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Outline of Talk

The folding problem and variants on it:
Fold recognition
Local structure prediction
Ab initio methods
Comparative modeling

Results
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What is a protein?

A protein is a long skinny molecule (like a string of letter
beads) that folds up consistently into a particular
intricate shape.

The individual “beads” are amino acids, which have 6
atoms the same in each “bead” (the backbone atoms: N,
H, CA, HA, C, O).

The final shape is different for different proteins and is
essential to the function in our bodies.

The protein shapes are important, but are expensive to
determine experimentally.
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Folding Problem

The Folding Problem:
If we are given a sequence of amino acids (the letters on a
string of beads), can we predict how it folds up in 3-space?

MTMSRRNTDA ITIHSILDWI EDNLESPLSL EKVSERSGYS KWHLQRMFKK

ETGHSLGQYI RSRKMTEIAQ KLKESNEPIL YLAERYGFES QQTLTRTFKN

YFDVPPHKYR MTNMQGESRF LHPLNHYNS

↓

Too hard!
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Fold-recognition problem

The Fold-recognition Problem:
Given a sequence of amino acids A (the target sequence)
and a library of proteins with known 3-D structures (the
template library),
figure out which templates A match best, and align the
target to the templates.

The backbone for the target sequence is predicted to be
very similar to the backbone of the chosen template.

Progress has been made on this problem, but we can
usefully simplify further.
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Remote-homology Problem

The Homology Problem:
Given a target sequence of amino acids
and a library of protein sequences,
figure out which sequences A is similar to and align them to
A.

No structure information is used, just sequence
information. This makes the problem easier, but the
results aren’t as good.

This problem is fairly easy for recently diverged, very
similar sequences, but difficult for more remote
relationships.
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New-fold prediction

What if there is no template we can use?

We can try to generate many conformations of the
protein backbone and try to recognize the most
protein-like of them.

Search space is huge, so we need a good conformation
generator and a cheap cost function to evaluate
conformations.
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Secondary structure Prediction

Instead of predicting the entire structure, we can predict
local properties of the structure.

What local properties do we choose?

We want properties that are well-conserved through
evolution, easily predicted, and useful for finding and
aligning templates.

One popular choice is a 3-valued helix/strand/other
alphabet—we have investigated many others. Typically,
predictors get about 80% accuracy on 3-state
prediction.

Many machine-learning methods have been applied to
this problem, but the most successful is neural
networks.
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Predicting Local Structure

Want to predict some local property at each residue.

Local property can be emergent property of chain (such
as being buried or being in a beta sheet).

Property should be conserved through evolution (at
least as well as amino acid identity).

Property should be somewhat predictable (we gain
information by predicting it).

Predicted property should aid in fold-recognition and
alignment.

For ease of prediction and comparison, we look only at
discrete properties (alphabets of properties).
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Using Neural Net

We use neural nets to predict local properties.

Input is profile with probabilities of amino acids at each
position of target chain, plus insertion and deletion
probabilities.

Output is probability vector for local structure alphabet
at each position.

Each layer takes as input windows of the chain in the
previous layer and provides a probability vector in each
position for its output.

We train neural net to maximize∑
log(P (correct output)).
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Neural Net

Typical net has 4 layers and 6471 weight parameters:
input/pos window output/pos weights
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Hidden Layer 1   15 units/position

Input layer      22 values/position
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Conservation and Predictability

conservation predictability

alphabet MI info gain

Name size entropy with AA mutual info per residue Q|A|
str 13 2.842 0.103 1.107 1.009 0.561

protein blocks 16 3.233 0.162 0.980 1.259 0.579

stride 6 2.182 0.088 0.904 0.863 0.663

DSSP 7 2.397 0.092 0.893 0.913 0.633

stride-EHL 3 1.546 0.075 0.861 0.736 0.769

DSSP-EHL 3 1.545 0.079 0.831 0.717 0.763

CB-16 7 2.783 0.089 0.682 0.502

CB-14 7 2.786 0.106 0.667 0.525

CB-12 7 2.769 0.124 0.640 0.519

rel SA 7 2.806 0.183 0.402 0.461

abs SA 7 2.804 0.250 0.382 0.447
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Hidden Markov Models

Hidden Markov Models (HMMs) are a very successful way to
capture the variability possible in a family of proteins.

An HMM is a stochastic model—that is, it assigns a
probability to every possible sequence.

An HMM is a finite-state machine with a probability for
emitting each letter in each state, and with probabilities
for making each transition between states.

Probabilities of letters sum to one for each state.

Probabilities of transitions out of each state sum to one
for that state.

We also include null states that emit no letters, but have
transition probabilities on their out-edges.
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Profile Hidden Markov Model

a1

a2 b4

a -

B1

A3

B2

A4

B3

A5

B5

EndStart

a1 a2 A3 - A4 . A5
. . B1 B2 B3 b4 B5

Circles are null states.

Squares are match states, each of which is paired with a
null delete state. We call the match-delete pair a fat state.

Each fat state is visited exactly once on every path from
Start to End.

Diamonds are insert states, and are used to represent
possible extra amino acids that are not found in most of
the sequences in the family being modeled.
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How is HMM built?

Overview of method for building a target HMM, given a single
sequence (or a seed alignment):

loop: Construct a profile HMM with one fat state for each
letter of sequence (or column of multiple alignment).

find: Find sequences in a large database of protein
sequences that cost little with M . This is the training set.

Retrain M (using forward-backward algorithm) to
re-estimate all probabilities, based on the training set.

Make a multiple alignment (using Viterbi algorithm) of all
sequences in the training set. The multiple alignment
has one alignment column for each fat state of the HMM.

Repeat from loop, with thresholds in step find loosened.
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Multi-track HMMs

We can also use alignments to build a two- or three-track
target HMM:

Amino-acid track (created from the multiple alignment).

Local-structure track(s) with probabilities from neural
net.

Can align template (AA+local) to target model.

AA

start stop

AA

2ry

AA AA AA

2ry

2ry2ry2ry
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Target-model Fold Recognition

Find probable homologs of target sequence and make
multiple alignment.

Make secondary structure probability predictions based
on multiple alignment.

Build an HMM based on the multiple alignment and
predicted 2ry structure (or just on multiple alignment).

Score sequences and secondary structure sequences
for proteins that have known structure (all sequences for
AA-only, 8,000-11,000 representatives for multi-track).

Select the best-scoring sequence(s) to use as
templates.

origami with strings – p.17/34



Template-library Fold Recognition

Build an HMM for each protein in the template library,
based on the template sequence (and any homologs
you can find).

The T2K library has over 11,000 templates from PDB.

For the fold-recognition problem, structure information
can be used in building these models (though we
currently don’t).

Score target sequence with all models in the library.

Select the best-scoring model(s) to use as templates.
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Combined SAM-T02 method

template HMMs

combined scores

target model scores template model scores

template alignments

template sequences
target sequence

target alignment

target HMM

local structure
prediction

Combine the costs from the template library search and
the target library searches using different local structure
alphabets.

Choose one of the many alignments of the target and
template (whatever method gets best results in testing).

http://www.soe.ucsc.edu/research/compbio/HMM-apps/T02-query.html
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Fold recognition results
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Comparative modeling: T0232

RMSD= 5.158Å all-atom, 4.463Å Cα
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Fragment Packing

Fragment packing was introduced by Simon and
Baker’s Rosetta program.

It provides intelligent conformation generation for new
folds.

Rosetta conformation is contiguous chain.

New conformations are created by randomly replacing
fragment of backbone with different fragment (from
library), keeping chain contiguous.

Stochastic search by simulated annealing.
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Undertaker

Undertaker is UCSC’s attempt at a fragment-packing
program.

Named because it optimizes burial.

Representation is 3D coordinates of all heavy atoms
(not hydrogens).

Can replace fragments (a la Rosetta) or full
alignments—chain need not remain contiguous.

Conformations can borrow heavily from fold-recognition
alignments, without having to lock in a particular
alignment.

Use genetic algorithm with many conformation-change
operators to do stochastic search.
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Fragfinder

Fragments are provided to undertaker from 3 sources:

Generic fragments (2-4 residues, exact sequence
match) are obtained by reading in 500–1000 PDB files,
and indexing all fragments.

Long specific fragments (and full alignments) are
obtained from the various target and template
alignments generated during fold recognition.

Medium-length fragments (9–12 residues long) for
every position are generated from the HMMs with
fragfinder , a new tool in the SAM suite.
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Cost function

Cost function is modularly designed—easy to add or
remove terms.

Cost function can include predictions of local properties
by neural nets.

Clashes and hydrogen bonds are important
components.

There are over 40 cost function components available:
burial functions, disulfides, contact order, radius of
gyration, constraints, ...
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Target T0201 (NF)

We tried forcing various sheet topologies and selected
4 by hand.

Model 1 has right topology (5.912Å all-atom, 5.219Å
Cα).

Unconstrained cost function not good at choosing
topology (two strands curled into helices).

Helices were too short.
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Target T0201 (NF)
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Contact prediction: new in 2004!

Use mutual information between columns.

Thin alignments aggressively (30%, 35%, 40%, 50%,
62%).

Compute e-value for mutual info (correcting for
small-sample effects).

Compute z-score of log(e-value) within protein.

Feed e-values, z-scores, conservation, amino-acid
profile, separation along chain into neural net.
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Evaluating contact prediction

Two measures of contact prediction:

Accuracy: ∑
χ(i, j)
∑

1

(favors short-range predictions, where contact
probability is higher)

Weighted accuracy:

∑ χ(i,j)

Prob
�

contact|separation=|i−j|

�

∑
1

(1 if predictions no better than chance based on
separation).
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Contact prediction results
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Target T0230 (FR/A)

Good except for C-terminal loop and helix flopped
wrong way.

We have secondary structure right, including phase of
beta strands.

Contact prediction helped, but we put too much weight
on it—decoys fit predictions better than real structure
does.
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Target T0230 (FR/A)
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Target T0230 (FR/A)

Real structure with contact predictions:
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Web sites

These slides:

http://www.soe.ucsc.edu/˜karplus/papers/origami-with-strings-upr-2005.pdf

SAM-T02 prediction server:

http://www.soe.ucsc.edu/research/compbio/HMM-apps/T02-query.html

CASP6 all our results and working notes:

http://www.soe.ucsc.edu/˜karplus/casp6/

Predictions for all yeast proteins:

http://www.soe.ucsc.edu/˜karplus/yeast/

UCSC bioinformatics (research and degree programs) info:

http://www.soe.ucsc.edu/research/compbio/

SAM tool suite info:

http://www.soe.ucsc.edu/research/compbio/sam.html
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