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Abstract

This paper introduces I TEM, the combinational logic
mintmizalion program developed at the University of
California, Santa Cruz. ITEM is useful for generating
highly testable circuits, because canonical if-then-else
DAGs are robustly path-delay-fault testable, and often
produce samll, fast circuits. Several of our transfor-
mations preserve testability, including the Xmap and
Amap technology mappers Jor field-programmable gate
arrays.

The paper includes the definilions of if-then-else
DAGs and canonical forms, introduces a new technol-
o9y mapper for table-lookup FPGAs, briefly mentions
the main transformations available in ITEM, and pro-
vides a table of benchmark results for mapping to 5-
input tables using various transformations. -

This paper also”introduces a new technology mapper
based on a generate-and-test paradigm.

1 What is ITEM?

This paper introduces ITEM, the combinational
logic minimization (and technology mapping) program
developed at the University of California, Santa Cruz
over the last six years. The algorithms and data struc-
tures were originally developed in C, but in the past
two years ITEM has been completely redesigned and
rewritten in C++ for easier modification and exten-
sion.

ITEM wuses directed, acyclic graphs to represent
logic functions. The only operators used are the if-
then-else operator (2-to-1 multiplexer) and negation.
These if-then-else DAGSs are a simple generalization of
Bryant’s Binary Decision Diagrams [3].

Definition 1: The if-then-else operator is a lernary
Boolean function, with (if @ then b else ¢) defined as
ab+a'c or, equivalently, (a + c)(a’ +b).

Definition 2: An if-then-else DAG is a lernary di-
rected acyclic graph in which

o cach leaf is labeled with the constant TRUE or a

. variable,
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e each edge is labeled with a polarity, either plus or
minus, and

o each internal node has three out-edges pointing to

if-, then-, and else-parts.

There may be multiple root nodes for an if-then-else
DAG, corresponding to different principal outputs of a
circuit. I sometimes refer to a node as a DAG, meaning
the entire subDAG rooted at that node.

I'have found the if-then-else DAG to be a marvelously
flexible representation scheme. It can be used to rep-
resent circuits directly (a circuit built from two-input
gates can be represented with one if-then-else triple per
gate), and it can be used for general manipulation of
logic functions. Canonical forms have turned out to
be useful not only for verification, but also as small
circuits for implementation.

2 Canonical forms
for if-then-else DAGs

2.1 Definition of canonical form

A representation is canonical if any two expressions
that are logically equivalent are identical. For example,
if ab + ab’ is represented differently from a, then the
representation is non-canonical.

To make if-then-else DAGs canonical, we must place
some restrictions on the subDAGs allowed in the if,
then-, and else-parts of every internal node of the
DAG. We can show that imposing the following seven
restrictions defines a canonical form [7, 8].

Of the seven restrictions, the first five are modified
versions of the, corresponding restrictions in Bryant’s
canonical form for binary decision diagrams [3]. The
last two restrictions ‘differentiate between the two
canonical forms. Essentially the same algorithin can be
used for converting to either Bryant’s canonical form
or the new form [7].

1. Variable ordering condition: A total ordering is
imposed on the variables, and all the variables in
the if-part must be earlier in the order than all
variables in the then- and else-parts.




A weaker restriction, that the variables of the if-
part be disjoint from those of the then- and else-
parts, is not enough to make the if-then-else DAG
canonical, but is all that is needed for path-delay-
fault testability (see Section 2.2). This weaker
restriction is referred to as the separate-support
condition.

2. Systematic-negation condition: A choice must be
made between the equivalent pAGs (if ¢ then b
else ¢) and (if o’ then ¢ else b) and between
(if @ then b else ¢) and (if athen¥ elsec)’.
Item requires that if- and then-parts of a node
be pointers labeled plus, with negation allowed
only for the else-part or the pointer to a root
of the DAG. This corresponds to Bryant’s choice
of variables as node labels (never negations of
variables). ‘

3. Distinct-cases condition: The then- and else-
parts of a node must be distinct Boolean func-
tions.

4. No-constant-if condition: Triples whose if-part
points to TRUE are prohibited, and should be
replaced by the then-part.

5. No-lwo-constant condition: Triples in which both
the then- and else-parts point to TRUE (with ei-
ther plus or minus labels) are prohibited. The
triple should be replaced by an appropriately la-
beled pointer to the if-part or to TRUE.

6. No-common-cut condition: In the triple (if a then
b else ¢), b and ¢ must not share both then-
and else-parts. If b = (if b, then b; elsec.) and
¢ = (if ¢, then b, else c.), then the correct rep-
resentation is (if (if @ then b, else ¢,) then
by else c.). If b = (if b, then b, else b.) and
¢ = (if ¢, then b, else b;), then use (if (if ¢ then
b, else ¢}) then b; else b.).

7. No-collapsed-cul condition: In the triple (if a
then b else ¢), b must not contain ¢ as a then-
or else-part. If b = (if b; thenb; elsec) or
b = (if b3 then c else b.), then the DAG should be
changed to (if (if a then §; else FALSE) then b,
else c) or (if (if a then b; else TRUE) then c else
b.). If ¢ is a constant (TRUE or FALSE), then this
restriction amounts to choosing left-associativity
for commutative AND or OR operations. The
symmetric test for ¢ = (if ¢; thenc, else b) or
¢ = (if ¢ then b else c.) is also needed.

2.2 Canonical forms are highly testable

There has recently been much attention on the syn-
thesis of robustly path-fault-delay testable circuits {5,
2]. Most of this work has focussed on transformations

applied to two-level circuits and to multi-level circuits
derived by algebraic factoring.

Synthesis for testability consists of two parts: gener-
ating a testable circuit from the initial logic equations
or circuit, and applying testability-preserving transfor-
mations to improve the circuit. The canonical form
presented in Section 2.1 is an excellent starting point
for synthesis for testability. The canonical form can be
shown to be robustly path-delay-fault testable.

Devadas and Keutzer proved that complete robust
path-delay-fault tests are also complete tests for sin-
gle and multiple stuck-at faults [5, Theorem 5.6]. Al-
though their proof was given only for circuits composed
of primitive gates, the same proof works for more com-
plex gates, as long as you restrict the locations that
faults can be inserted to the inputs and outputs of
the complex gates (faults internal to the gates are not
necessarily found). Because Item’s canonical forms are
robustly path-delay-fault testable, testability for single
and multiple stuck-at faults is easy.!

Not all the properties of the canonical form are
needed for the proof of testability. In particular,
the variable ordering condition can be relaxed to the
separate-support condition, and some of the other con-
ditions can be discarded entirely without losing testa-
bility. Transformations that preserve the critical prop-
erties can be applied to reduce the area or delay of the
circuit further.

The test set for path-delay-fault testing can be quite
large, even when the if-then-else DAG is small. Tree
circuits have few paths, but even a few levels of recon-
vergent fanout can cause exponential increases in the
number of paths. Some functions (such as multipli-
ers) cannot be efficiently implemented without recon-
vergent fanout.

3 Logic minimization

3.1 What is minimized?

When doing logic minimization, the first question
is “what exactly is being minimized?” The goal of
minimization is to reduce the area, power, delay, or
testing difficulty of the final circuit after technology
mapping. For technology-independent minimization to
work, we need measures that are not dependent on

1In most implementations of multiplexers, there are two paths

~ from the control input to the output: one inverting, and one non-

inverting. Because this splitting of the path occurs inside the
complex gate, a fault on one internal path may not be detectable,
and so some reviewers have objected to my use of “robustly
path-delay-fault testable”. For many technologies (such as table-
lookup FPGAs), the primitive gate model does not do any better
job of testing internal faults, and so it is equally reasonable to
model the complex gates as atomic.



any particular cell library (or that are parameterized
and easily tuned for different technologies), and that
roughly approximate the cost or speed obtained by
a technology mapper. Technology-independent delay
estimates are hard to come up with, and so most early
research concentrated on size minimization, leaving the
delay minimization to the technology mapper.

The usual way to estimate the area for a network of
gates is to estimate the cost for each gate and sum the
estimates. The most popular gate area estimators are
the number of literals in sum-of-products form and the
number of literals in the factored form [1, page 235).
The literal count corresponds closely to the number of
transistor pairs needed to implement the function asa
static cMOS gate, and is an excellent area estimator
if the mapper does not change the decomposition of
the circuit. The estimate is not as good when the
mapper splits or merges gates, but the predictions can
be improved by subtracting the number of gates from
the sum of literals [8].

The standard measures described above are useful
when a network has been decomposed into gates, but
are not directly applicable to a network described as
an if-then-else DAG with multiple roots. I have exper-
imented with several new estimators, and found the
following to be particularly useful for area estimation:

edges, the number of non-constant pointers in the
DAG, is good for mapping to FPGAs (both table-
lookup and multiplexer gates).

count, a recursively defined function that attempts
to match the values of the estimator (liter-
als(factored form)+ outputs— gates), is good for
the predicting the behavior of the misII technol-

ogy mapper.
Estimating delays scems to be harder than area

estimation-the best predictors I have found are the fol-
lowing: ‘
height, the longest path from a root to a leaf, is
an adequate, but not good predictor of the delay
in misI’s mapper. Better delay estimates are
needed before higher-level optimizations for delay
are feasible.
lutheight, the minimum height needed for an imple-
mentation as k-input lookup tables, using Cong’s
algorithm [4), is an excellent estimator of the delay
predicted by a unit-delay model, but placement
and routing affect the delay enormously, and we
have not yet done experiments to see how well the
real delay after place-and-route is predicted.

3.2 Preserving testability

Any transformation of an if-then-else DAG that pre-
serves the separate-support, distinct-cases, and no-

constant-if conditions, will preserve path-delay testa-
bility, although not necessarily the test set [11]. Two
of Item’s transformations preserve the conditions: con-
version to canonical form [7] and two-column rectan-
gle replacement [14]. Furthermore, LocalFactor (see
Section 3.3) can be constrained to preserve them.
The Delf transformation, which replaces the if-then-
else gates with primitive gates, cannot preserve the
separate-support condition.

The faithful mappers (see Section 4) do not preserve
the separate support condition, but any path-delay-
fault test set for the if-then-else DAG will also be a test
set for the mapped circuit.

The most effective testability-preserving transfor-
mation available in ITEM appears to be conversion to
canonical form with a different variable orderings [13],
optionally followed by two-column rectangle replace-
ment [14] (see also Section 3.4).

3.3 LocalFactor

My initial work in logic minimization used local
transformations applied to all portions of the DAG,
generally in a depth-first traversal from the outputs.
I came up with two sets of transformations: Printform
and LocalFactor.

The Printform transformations [8] preserve separate
support, and so preserve path-delay-fault testability,
but are not good at minimizing circuit area. The
reason they are not good circuit minimizers is that
they were originally designed to minimize the size of
printed Boolean expressions, not multi-level circuits.

The LocalFactor transformations started as a rather
ad hoc collection of transformations that did an ade-
quate job of minimizing circuit area [8]. Recently, I re-
organized the transformations to include the Printform
transformations, conversion to canonical form, and sev-
eral other sets of transformations.

The LocalFactor routine applied to a node in an
if-then-else DAG first applies itself recursively to the
children of the node, then applies various transforma-
tions to the triple of transformed children. Whenever
a transformation is applied, it establishes the logical
equivalence of two different representations of a func-
tion. These equivalent representations are linked to-
gether in an eguivalence ring. After applying all rele-
vant transformations, the representations in the equiv-
alence ring are evaluated using some cost function, and
the cheapest one returned.

By turning on and off different transformation sets,
I found that the most valuable transformations are the
conversions to canonical form.




3.4 Two-column rectangle replacement

Although ITEM is based on a different representa-
tion of circuits and logic expressions than other mini-
mizers, my research group has adapted techniques from
other systems. For example, one of the most success-
ful and widely-used logic minimizers is misII [1], and
its most powerful technique appears to be rectangle
covering, used for common cube extraction and kernel
extraction.

We came up with a simpler, faster version of rect-
angle covering, which we called two-column rectangle
replacement [14]. We use this heuristic to find com-
mon subexpressions that are hidden by the ordering
of commutative expressions, similar to common-cube
extraction in misll. Because two-column rectangle re-
placement merely reorders commutative expressions,
it preserves separate support and, hence, path-delay-
fault testability.

4 Technology mapping

ITEM, like most logic minimizers, has two parts:
a technology-independent minimizer that tries to sim-
plify the logic without directly considering what tech-
nology will be used to implement the circuit, and a
technology mapper that tries to find a good implemen-
tation in a specific technology.

Most of the early work in ITEM was on the
technology-independent minimization, using misIl’s
mapper for mapping to cell libraries. More recent
work has focussed on mappers for field-programmable
gate arrays—primarily table-lookup arrays, but also
multiplexer-based arrays.

Field-programmable gate arrays do not use a library
of different cell types, but use an array of identical cells,
each of which can be used quite flexibly. The cell-
library-based mappers do not work particularly well

when mapping to such flexible cells, and so dummy cell

libraries are usually created, where each library entry is
one way to configure a cell in the gglte array. The cell-
library approach allows existing technology mappers
to be used, but does not scale well as the size of the
basic cells increases, because the library tends to grow
exponentially with the size of the basic cell. Limiting
the size of the library results in inefficient use of the
cells.

Item’s mappers are all faithful mappers—ones that
make no change to the underlying if-then-else DAG.
Definition 3: A technology mapper is faithful if

o the output of each gate computes the function of

some node in the if-then-else DAG, and

o the nodes corresponding to the inputs of the gate
form a vertex cul set separaling the outpul node
of the gate from the primary inpuls.

4.1 Maﬁping to table-lookup functions

The Xmap algorithm [10] maps to the Xilinx chip
and other table-lookup-based gate arrays. The mapper
first maps to arbitrary f-input functions, then looks for
functions that can be merged into a single Xilinx cell
(the Xilinx cell allows two (f — 1)-input functions in
one cell, if the total number of inputs does not exceed
f). Xilinx’s 2000 Series has f = 4, and the 3000 Series
has f = 5; the 4000 Series uses a compound cell that I
have not yet tried mapping to.

The Xmap algorithm does an excellent job of map-
ping to minimize the number of lookup-tables—the
only one I know to be better (mis-pga [12]) is not a
faithful mapper, but does significant higher-level opti-
mization. ‘

For delay minimization, the main contenders have
been Chortle-d [6] and Dagmap [4]. The core of Dag-
map has been implemented in Item as the lutheight
delay estimator, and the mappings it produces can be
examined with the Xcmap mapper. This algorithm
usually produces slightly smaller delays than chortle-
d, and much smaller ones than xmap or mis-pga. Al-
though the xcmap (Dagmap) algorithm is optimal for
trees, on one highly reconvergent example xmap pro-
duces a circuit with fewer levels of lookup tables.

I have recently been experimenting with a new map-
per (xtmap) based on a generate-and-test paradigm.
This algorithm generates many possible single-cell im-
plementations for a node, then chooses one based on
some simple heuristics. After choosing a cell, the algo-
rithm is applied recursively to the inputs for the cell.

Cells are evaluated based on the set of inputs and
the set of if-then-else nodes “hidden” inside the cell.
The value of a cell is computed as the sum of sev-
eral weights: Each input that already has a cell map-
ping contributes weight a, inputs that aren’t already .
mapped contribute weight b + ¢/fanout(node) each.
Similarly, hidden nodes that have already been mapped
contribute d each, while unmapped ones contribute e+
f/fanout(node) each. Finally, g maxlutheight(input)
is added. p

The heuristics can be tuned by either random search
in the parameter space (slow, but effective), or by
learning them from a known good mapping. The
benchmark results for xtmap in this paper are obtained
by learning the parameters from an xmap mapping,
then increasing the penalty for delay until the unit-
delay estimate for the output of xtmap matches the




lutheight estimate, followed by rescaling the parame-
ters and doing five extra mappings with parameters In
a small random neighborhood (see Table 1).

The generate-and-test mapper is much slower than
Item’s other mappers, primarily because of the cost of
evaluating all the potential cells that are not used. A
more directed generator that avoided generating some
obviously bad cells could get similar results much more
quickly.

4.2 Mapping to selector functions

Last year I presented two new algorithms [9]: Amap
and XAmap, both for mapping to selector-based gate
arrays, specifically, Actel’s Actl cell. The Amap al-
gorithm tries to match the selector structure of the
gate array with the if-then-else triples of the pag.
The XAmap algorithm uses Xmap to map to arbi-
trary three-input functions, then replaces those func-
tions with Actel cells that implement them. These
functions have not yet been reimplemented in the C++
version of Item, and so will not be reported on here.

I plan to implement generate-and-test mappers for
Actel’s Actl and Act2 cells, similar to xtmap. A
preliminary version was written a year ago, and looked
quite promising, but has not yet been translated into
C++ for inclusion in the new system.

4.3 Mapping to other cells

I plan to write generators to do generate-and-
test mapping for other cells, including Quicklogic’s
multiple-output cell. For multiple output cells, I’ll
probably add three more weights for the output nodes
of the cell, similar to the weights for inputs and hidden
nodes.

Crosspoint’s FPGA style is also an interesting one
to map to, as 2-1 multiplexers are very cheap—it
may turn out that just minimizing the number of
edges in the if-then-else DAG and translating directly
to Crosspoint’s multiplexer cells will work well, even
though the transistor pairs will not be used much.

5 Conclusions and Future Work

The if-then-else DAG is a powerful, flexible data
structure for representing logic and multi-level logic
circuits. It provides interesting new approaches for
logic synthesis, including using canonical forms for
highly testable circuits, local transformations for mini-
mization, two-column rectangle replacement, and tech-
nology mapping to FGPAs.

The ITEM system is publically available for use
without license fees, as long as it is not resold. It

can be obtained by anonymous FTP from the site
ftp.cse.ucsc.edu.

Although this paper is too short for extensive re-
sults, Table 1 gives some benchmark results for some
of the techniques mentioned. For each mapper, the
number of 5-input lookup tables and the unit-delay are
given. Merged-CLB counts are not reported, because
ITEM’s merge algorithm does not take routing into ac-
count, and so the counts it gets are artificially good.
The cpu time reported is for reading the BLIF input
file, doing the optimization (if any), and doing all three
mappings on a Sparcstation. The slowest operation is
the xtmap mapper.

Item has many areas for further work, including

e better heuristics for variable ordering,

® better heuristics for finding common subexpres-
sions, perhaps using rectangle replacement in dif-
ferent ways,

e technology mappers to cell libraries or cell gener-
ators,

e better delay estimators, and calibration programs
for choosing estimators for different technology
mappers and technologies, and

¢ techniques for minimizing sequential circuits.
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