m = 4;

Expression Equivalent Expression Equivalent Expression Value

i += j + k i += (j + k) i = (i + (j + k)) 6

j *= k = m + 5 j *= (k = (m + 5)) j = (j * (k = (m + 5))) 18

C++ by Dissection: Program Fundamentals2.12 The Increment and Decrement Operators 43
2.12 THE INCREMENT AND DECREMENT OPERATORS

Computers are very good at counting. As a result, many programs involve having an
integer variable that takes on the values 0, 1, 2, . . . One way to add 1 to a variable is

i = i + 1;

which changes the value stored in the variable i to be 1 more than it was before this
statement was executed. This procedure is called incrementing a variable. Because it is
so common, Java, like its predecessor C, includes a shorthand notation for incrementing
a variable. The following statement gives the identical result.

i++;

The operator ++ is known as the increment operator. Similarly, there is a decrement
operator, --, so that the following two statements are equivalent:

i = i - 1;
i--;

Here is a simple program that demonstrates the increment operator.

// Increment.java - demonstrate incrementing
class Increment {
public static void main(String[] args) {
int i = 0;
System.out.println("i = " + i);
i = i + 1;
System.out.println("i = " + i);
i++;
System.out.println("i = " + i);
i++;
System.out.println("i = " + i);

}
}

The output of this program is

Note that both increment and decrement operators are placed after the variable
to be incremented. When placed after its argument they are called the postfix increment
and postfix decrement operators. These operators also can be used before the variable.
They are then called the prefix increment and prefix decrement operators. Each of the
expressions ++i(prefix) and i++(postfix) has a value; moreover, each causes the stored

i = 0
i = 1
i = 2

http://www.cse.ucsc.edu/~pohl/JBD/chap2/Increment.java

C++ by Dissection: Program Fundamentals2.13 Precedence and Associativity of Operators 44
value of i in memory to be incremented by 1. The expression ++i causes the stored
value of i to be incremented first, with the expression then taking as its value the new
stored value of i. In contrast, the expression i++ has as its value the current value of i;
then the expression causes the stored value of i to be incremented. The following code
illustrates the situation.

int a, b, c = 0;
a = ++c;
b = c++;
System.out.println("a = " + a); //a = 1 is printed
System.out.println("b = " + b); //b = 1 is printed
System.out.println("c = " + ++c); //c = 3 is printed

Similarly, --i causes the stored value of i in memory to be decremented by 1
first, with the expression then taking this new stored value as its value. With i-- the
value of the expression is the current value of i; then the expression causes the stored
value of i in memory to be decremented by 1. Note that ++ and -- cause the value of a
variable in memory to be changed. Other operators do not do so. For example, an
expression such as a + b leaves the values of the variables a and b unchanged. These
ideas are expressed by saying that the operators ++ and -- have a side effect; not only
do these operators yield a value, but they also change the stored value of a variable in
memory.

In some cases we can use ++ in either prefix or postfix position, with both uses
producing equivalent results. For example, each of the two statements

++i; and i++;

is equivalent to

i = i + 1;

In simple situations you can consider ++ and -- as operators that provide concise nota-
tion for the incrementing and decrementing of a variable. In other situations, you must
pay careful attention as to whether prefix or postfix position is used.

2.13 PRECEDENCE AND ASSOCIATIVITY OF OPERATORS

When evaluating expressions with several operators, you need to understand the order
of evaluation of each operator and its arguments. Operator precedence gives a hierarchy
that helps determine the order in which operations are evaluated. For example, prece-
dence determines which arithmetic operations are evaluated first in

x = -b + Math.sqrt(b * b - 4 * a * c)/(2 * a)

C++ by Dissection: Program Fundamentals2.13 Precedence and Associativity of Operators 45
which you may recognize as the expression to compute one of the roots of a quadratic
equation, written like this in your mathematics class:

To take a simpler example, what is the value of integer variable x after the assign-
ment x = 7 + 5 * 3? The answer is 22, not (7 + 5) × 3 which is 36. The reason is that
multiplication has higher precedence than addition; therefore 5 * 3 is evaluated before
7 is added to the result.

In addition to some operators having higher precedence than others, Java speci-
fies the associativity or the order in which operators of equal precedence are to be eval-
uated. For example, the value of 100 / 5 * 2 is 40, not 10. This is because / and *
have equal precedence and arithmetic operators of equal precedence are evaluated from
left to right. If you wanted to do the multiplication before the division, you would write
the expression as 100 / (5 * 2). Parentheses can be used to override the normal
operator precedence rules.

This left to right ordering is important in some cases that might not appear obvi-
ous. Consider the expression x + y + z. From simple algebra, the associativity of addi-
tion tells us that (x + y) + z is the same as x + (y + z). Unfortunately, this is true
only when you have numbers with infinite precision. Suppose that y is the largest posi-
tive integer that Java can represent, x is -100, and z is 50. Evaluating (y + z) first will
result in integer overflow, which in Java will be equivalent to some very large negative
number, clearly not the expected result. If instead, (x + y) is evaluated first, then add-
ing z will result in an integer that is still in range and the result will be the correct value.

The precedence and associativity of all Java operators is given in Section B.1
Operator Precedence Table. The following table gives the rules of precedence and asso-
ciativity for the operators of Java that we have used so far.

All the operators on the same line, such as *, /, and %, have equal precedence with
respect to each other but have higher precedence than all the operators that occur on
the lines below them. The associativity rule for all the operators on each line appears in
the right-hand column.

In addition to the binary +, which represents addition, there is a unary +, and both
operators are represented by a plus sign. The minus sign also has binary and unary

Operator Precedence and Associativity
Operator Associativity

() ++ (postfix) -- (postfix) Left to right

+ (unary) - (unary) ++ (prefix) -- (prefix) Right to left

new (type)expr Right to left

* / % Left to right

+ - Left to right

= += -= *= /= etc. Right to left

x b– b
2

4ac–
2a

-------------------------+=

C++ by Dissection: Program Fundamentals 2.14 Programming Style 46
meanings. The following table gives some additional examples of precedence and asso-
ciativity of operators.

2.14 PROGRAMMING STYLE

A clear, consistent style is important to writing good code. We use a style that is largely
adapted from the Java professional programming community. Having a style that is
readily understandable by the rest of the programming community is important.

We’ve already mentioned the importance of comments for documenting a pro-
gram. Anything that aids in explaining what is otherwise not clear in the program
should be placed in a comment. Comments help the programmer keep track of deci-
sions made while writing the code. Without good documentation, you may return to
some code you have written, only to discover that you have forgotten why you did some
particular thing. The documentation should enable someone other than the original
programmer to pick up, use, and modify the code. All but the most trivial methods
should have comments at the beginning, clearly stating the purpose of the method.
Also, complicated blocks of statements should be preceded by comments summarizing
the function of the block. Comments should add to the clarity of the code, not simply
restate the program, statement by statement. Here is an example of a useless comment.

area = width * height; // compute the area

Good documentation includes proper choice of identifiers. Identifiers should
have meaningful names. Certain simple one-character names are used to indicate auxil-
iary variables, such as i, j, or k, as integer variables.

The code should be easy to read. Visibility is enhanced by the use of white space.
In general, we present only one statement to a line and in all expressions separate
operators from arguments by a space. As we progress to more complex programs, we
shall present, by example or explicit mention, accepted layout rules for program ele-
ments.

Declarations and Initializations

int a = 1, b = 2, c = 3, d = 4;

Expression Equivalent Expression Value

a * b / c (a * b) / c 0

a * b % c + 1 ((a * b) % c) + 1 3

++a * b - c-- ((++a) * b) - (c --) 1

7 - - b * ++d 7 - ((- b) * (++d)) 17

C++ by Dissection: Program Fundamentals 2.14 Summary 47
NAMING CONVENTIONS USED BY MANY JAVA
PROGRAMMERS

❏ Class names start with uppercase and embedded words,
as in HelloWorld, are capitalized.

❏ Methods and variables start with lowercase and embed-
ded words, as in readInt, data, toString, and loop-
Index, are capitalized.

❏ Although legal, the dollar sign, $, should not be used
except in machine-generated Java programs.

SUMMARY

❏ To create a Java program first define a class. Give the class a method called main().
Put whatever instructions you want the computer to execute inside the body of the
method main().

❏ A program stores data in variables. Each variable is given a type, such as int for
storing integers or String for storing strings.

❏ You can use literals to embed constant values of various types in a program, such
as in the constant string "Hello, world!" or the integer constant 123.

❏ You can combine literals and variables in expressions by using operators such as +
for addition or string concatenation and * for numeric multiplication.

❏ You can store the result of evaluating an expression in a variable by using the
assignment operator =. The variable is always on the left, and the expression being
assigned to the variable is always on the right.

❏ You can call a method from another class by writing the name of the class followed
by a dot and the name of the method—for example, Math.sqrt().

❏ The lexical elements of a Java program are keywords, identifiers, literals, operator
symbols, punctuation, comments, and white space.

❏ You can print strings and numbers to the screen by using the method Sys-
tem.out.print() or System.out.println(). The latter appends a newline to
whatever is printed. These methods are part of the standard Java classes.

❏ You can input integers (whole numbers) from the keyboard by using the method
Console.in.readInt(). This method isn’t a standard Java class but is provided in
the package tio. The full text of the package appears in Appendix C, The Text I/O
Package tio.

❏ Java supports the primitive integer types char, byte, short, int, and long. It also
supports two floating point types, float and double.

❏ Integer division truncates toward zero—it doesn’t round to the nearest whole num-
ber. You can use Math.round() if rounding is what you want.

C++ by Dissection: Program Fundamentals 2.14 Review Questions 48
REVIEW QUESTIONS

1. What line appears in every complete Java program indicating where to begin execut-
ing the program?

2. What one-line instruction would you use to have a Java program print Goodbye?

3. What affect do strings such as /* what is this */ have on the execution of a
Java program?

4. What is a variable?

5. What is a method?

6. Complete the following table.

7. What does the symbol = do in Java?

8. Programmers say _________________ a method when they mean go and execute the
instructions for the method.

9. True or false? A multiline comment can be placed anywhere white space could be
placed.

10. True or false? Keywords can also be used as variables, but then the special meaning
of the keyword is overridden.

11. What convention for identifiers given in this chapter is used in whatAmI, howAbout-
This, someName?

12. What primitive types are used to store whole numbers?

13. What is the difference between x = 'a' and x = a?

14. What is the difference between s = "hello" and s = hello?

15. Which version of the Java program HelloWorld is the one you can view and edit
with a text editor, HelloWorld.java or HelloWorld.class? What does the other one
contain? What program created the one you do not edit?

16. What is Unicode?

17. List the primitive types in Java.

Text Legal ID Why or Why Not

3xyz No Digit is first character.

xy3z

a = b

main

Count

class

C++ by Dissection: Program Fundamentals 2.14 Exercises 49
18. Before it can be used, every variable must be declared and given a ___________.

19. What is the value of the Java expression "10"+"20"? Don’t ignore the quotation
marks; they are crucial.

20. Write a Java statement that could be used to read an integer value from the key-
board and store it in the variable someNumber.

21. What is wrong with the following Java statement?

System.out.println("This statement is supposed
to print a message. What is wrong?");

22. Every group of input statements should be preceded by what?

23. How do you write x times y in Java?

24. What is the difference between System.out.print("message") and Sys-
tem.out.println("message")?

25. Write a single Java statement that will produce the following output.

X
XX
XXX

26. Approximately, what is the largest value that can be stored in the primitive type
int? One thousand? One million? One billion? One trillion? Even larger?

27. What primitive Java type can store the largest numbers?

28. What is the value of the following Java expressions?

20 / 40
6 / 4
6.4 / 2

EXERCISES

1. Write a Java program that prints “Hello your name.” You can do this by a simple
modification to the HelloWorld program. Compile and run this program on your
computer.

2. Write a Java program that prints a favorite poem of at least eight lines. Be sure to
print it out neatly aligned. At the end of the poem, print two blank lines and then
the author’s name.

C++ by Dissection: Program Fundamentals 2.14 Exercises 50
3. Design your own signature logo, such as a sailboat icon if you like sailing, and print
it followed by “yours truly—your name.” A sailboat signature logo might look like

4. Write a Java program to read in two numbers and print the sum. Be sure to include
a message to prompt the user for input and a message identifying the output. See
what happens if you type in something that is not a number when the program is
run. See how large a number you can type in and still have the program work cor-
rectly.

5. The following code contains three syntax errors and produces two syntax error
messages from javac. Fix the problems.

// Ch2e1.java - fixing syntax errors
Class Ch2e1 {
public static void main(String[] args) {
System.out.println(hello, world);

}

The javac compiler’s message reads:

6. The following code produces one syntax error message from javac. Fix the problem.

// Ch2e2.java - more syntax errors
class Ch2e2 {
public static void main(String[] args) {
int count = 1, i = 3,
System.out.println("count + i = ", count + i);

}
}

Ch2e1.java:2: Class or interface
declaration expected.
 Class ch2e1 {
 ^
Ch2e1.java:7: Unbalanced parentheses.
^
2 errors

/\
/ \
/ \
/ \
|

==================
\ Yours truly /

Bruce McPohl

http://www.cse.ucsc.edu/~pohl/JBD/chap2/Ch2e1.java
http://www.cse.ucsc.edu/~pohl/JBD/chap2/Ch2e2.java

C++ by Dissection: Program Fundamentals 2.14 Exercises 51
The javac compiler’s message reads

Here, unlike the previous exercise, the compiler doesn’t as clearly point to the
errors. Frequently, errors in punctuation lead to syntax error messages that are
hard to decipher. After you fix the first syntax error in the code, a second error will
be identified.

7. Continue with the code class Ch2e2. If you fixed just the syntax errors, you may get
a running program that still has a run-time bug. Namely, the output is not the sum
of count + i. Fixing run-time or semantic bugs is harder than fixing syntax bugs
because something is wrong with your understanding of how to program the solu-
tion. Without introducing any other variables fix the run-time bug.

8. Write a program that draws a box like the one shown, using a single println()
statement.

* *
* *

9. Use Console.in.readDouble() to read in one double precision floating point
number and then print the results of calling Math.sin(), Math.cos() ,
Math.asin(), Math.exp(), Math.log(), Math.floor(), and Math.round() with
the input value as a parameter. Be sure to prompt the user for input and label the
output.

10. Write a program to read two double precision floating point numbers, using Con-
sole.in.readDouble(). Print the sum, difference, product, and quotient of the
two numbers. Try two very small numbers, two very large numbers, and one very
small number with one very large number. You can use the same notation used for
literals to enter the numbers. For example, 0.123e-310 is a very small number.

11. Write a program to compute the area of a circle given its radius. Let radius be a
variable of type double and use Console.in.readDouble() to read in its value. Be
sure that the output is understandable. The Java class Math contains definitions for
the constants E and PI, so you can use Math.PI in your program.

12. Extend the previous program to write out the circumference of a circle and the vol-
ume of a sphere given the radius as input. Recall that the volume of a sphere is

13. Write a program that asks for a double and then prints it out. Then ask for a sec-
ond double, this time printing out the sum and average of the two doubles. Then
ask for a third double and again print out the accumulated sum and the average of
the three doubles. Use variables data1, data2, data3, and sum. Later, when we

Ch2e2.java:6: Invalid declaration.
System.out.println("count + i = ", count + i);

^
1 error

V 4 πr
3×

3
------------------=

C++ by Dissection: Program Fundamentals 2.14 Exercises 52
discuss loops, you will see how this is easily done for an arbitrary number of input
values.

14. Write a program that reads in an integer and prints it as a character. Remember that
character codes can be nonprinting.

15. Write a program using Console.in.readChar() to read in a character and print its
integer value. This tio method returns an integer value, so it need not be cast from
a char to an int. By the way, the reason is that the end-of-file character translates
to 21. This method allows you to detect when you have reached the end of the input
when reading from the keyboard or from a disk file (see Section 10.7 Detecting the
End of an Input Stream).

16. Write a program that asks for the number of quarters, dimes, nickels, and pennies
you have. Then compute the total value of your change and print the number of dol-
lars and the remaining cents. The preferred output form would be $X.YY, but this is
surprisingly difficult in Java and requires techniques not yet introduced. To get a
handle on the problem, try storing $2.50 as a float then print it. Then try storing
$2.05 as two numbers, one for the dollars and one for the remaining cents. Try to
print these two numbers in the preferred format.

17. Write a program capable of converting one currency to another. For example, given
U.S. dollars it should print out the equivalent number of French francs. Look up the
exchange rate and use it as input.

18. Change the MakeChange program to use variables that are doubles. Run the pro-
gram and see what goes wrong.

class MakeChange {
public static void main (String[] args) {
double price, change, dimes, pennies;
...

19. The following is a C program for printing “Hello, world!”.

/* Hello World In C
* Purpose:
* The classic "Hello, world!" program.
* It simply prints a message to the screen.
* Author:
* Jane Programmer
* as derived from Kernighan and Richie
*/

#include <stdio.h> /* needed for IO */
int main(void) {

printf("Hello, world!\n");
return 0; /* unneeded in Java */

}

Note how similar this program is to the Java version. A key difference is the lack of
class encapsulation of main(). As in Java, main() starts the program’s execution.
In C, methods are known as functions. The printf() function is found in the stan-
dard input–output library imported by the C compiler for use in this program. The

http://www.cse.ucsc.edu/~pohl/JBD/chap2/HelloWorld.c

C++ by Dissection: Program Fundamentals 2.14 Applet Exercise 53
return 0 ends program execution and is not used in Java. Convert the following C
program to Java.

/* yada.c */
#include <stdio.h>
int main(void) {

printf("Hello, world!\n");
printf("My name is George.\n");
printf("Yada Yada Yada ...\n");
return 0;

}

20. In C, the printf() function can also be used to print primitive values, such as inte-
ger values and floating point values as in the following program.

/* cube.c */
#include <stdio.h>
int main(void) {
double side = 3.5; /* side of a cube */
double volume;

printf("The side of my cube is %f feet.\n", side);
volume = side * side * side;
printf("The cubes volume is %f cubic feet.\n",

volume);
return 0;

}

If you have a C compiler, such as gcc, compile and run this program. Then write the
equivalent program in Java. The %f is a format control that tells the printf() func-
tion where to place the value of the corresponding variable, such as side or vol-
ume, in the program. Getting this format wrong causes many programming errors in
C. This is one of the places that Java, a type-safe language, provides better support
than C.

APPLET EXERCISE

The following program is an example of a Java applet. This program uses several
features of Java that we explain later. Note that there is no method main(); instead
there is the method paint(). For now just concentrate on the body of the method
paint(), treating the surrounding code as a template to be copied verbatim. By
invoking the appropriate drawing operations on the Graphics object g, you can
draw on the applet.

http://www.cse.ucsc.edu/~pohl/JBD/chap2/yada.c
http://www.cse.ucsc.edu/~pohl/JBD/chap2/cube.c

C++ by Dissection: Program Fundamentals 2.14 Applet Exercise 54
/* To place this applet in a web page, add the
following two lines to the html document for the
page.
<applet code="FirstApplet.class"
width=500 height=200></applet>

*/

// FirstApplet.java
// AWT and Swing together comprise the collection of
// classes used for building graphical Java programs
import java.awt.*; //required for programs that draw
import javax.swing.*; //required for Swing applets

public class FirstApplet extends JApplet {
public void paint(Graphics g) {
// draw a line from the upper left corner to
// 100 pixels below the top center of the Applet
g.drawLine(0,0,250,100);
// draw a line from the end of the previous line
// up to the top center of the Applet
g.drawLine(250,100,250,0);
// draw an oval inscribed in an invisible
// rectangle with its upper left corner at the
// intersection of the two lines drawn above
g.drawOval(250,100,200,100);

}
}

The class Graphics is used for simple drawing, and many drawing operations are
defined for it. In this example we use the method drawLine() to draw a line. The
first two numbers in parentheses for the drawline() operation are the xy coordi-
nates of one end of the line, and the last two numbers are the xy coordinates of the
other end. As you can see from the output of the program, the location (0, 0) is in
the upper left corner, with increasing x moving to the right and increasing y moving
down. To draw an oval, give the coordinates of the upper left corner and the width
and height on an invisible rectangle. The oval will be inscribed inside the rectangle.
To execute an applet, first compile it like you do other Java programs. Then you can
either run the program appletviewer or use a web browser to view the applet. To
view the applet FirstApplet using the appletviewer on Unix and Windows
machines, type the following at a command line prompt.

appletviewer FirstApplet.java

Notice that we are passing FirstApplet.java—not FirstApplet or FirstAp-
plet.class—to the appletviewer. This procedure is different from running regular
Java programs. In fact appletviewer just looks in the text file passed to it for an
applet element. An applet element begins with <applet and ends with </applet>.
Any text file containing the applet element shown in the opening comment for Fir-
stApplet.java would work just as well.

http://www.cse.ucsc.edu/~pohl/JBD/chap2/FirstApplet.java

C++ by Dissection: Program Fundamentals 2.14 Applet Exercise 55
To view the applet in a Web browser, create a file—for example, First-
Applet.html. Put the applet tag in the html file. Put the html file in the same direc-
tory as your applet and then open the html file with a Web browser.

The applet looks like the following when run with an appletviewer.

Modify this applet to draw a simple picture. Look up the documentation for Graph-
ics on the Web at http://java.sun.com/products/jdk/1.2/docs/api/java.awt.Graph-
ics.html#_top_and use at least one method/operation of Graphics not used in
FirstApplet.

http://java.sun.com/products/jdk/1.2/docs/api/java.awt.Graphics.html#_top_
http://java.sun.com/products/jdk/1.2/docs/api/java.awt.Graphics.html#_top_

	Program Fundamentals
	2.1 “Hello, world!” in Java
	2.2 Compiling and Running Your Java Program
	2.3 Lexical Elements
	2.3.1 White Space
	2.3.2 Comments
	2.3.3 Keywords
	2.3.4 Identifiers
	2.3.5 Literals
	2.3.6 Operators and Punctuation

	2.4 Data Types and Variable Declarations
	2.4.1 Variables
	2.4.2 Variable Initialization

	2.5 An Example: String Concatenation
	2.5.1 Strings Versus Identifiers Versus Variables

	2.6 User Input
	2.7 Calling Predefined Methods
	2.8 More on print() and println()
	2.9 Number Types
	2.9.1 The Integer Types
	2.9.2 The Floating Point Types
	2.9.3 The char Type
	2.9.4 Numbers Versus Strings

	2.10 Arithmetic Expressions
	2.10.1 An Integer Arithmetic Example: MakeChange.java
	2.10.2 Type Conversion

	2.11 Assignment Operators
	2.12 The Increment and Decrement Operators
	2.13 Precedence and Associativity of Operators
	2.14 Programming Style
	Summary
	Review Questions
	Exercises
	Applet Exercise

