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1. INTRODUCTION

Race conditions are common, insidious errors in multithreaded programs. A
race condition occurs when two threads manipulate a shared data structure
simultaneously, without synchronization. Although some race conditions are
benign and do not affect program correctness, in many cases race conditions
result in program crashes, incorrect results, and other unintended program
behavior. Race conditions can be avoided by careful programming discipline:
protecting each data structure with a lock and acquiring that lock before ma-
nipulating the data structure [Birrell 1989]. Since a lock can be held by at most
one thread at any time, adherence to this lock-based synchronization discipline
ensures a race-free program.

Current programming tools provide little support for this synchronization
discipline. It is easy to write a program that inadvertently neglects to perform
crucial synchronization operations. These synchronization errors are not de-
tected by traditional compile-time checks. Furthermore, because the resulting
race conditions are scheduler dependent, they are difficult to catch using run-
time testing techniques. A single synchronization error in an otherwise correct
program may yield a race condition whose cause takes weeks to identify [Savage
et al. 1997].

This article investigates a static analysis system for detecting race condi-
tions in Java programs. The analysis supports the lock-based synchronization
discipline by associating a lock with each shared field and by verifying that
the appropriate lock is held whenever a shared field is accessed (that is, read
or updated). We express the reasoning and checks performed by this analysis
as an extension of Java’s type system. We start by presenting an initial type
system that suffices to verify that some example programs in a core subset of
Java are free of race conditions. In order to accommodate larger, more realistic,
multithreaded programs, we extend the initial type system with a number of
additional features. These features include:

—classes parameterized by locks, which allow the fields of a class to be protected
by some lock external to the class;

—the notion of objects that are local to a particular thread and therefore safely
accessible without synchronization; and

—mechanisms for escaping from the type system in places where it proves too
restrictive, or where a particular race condition is considered benign.

In order to evaluate the utility of the resulting type system, we have imple-
mented a typechecker and tested it on a variety of Java programs totaling over
40,000 lines of code. These programs include the standard Java input/output
package java.io; an interpreter for the web scripting language WebL; and
Ambit, a mobile-ambient calculus implementation.
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Checking these programs using our type system requires adding some type
annotations. Typically, fewer than 20 annotations are required per 1,000 lines
of code. Most of the annotations were inserted in response to feedback from
the checker. The annotation process proceeded at a rate of roughly 1,000 lines
of code per programmer-hour. During this process, we discovered a number of
race conditions in the programs being checked, including one race condition
in the class java.util.Vector, four in the java.io package, and five in the
WebL implementation. Although it is far from complete, the type system proved
sufficiently expressive to accommodate the majority of synchronization patterns
present in these programs.

Despite these successes, the annotation cost of our initial checker prevented
its adoption for large-scale software development projects, particularly when
a sizable code base already exists. The second half of this article extends the
race-condition checker with two key features:

—an annotation-inference algorithm that automatically computes annotations,
and

—a user interface that reduces the burden of inspecting the warnings generated
by the checker.

The annotation inference has enabled us to analyze programs with up to
500,000 lines of code, and the user interface helped us in identifying race con-
ditions in those programs.

The presentation of our results proceeds as follows. Section 2 introduces a
small concurrent subset of Java, which we use to provide a formal description
of our type system. Section 3 describes an initial type system, plus extensions
for classes parameterized by locks and thread-local classes. Section 4 describes
our prototype implementation, including the escape mechanisms. Section 5 dis-
cusses our experiences checking several Java programs. In Section 6, we turn
our attention to issues of scale and extensions to check large programs, and
present our annotation-inference algorithm and user interface. Section 7 de-
scribes our experiences applying these tools to large examples. We relate this
work to other projects in Section 8, and we conclude in Section 9. The Appendix
contains a formal definition of the type system and proofs.

This article is based on work presented in preliminary form at conferences
and workshops [Flanagan and Abadi 1999b; Flanagan and Abadi 1999a; Flana-
gan and Freund 2000; Flanagan and Freund 2001]. Some of that work focused
on lambda calculi and object calculi (rather than Java), and some relied on
type constructions not considered here (for example, existential types). It also
treated deadlocks, which, like race conditions, are infamously common in mul-
tithreaded programming.

2. A MULTITHREADED SUBSET OF JAVA

This section introduces CONCURRENTJAVA, a small multithreaded subset of Java.
This language is derived from CLASSICJAVA [Flatt et al. 1998], a sequential subset
of Java, and we adopt much of the type structure and semantics of CLASSICJAVA.
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Fig. 1. The grammar for CONCURRENTJAVA.

2.1 Syntax and Informal Semantics

The syntax of CONCURRENTJAVA is shown in Figure 1. A program is a sequence of
class declarations together with an initial expression, which is the starting point
for the program’s execution. Each class declaration associates a class name
with a body that consists of a super class, a sequence of field declarations, and a
sequence of method declarations. The self-reference variable “this” is implicitly
bound within these field and method declarations.

A field declaration includes an initializer expression and an optional final
modifier; if this modifier is present, then the field cannot be updated after ini-
tialization. We use “[X ]opt” in grammars to denote either “X ” or the empty
string. A field initializer may be an integer, null, or a variable. A method
declaration consists of the method name, its return type, number and types
of its arguments, and an expression for the method body. Types include class
types and integers. Class types include class names introduced by the program,
as well as the predefined class Object, which serves as the root of the class
hierarchy.

Expressions include the typical ones for object allocation, field read and up-
date, method invocation, and variable binding and reference. CONCURRENTJAVA

also supports multithreaded programs by including the operation e.fork. Here,
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Fig. 2. Multithreaded bank account program.

e should evaluate to an object that includes a nullary method run. The fork
operation spawns a new thread that calls that run method. This evaluation is
performed only for its effect; the result of the method call is never used.

Locks are provided for thread synchronization: each object has an associ-
ated lock that has two states, locked and unlocked, and is initially unlocked.
The expression synchronized e1 e2 is evaluated in a manner similar to Java’s
synchronized statement: the subexpression e1 is evaluated first, and should
yield an object, whose lock is then acquired; the subexpression e2 is then eval-
uated; and finally the lock is released. The result of e2 is returned as the result
of the synchronized expression. While evaluating e2, the current thread is said
to hold the lock. Any other thread that attempts to acquire the lock blocks until
the lock is released. A newly forked thread does not inherit locks held by its
parent thread.

We present example programs in an extended language with integer opera-
tions and additional control structures such as conditional and loop statements,
and we permit fields to be initialized with freshly created objects. Adding these
extensions to the formal language would not introduce any major technical
challenges.

We use e1; e2 to abbreviate let x = e1 in e2, where x does not occur free in e2.
We sometimes enclose expressions in parentheses or braces, and sometimes
add semicolons for clarity. We use the notation [e1/x1, . . . , en/xn]e to denote the
parallel capture-free substitution of ei for all free occurrences of xi within e, for
each i ∈ 1..n.

CONCURRENTJAVA is simpler than Java in a number of respects. For example,
CONCURRENTJAVA includes neither arrays nor the complex object initialization of
Java. We deal with the full Java language starting in Section 4.
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2.2 Locks Against Races

Multithreaded CONCURRENTJAVA programs are prone to race conditions, as il-
lustrated by the program in Figure 2, which allocates a new bank account
and makes two deposits into the account in parallel. The program contains
a race condition: two threads may attempt to manipulate the field balance
simultaneously. In particular, suppose that two executions of deposit are in-
terleaved as follows:

Thread 1 Thread 2
int temp = this.balance;

int temp = this.balance;
temp = temp + x;

temp = temp + x;
this.balance = temp;

this.balance = temp;

The final value of balance reflects only one of the two deposits made to the
account. This behavior is not the intended one. Thus, the race condition leads
to incorrect results.

We can fix this error by protecting the field balance by the lock of the account
object and accessing balance only when that lock is held:

class Account {
int balance = 0;
int deposit(int x) {
synchronized (this) {
this.balance = this.balance + x;

}
}

}

The modified account implementation is race-free. It will behave correctly even
when multiple deposits are made to the account concurrently.

3. TYPES AGAINST RACES

In practice, race conditions are commonly avoided by the lock-based synchro-
nization discipline used in the example of Section 2.2. We now present a type
system that supports this programming discipline.

3.1 RaceFreeJava

In order to enforce lock-based synchronization, the type system requires that
each field have an associated lock that is held whenever the field is read or
updated. For this purpose, the type system:

—associates a lock with each field declaration, and
—tracks the set of locks held at each program point.

We rely on the programmer to aid the verification process by providing a
small number of additional type annotations. The type annotation guarded by l
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on a field declaration states that the lock l protects that field; the type system
then verifies that whenever a thread accesses a field, that thread holds the
field’s lock. The type annotation requires l1, . . . , ln on a method declaration
states that the locks l1, . . . , ln are held on method entry. The type system verifies
that these locks are indeed held at each call-site of the method and uses this
assumption when checking that the method body is race-free. In essence, we
are using an effect system [Jouvelot and Gifford 1991] to determine statically
where locks are held. We extend the syntax of field and method declarations to
include these type annotations.

field ::= [final]opt t fn = v[guarded by l ]opt

meth ::= t mn(arg∗) requires ls {e}
ls ::= l∗ (lock set)
l ::= x (lock expression)

We refer to the extended language as RACEFREEJAVA.
To ensure that each field is consistently protected by a particular lock, ir-

respective of any assignments performed by the program, the type system re-
quires that the lock expression in a guarded by clause be a final expression
whose value does not change during program execution. For RACEFREEJAVA, a
final expression is simply a reference to an immutable variable. When consid-
ering the full Java language in Section 4, we will generalize the set of final ex-
pressions. The type system also requires that the lock expressions in a requires
clause be final for similar reasons.

Since field and method types now include final expressions, our type sys-
tem supports a specialized notion of dependent types. In a previous article
[Flanagan and Abadi 1999b], we explored an alternative approach that avoids
these dependent types, and instead uses singleton types (types with one single
element) to enable the tracking of locks. These singleton types can be hidden
when necessary, using existential types. For example, if an object type A con-
tains a lock with singleton lock type t1, then we can hide this singleton type
using ∃t1.A.

However, the singleton-type approach is syntactically cumbersome, since it
requires introducing two names for each lock; one name for the lock itself and
a second name for the corresponding singleton type, like the type t1 above.
Moreover, the singleton type approach does not easily support the flexible sub-
typing relations needed in object-oriented languages. For example, suppose A
has a subtype B <: A that, in addition to the lock of type t1, contains a second
lock of type t2. Then, after hiding these singleton types, the standard rules for
existential types do not yield the desired subtyping relation:

(∃t1.∃t2.B) �<: (∃t1.A)

Because of these two limitations of the singleton-type approach, in
RACEFREEJAVA we chose to adopt specialized dependent types instead.

The core of our type system is a set of rules for reasoning about the judgment

P ; E; ls � e : t
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Here, P (the program being checked) is included in the judgment in order to
provide information about class declarations in the program; E is an environ-
ment that provides types for the free variables of the expression e; ls is a set of
final expressions that describe the locks that are held when the expression e is
evaluated; and t is the inferred type of e. Thus, the type rules track the set of
locks held at each program point.

Most of the type rules are straightforward and similar to those of CLASSICJAVA.
The complete set of judgments and rules, as well as a proof of soundness for the
rules, is contained in the Appendix. Here we briefly explain some of the crucial
rules.

—The rule [EXP SYNC] for synchronized e1 e2 checks that e1 is a final expression
of some class type c, and checks e2 with an extended lock set that includes
e1, since the lock e1 is held when e2 is evaluated.

[EXP SYNC]
P ; E �final e1 : c P ; E; ls ∪ {e1} � e2 : t

P ; E; ls � synchronized e1 e2 : t

The judgment P ; E �final e1 : c in the hypotheses means that e1 is a final
expression of type c.

—The rule [EXP REF GUARDED] for e.fn checks that e is a well-typed expression of
some class type c, that c has a field fn of type t, guarded by lock l , and that l
is held.

[EXP REF GUARDED]
P ; E; ls � e : c

P ; E � ςthis.([final]opt t fn = v guarded by l) ∈ c
P ; E � [e/this]l ∈ ls

P ; E � [e/this]t

P ; E; ls � e.fn : [e/this] t

The judgment P ; E � ςthis.([final]opt t fn = v guarded by l) ∈ c in the hy-
potheses means that c declares or inherits a field fn of type t, guarded by l ,
where the self-reference variable “this” provides a means for the field to re-
fer to its containing object. In the source syntax, self-reference bindings were
implicit. However, in order to support α-renaming and avoid name collisions,
this judgment makes the self-reference binding explicit via the construct
“ς this.(· · ·).” Note that, apart from being implicitly bound within field and
method declarations in the source language, the variable “this” is otherwise
a regular variable. In particular, we could rewrite the rule above using a
different variable name instead of “this,” but for clarity we follow Java’s
convention of using “this” as the self-reference variable.

In order to ensure that the protecting lock l is held, it suffices to establish
that l denotes the same lock as some expression l ′ in the current lock set.
In general, proving that l and l ′ denote the same lock may be undecidable.
Therefore, we rely on a conservative approximation. In a first attempt to de-
fine such an approximation, one may simply check that l and l ′ are syntacti-
cally identical. However, requiring this syntactic identity is too restrictive in
many cases. In particular, occurrences of this in the lock expression l refer
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to the object e being dereferenced. To account for the aliasing of this and e,
the rule replaces all occurrences of this in l by e. Accordingly, the antecedent
P ; E � [e/this]l ∈ ls ensures that [e/this]l is in the current lock set. This
conservative approximation has been sufficient for most programs we have
inspected.

A similar aliasing situation arises in the next section, where we introduce
types that contain lock expressions. In order to accommodate this future ex-
tension, we include the appropriate substitutions for types here, and give
[e/this]t as the type of the field read. The antecedent P ; E � [e/this]t en-
sures that [e/this]t is a well-formed type.

—The rule [EXP ASSIGN] for e.fn = e′ ensures that the appropriate lock is held
whenever a field is updated.

[EXP ASSIGN]
P ; E; ls � e : c

P ; E � ςthis.(t fn = v guarded by l) ∈ c
P ; E � [e/this]l ∈ ls

P ; E; ls � e′ : [e/this]t

P ; E; ls � e.fn = e′ : [e/this]t

—The rule [EXP INVOKE] for a method invocation ensures that all locks in the
requires clause of a method declaration are held at each call-site of the
method.

[EXP INVOKE]
P ; E; ls1 � e : c

P ; E � ςthis.(t mn(sj y j
j∈1..n) requires ls2 {e′}) ∈ c

P ; E; ls1 � e j : [e/this]sj ∀ j ∈ 1..n
P ; E � [e/this]ls2 ⊆ ls1

P ; E � [e/this]t

P ; E; ls1 � e.mn(e1..n) : [e/this]t

The judgment P ; E � ςthis. (t mn(s1 y1, . . . , sn yn) requires ls2 { e′ }) ∈ c in
the hypotheses means that c has a method of the expected form, where the
self-reference variable “this” provides a means for the method to refer to the
containing object. The judgment P ; E � [e/this]ls2 ⊆ ls1 simply expresses
set inclusion for lock sets.

—The rule [EXP FORK] for e.fork checks that e refers to an object with a run
method:

[EXP FORK]
P ; E; ls � e : c

P ; E � ςthis.(t run() requires ∅ { e′ }) ∈ c

P ; E; ls � e.fork : int

The fork expression always evaluates to the dummy result zero and has type
int.

Race-Free Bank Accounts. We can use this type system to verify that the
synchronized bank account implementation is race-free by adding a type anno-
tation that expresses that the field balance is guarded by this. When no locks
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Fig. 3. Bank account implementation with client-side locking.

are required to invoke a method we omit its requires clause, as we have done
for deposit. The following class declaration replaces the corresponding one of
Figure 2:

class Account {
int balance = 0 guarded by this;
int deposit(int x) {
synchronized (this) {
this.balance = this.balance + x;

}
}

}

An alternative implementation of the bank account may rely on its clients
to perform the necessary synchronization operations, as shown in Figure 3. In
this example, the method signature

int deposit(int x) requires this

declares that the object’s lock must be acquired before calls to deposit. Since
the necessary lock is indeed held at each call-site, this program is well-typed
and race-free.

3.2 External Locks

The type system of the previous section can verify the absence of race conditions
in a number of interesting examples. However, larger programs frequently use
additional synchronization patterns that cannot be captured by that system. In
order to accommodate such programs, this section extends the RACEFREEJAVA

type system with classes parameterized by locks, and Section 3.3 further ex-
tends the type system with thread-local classes.

In the type system of the previous section, each field of an object can be pro-
tected only by the object itself or by some field of the object. In some cases, how-
ever, we would like to allow an external lock to protect a field. For example, all
of the fields in a linked list might be protected by some lock external to the list.
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To accommodate this programming pattern, we extend RACEFREEJAVA to allow
classes to be parameterized by external locks:

defn ::= class cn〈garg∗〉 body (class declaration)
garg ::= ghost t x (ghost declaration)

c ::= cn〈l∗〉 | Object (class type)

A class declaration now contains a (possibly empty) sequence of formal param-
eters or ghost variables. These ghost variables are used by the type system to
verify that the program is race-free and they can appear only in type anno-
tations and not in regular code. In particular, to preserve compatibility with
existing Java compilers, they do not affect run-time program behavior. A class
type c consists of a class name cn parameterized by a sequence of final ex-
pressions. The number and type of these expressions must match the formal
parameters of the class.

Checking of parameterized classes is handled via substitution. If

class cn〈ghost t1 x1, . . . , ghost tn xn〉 body

is a well-formed class declaration, then for any final expressions l1, . . . , ln of the
appropriate types t1, . . . , tn, the type cn〈l1, . . . , ln〉 is a valid instantiated class
type, with associated instantiated class declaration

class cn〈l1, . . . , ln〉 [l1/x1, . . . , ln/xn]body

Methods could be parameterized in a similar fashion, but we did not find
parameterized methods necessary in most of the programs we studied.

Using External Locks. As an example of the use of external locks, consider
the dictionary implementation of Figure 4. A dictionary maps keys to values.
In our implementation, a dictionary is represented as an object that contains a
linked list of Nodes, where each Node contains a key, a value, and a next pointer.

We may wish to protect the entire dictionary, including its linked list, with
the lock of the dictionary. For this purpose, the class Node is parameterized by
the enclosing dictionary; the fields of Node are guarded by the dictionary lock;
and each method of Node requires that the dictionary lock be held on entry. Each
method of Dictionary first acquires the dictionary lock and then proceeds with
the appropriate manipulation of the linked list. Since all fields of the linked list
are protected by the dictionary lock, the type system verifies that this program
is well-typed and race-free.

3.3 Thread-Local Classes

Large multithreaded programs typically include sections of code that operate
on data that is not shared across multiple threads. For example, only a single
thread in a concurrent web server may need to access the information about a
particular request. Objects used in this fashion require no synchronization and
should not need to have locks guarding their fields. To accommodate this situa-
tion, we introduce the concept of thread-local classes. We extend the grammar
to allow an optional thread local modifier on class declarations:

defn ::= [thread local]opt class cn〈garg∗〉 body

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 2, March 2006.



218 • M. Abadi et al.

Fig. 4. A synchronized dictionary.

We also modify the typing rules for fields so that thread-local classes can have
non-final, unguarded fields.

An example of a thread-local class appears in Figure 5. The class Crawler
defines a concurrent web crawler that forks new threads to process pages stored
in a shared queue. Instances of the LinkEnumerator class, which parses the text
of the page in order to find links, are not shared among threads. Therefore, it
is declared as a thread local class and contains unguarded fields.

A simple form of escape analysis is used to enforce single-threaded use of
thread-local objects. A type is thread-shared provided it is not a thread-local
class type. The type system must ensure that thread-local objects are not acces-
sible from thread-shared objects. Therefore, a thread-shared class declaration
must (1) have a thread-shared superclass and (2) contain only shareable fields.
A field is shareable only if it has a thread-shared type and is either final or
protected by a lock. The typing rule for fork ensures that the new thread starts
by calling the run method of a thread-shared class. The rules for thread-shared
types and fork appear in Appendix C.

Interestingly, our type system permits a thread-local class to have a thread-
shared superclass. This design permits us to maintain Object (which is thread-
shared) as the root of the class hierarchy, as it is in Java. However, it also permits
a thread-local object to be viewed as an instance of a thread-shared class and
hence to be shared between threads. This sharing does not cause a problem
unless the object is downcast back to the thread-local type in a thread other
than the one in which it was created. This downcast would make unguarded
fields in the subclass visible to more than one thread.

To eliminate this possibility, our type system forbids downcasts from a
thread-shared type to a thread-local type. In particular, this restriction applies
to the implicit downcasts that occur during dynamic dispatch. To avoid such
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Fig. 5. A concurrent web crawler with a thread-local enumeration class.

implicit downcasts, our type system requires that a thread-local class does not
override any methods declared in a thread-shared superclass. In the context of
the full Java language, this restriction also applies to explicit cast operations.
(RACEFREEJAVA does not contain those operations.) A consequence of prevent-
ing these downcasts is that thread-local objects cannot be stored in collection
classes. This is not a problem, however, in GJ [Bracha et al. 1998] or Java
1.5 [JavaSoft 2004], both of which support parametric polymorphism.

Alternatively, we could replace these static requirements with dynamic
checks: a compiler could insert code to track the allocating thread of each ob-
ject and dynamically check that thread-shared to thread-local downcasts are
performed only by the appropriate thread.
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Fig. 6. Excerpt from java.util.Vector.

4. THE RCCJAVA CHECKER

We extended the RACEFREEJAVA type system to the full Java language [Gosling
et al. 1996] and implemented the resulting system. This race-condition checker,
rccjava, extends the type system outlined in Section 3 to accommodate the ad-
ditional features of Java, including arrays, interfaces, constructors, and static
fields and methods. In addition, we extended the notion of final expressions to
include a field read e.fn, where e is a final expression and fn is a final field. The
additional type information required by rccjava is embedded in Java comments
in order to preserve compatibility with existing Java tools, such as compilers.
Specifically, comments that start with the character “#” are treated as type an-
notations by rccjava. See Figure 6 for an example. To specify the lock guarding
elements in an array, we introduced an /*# elems guarded by l*/ annotation.

The rccjava tool was built on top of an existing Java front-end that includes
a scanner, parser, and typechecker. The extensions for race detection were rel-
atively straightforward to add to the existing code base and required approxi-
mately 5,000 lines of new code. The major additions were maintaining the lock
set during typechecking, implementing syntactic equality and substitution on
abstract syntax trees, and incorporating classes parameterized by locks.

An important goal in the design of rccjava was to provide a cost-effective
way to detect race conditions statically. Thus, it was important to minimize both
the number of annotations required and the number of false alarms produced.
In order to attain this goal, rccjava relaxes the formal type system in several
ways, and also infers default annotations for unannotated code. These features
are described below.

4.1 Escape Mechanisms

The rccjava checker provides mechanisms for escaping from the type system
when it proves too restrictive. The simplest escape mechanism is the no warn
annotation, which turns off certain kinds of warnings on a particular line of
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code, as in:

f.a = 3; //# no warn race

This annotation is commonly used if a particular race condition is considered
benign.

Also, rccjavamay be configured with a command-line flag to ignore all errors
of a particular kind. For example, the “-no warn thread local override” flag
turns off the restrictions whereby a thread-local class cannot override a method
of its thread-shared superclass. Our experience has shown that, while many
such overrides exist in large programs, they are typically not sources of many
race conditions. Therefore, this flag suppresses some errors but also many false
alarms.

The holds annotation asserts that a particular lock is held at a given program
point:

//# holds f
f.a = 3;

This annotation puts f into the lock set for the remainder of the current state-
ment block. As with the no warn annotations, rccjava may be configured to
make global assumptions about when locks are held. For instance, when run
with the command-line flag “-constructor holds lock”, rccjava assumes that
the lock this is held in constructors. An object is typically initialized in the ob-
ject’s constructor without synchronization. This initialization pattern is sound
provided that no references to the object being initialized escape from the cre-
ating thread until after the constructor exits. Violations of this assumption are
unlikely, and using it eliminates a large number spurious warnings. We believe
that this command-line flag could be replaced with a sound escape analysis
(such as those of Choi et al. [1999] and Salcianu and Rinard [2001]) without
significant reduction in the expressiveness of the system.

4.2 Default Annotations

Although not originally designed to infer type information, rccjava does con-
struct default annotations for unannotated classes and fields. The heuristics
used to compute default annotations are:

—A class with no annotations and no synchronized methods is thread-
local by default, unless the class is java.lang.Object or a subclass of
java.lang.Thread.

—Unguarded nonfinal instance fields in thread shared classes are guarded by
this.

—Unguarded nonfinal static fields are guarded by the class object for the class
to which they belong.

—A guarded by annotation is permitted on a class declaration, and it applies
to all fields of the class.

These heuristics are not guaranteed to produce the correct annotations, but
experience has shown that they save a significant amount of time while
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Table I. Programs Analyzed Using rccjava

Programmer
Program KLOC Time (hrs) Annotations Races Found
java.util.Hashtable 0.4 0.5 60 0
java.util.Vector 0.4 0.5 10 1
java.io.* 16.0 16.0 139 4
Ambit 4.5 4.0 38 0
WebL 20.0 12.0 358 5

Table II. Number of rccjava Annotations Added to Each Program

Annotations per KLOC
guarded class param thread no

Program by requires or arg local/shared warn holds Total
java.util.Hashtable 29.0 2.3 79.5 0.0 11.0 11.4 136.0
java.util.Vector 11.6 0.0 0.0 0.0 2.3 9.3 23.2
java.io.* 2.9 0.8 0.0 1.8 0.7 2.4 8.7
Ambit 2.7 0.2 0.0 2.2 2.2 1.1 8.4
WebL 4.1 1.7 5.2 0.9 3.1 3.1 17.9

annotating large programs. Roughly 90% of the classes in the test programs
described below are treated correctly by these heuristics.

5. EVALUATION OF RCCJAVA

In order to test the effectiveness of rccjava as a static race-detection tool,
we used it for checking several multithreaded Java programs. Our test
cases include two representative single classes, java.util.Hashtable and
java.util.Vector, and several larger programs, including java.io, the Java
input/output package (version 1.1) [JavaSoft 1998]; Ambit, an implementation
of a mobile-ambient calculus [Cardelli 1997]; and an interpreter and run-time
environment for WebL, a language for automating web-based tasks [Kistler and
Marais 1998].

These five programs use a variety of synchronization patterns, most of which
were easily captured with rccjava annotations. We used the command-line flags
“-no warn thread local override” and “-constructor holds lock” for these
tests (see Section 4.1). Although these flags may cause rccjava to miss some
potential race conditions, they significantly reduce the number of false alarms
reported and provide the most effective way to deal with existing programs that
were not written with this type system in mind. Table I summarizes our experi-
ence in checking these programs. It shows the number of annotations and time
required to annotate each program, as well as the number of race conditions
found in each program. The time includes both the time spent by the program-
mer inserting annotations and the time to run the tool. We added annotations
to these programs until the tool reported warnings only for the race conditions
listed in the last column.

Table II breaks down the annotation count into the different categories of an-
notations, normalized to the frequency with which they appear in 1,000 lines of
code. For the large programs, fewer than 20 annotations were required per 1,000
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lines. Most of these annotations were clustered in the small number of classes
that directly manipulate thread-shared data. The majority of classes typically
required very few or no annotations. Evidence of this pattern is reflected in the
statistics for the single-class examples, which have higher annotation frequen-
cies than the larger programs. Hashtable has a high occurrence of annotations
concerning class parameters and arguments because it contains a linked list
similar to that of Figure 4. Interestingly, restructuring Hashtable to declare the
linked list as an inner class within the scope of the protecting lock reduces the
number of annotations from 60 to 25.

We discovered problematic race conditions in three of the five example pro-
grams, even though these programs were well tested and relatively mature. Of
the four race conditions found in java.io, one was fixed in JDK version 1.2.
We also found benign race conditions in all test cases; those are not counted in
Table I. Race conditions are benign if they do not affect program correctness.
Examples include unsynchronized increments of global performance counters,
where any resulting race conditions will not cause the resulting count to be sub-
stantially incorrect, and patterns like double-checked initialization [Schmidt
and Harrison 1997], among others.

Figure 6 contains an excerpt from java.util.Vector that illustrates a typi-
cal race condition caught during our experiments. Suppose that there are two
threads manipulating a shared Vectorw. If one thread calls lastIndexOf(elem)
for some elem, that method may read elementCount without acquiring the lock
of the Vector object. However, the other thread may call removeAllElements
(which sets elementCount to 0) and then call trimToSize (which resets
elementData to an array of length 0). Thus, an array-out-of-bounds exception
will be triggered when the first thread enters the binary version of lastIndexOf
and reads the elementData array based on the old value of elementCount. Declar-
ing both versions of lastIndexOf to be synchronized removes this race condition.
Sun essentially adopted this solution for JDK version 1.4 in response to our bug
report and the original publication of our results [Flanagan and Freund 2000].

6. HOUDINI/RCC

We now turn our attention to checking significantly larger programs. For
such programs, the burden of manually inserting type annotations and un-
derstanding error messages becomes more significant. This section introduces
Houdini/rcc, which makes the following two contributions:

Annotation inference: In practice, reliance on programmer-supplied annota-
tions has restricted the application of rccjava to small to medium-sized (about
20 KLOC) programs for which the task of writing annotations is tolerable.
To achieve practical analysis of large programs, we developed an annotation-
inference system for rccjava based on the Houdini framework [Flanagan et al.
2001].

User interface: Processing and understanding rccjava’s output is labor in-
tensive, particularly for large programs with many potential race conditions.
To facilitate this process, we developed a simple but effective user interface that
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describes the potential race conditions. The interface also clusters race condi-
tions together according to their probable cause so that related race conditions
can be dealt with as a single unit. In addition, the user interface describes
the reasoning of the annotation-inference system so that the programmer can
identify the cause of each warning.

The rest of this section covers these two items in more detail, and the next
section describes our experience using Houdini/rcc to catch race conditions in
several large test programs.

6.1 Annotation Inference

Houdini/rcc infers annotations using the following algorithm.

generate candidate annotation set;
repeat

invoke rccjava to refute annotations;
remove the refuted annotations

until quiescence

The simplicity of this algorithm is due to its reuse of rccjava to reason about
the correctness of particular annotations.

The first step in the algorithm is to generate a finite set of candidates an-
notations. Each candidate annotation is a conjectured property of the locking
discipline used by the program. For each class, the candidate annotation set in-
cludes an annotation thread local conjecturing that all instances of that class
are local to a particular thread. In addition, Houdini/rcc conjectures that each
nonfinal field is guarded by a number of different candidate locks. The can-
didate locks include this and any final field declared in the same class or a
superclass. We extend the typing rules to permit field declarations prefixed by
multiple guarded by annotations. Similarly, Houdini/rcc conjectures that each
of these candidate locks are held on entry to each routine. Houdini/rcc does not
conjecture requires clauses for methods that are called by the Java run-time
systems with no lock held: such methods include main, the entry point of the
program, and run, the entry point of a particular thread. Houdini/rcc also does
not conjecture type parameter annotations.

Many candidate annotations will of course be incorrect. To identify incor-
rect annotations, the Houdini algorithm invokes rccjava on the annotated pro-
gram. Like any invocation of rccjava, this invocation produces warnings about
violations of the given annotations. Houdini/rcc interprets such warnings as
identifying incorrect annotation guesses in the candidate set. In this sense,
each invocation of rccjava has the effect of refuting some number of candidate
annotations, and these annotations are then removed from the program.

Since removing one annotation may cause other annotations to become in-
valid, this check-and-refute cycle iterates until a fixed point is reached. At that
point, all incorrect annotations have been removed from the program. The set
of remaining annotations is a correct subset of the candidate set, and is in fact,
the unique maximal such set [Flanagan et al. 2001].
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Fig. 7. The Houdini/rcc candidate annotations for Account. The underlined annotations are re-
futed by the Houdini/rcc algorithm.

We illustrate this annotation-inference process for a small example program
that includes the Account class. This program, together with the candidate
annotations conjectured by Houdini/rcc, is shown in Figure 7. Candidate an-
notations refuted by the Houdini/rcc algorithm are underlined. The new class
Add100 is a subclass of java.lang.Thread. Therefore, invoking the start method
of an Add100 object causes the object’s run method to be executed in the object’s
thread. The Add100.main method spawns two new threads, both of which will
add 100 to the balance of an Account object.

The Houdini/rcc algorithm performs four iterations through the loop:

(1) On the first iteration, rccjava refutes three annotations. The annotation
thread local on the class Add100 is refuted since each instance of this class
is also an instance of its superclass java.lang.Thread. Any object of this
class can be accessed by two threads: both itself and the parent thread that
started it. In addition, rccjava sees that the run method calls deposit with
no locks held, and hence refutes the two requires annotations on deposit.

(2) On the next iteration, rccjava sees that the (now thread-shared) class
Add100 contains a reference to Account, and rccjava therefore refutes the
annotation thread local on Account. In addition, rccjava refutes the an-
notation requires this on update, since it is called from deposit when the
lock this is not held.

(3) On the third iteration, rccjava refutes the annotation guarded by this on
the field balance, since it is accessed from update when the lock this is not
held.

(4) On the fourth iteration, no further annotations are refuted, so the remaining
annotations are all correct and quiescence is reached.
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The rccjava checker is invoked one last time on the now-annotated program to
determine the set of warnings to be reported to the user. For this example, the
final run produces no warnings, indicating that the program is indeed free of
race conditions. If, on the other hand, there was a race condition on a particular
field, Houdini/rcc would refute all of the conjectured guarding locks on that
field. Thus, the final run of rccjava would produce a warning that there is no
lock guarding that field.

6.2 Extensions

While the basic Houdini/rcc algorithm can detect race conditions in unan-
notated programs, it produces many false alarms. This section describes two
extensions to Houdini/rcc that help eliminate false alarms.

Read-Only Data Inference. Constant fields can be read safely by multi-
ple threads without synchronization. Ideally, such fields would be declared as
final, in which case rccjava would not warn about unsynchronized accesses.
However, our experiments with Houdini/rcc indicated that a large number of
shared constant fields are not declared as final, because of either programmer
oversight or the use of initialization patterns that violate the restrictions on
final fields.

To avoid false alarms in these cases, we have extended rccjava to allow a field
to be annotated with the annotation readonly. This annotation behaves much
like Java’s final annotation, except that readonly is an rccjava annotation
that can be inferred by Houdini/rcc in a preliminary pass.

Moreover, since readonly reference fields are constant values, they can be
included in the set of candidate locks for a class, thus increasing the set of
candidate annotations conjectured by Houdini/rcc.

Main-Lock Inference. Since static fields are accessible by all threads,
rccjava requires that every static field be protected by a lock. However, a num-
ber of the programs we examined exhibited a common pattern whereby a static
field would be accessed exclusively by the main thread, without synchroniza-
tion. To accommodate this programming pattern, we extended rccjava with
the notion of a main lock, that is, a lock that is implicitly held by the main
thread.

To infer annotations regarding the main lock, we extended Houdini/rcc so
that it guesses the annotation requires MainLock for each method and the an-
notation guarded by MainLock for each field. The refutation loop of Houdini/rcc
then determines which fields are accessed exclusively by the main thread, thus
avoiding false alarms on such fields.

6.3 User Interface

We now turn our attention to how a programmer can identify defects using the
feedback from Houdini/rcc. The Houdini/rcc interface, based on the interface
of Houdini for ESC/Java [Flanagan and Leino 2001], generates the following
output for an input program:
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Fig. 8. A version of Account that contains a race condition on balance.

—a collection of HTML pages containing the source code view for each Java file
analyzed, which contains information about both the valid and the invalid
candidate annotations guessed by Houdini/rcc, and

—a root HTML page listing the warnings produced by the final call to rccjava,
where each warning message contains a hyperlink to the source view of the
code at the location of the offending program line.

As an example of the process of finding errors with this tool, consider
BadAccount, a broken version of the Account class shown in Figure 8. Note
that the synchronization code from deposit is missing, so there is a potential
race condition on the field balance. For this program, Houdini/rcc generates
the following warning:

BadAccount.java:7: field ‘BadAccount.balance’ must be guarded
in a thread shared class

Clicking on this warning would open up the source code view for line 7 of
the Account class (see Figure 9). The source code view displays all of the candi-
date annotations guessed by Houdini/rcc. A refuted annotation is underlined,
whereas a valid annotation is darkened. In this case, all annotations were re-
futed, but Figure 10, as described below, contains several valid annotations.
Houdini/rcc also inserts the warning messages into the source code view.

In a situation like this, a programmer may wonder why the annotation
guarded by lock was not inferred for the field balance. Identifying the cause
of rccjava warnings often boils down to answering such questions. To facilitate
this process, each refuted annotation is a hyperlink to the line of code refuting
that annotation. Figure 9 shows that the candidate annotations guarded by
lock for the field balance was refuted. Clicking on this refuted annotation
brings the programmer to an access of field balance on line 10 where rccjava
believes the lock lock is not held. To determine why the lock is not held on
line 10, the programmer could click on the refuted annotation requires lock
on line 8. This hyperlink then brings the programmer to line 15, where the
required synchronization statement is missing. Surprisingly, our experience
indicates that presenting the refuted annotations and the causes thereof is the
most important aspect of the user interface.
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Fig. 9. Screen shot showing the Houdini/rcc user interface for the BadAccount class. The overlaid
arrows indicate where two of the hyperlinks are pointing.

Running Houdini/rcc on the correct version of Account produces no warn-
ings and yields the source code view shown in Figure 10, where the inferred
annotations appear in bold.

Clustering Warnings. During our experiments, we noticed several cases
where Houdini/rcc would incorrectly characterize a thread-local class C as
thread-shared, because of conservative approximations introduced by the anal-
ysis. Unfortunately, in these cases, Houdini/rcc subsequently characterizes as
thread-shared all classes reachable (transitively) from C and produces spurious
warnings regarding race conditions on accesses to the fields of these classes.

To reduce this problem, we extended the user interface to group into a single
cluster all of the warnings that were caused, either directly or indirectly, by
C being characterized as thread-shared. The programmer can often deal with
all the warnings in a cluster as a single unit. For example, a programmer who
verifies that C is actually thread-local can easily ignore the entire cluster of
warnings.

7. EVALUATION OF HOUDINI/RCC

We have evaluated Houdini/rcc on test programs with sizes that range from
several thousand lines to a half million lines of code. The programs include
Ambit and WebL, described in Section 5. They also include jbb2000, a Java
SPEC benchmark that models a server application [Standard Performance
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Fig. 10. Screen shot showing the Houdini/rcc user interface for the Account class.

Table III. Number of Warnings Produced by rccjava and Various Versions of Houdini/rcc

Warnings per KLOC

-no warn

Basic thread-local -constructor- -read -main

Program KLOC rccjava Houdini/rcc override holds lock only lock

Ambit 4.5 13.6 37.3 14.2 13.3 7.1 7.1
WebL 20.0 11.8 12.2 5.1 4.8 1.9 1.9
jbb2000 30.8 18.8 4.9 3.4 3.3 1.3 0.6
TLC 53.5 11.0 14.7 4.7 4.5 2.2 1.0
jigsaw 128.9 21.1 13.6 8.2 7.7 2.9 2.9
orange 28.0 17.7 33.3 14.0 13.6 6.0 3.6
red 445.0 16.6 9.0 5.2 4.8 2.2 2.2
Average 15.8 17.9 8.3 7.9 3.6 2.9

Evaluation Corporation 2000]; TLC, a multi-threaded model checker for the
TLA specification language [Yu et al. 1999]; jigsaw, a web server written in
Java [World Wide Web Consortium 2001]; and orange and red, two large, pro-
prietary Compaq systems.

Table III shows the results of running rccjava (without annotations) and
various versions of Houdini/rcc on these programs. The table shows the size
of each unannotated program and the number of warnings reported by run-
ning rccjava on that program. The column labeled Basic Houdini/rcc cor-
responds to running Houdini/rcc in its original form from Section 6. The four
remaining columns show the number of warnings reported by Houdini/rccwith
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Table IV. Statistics for Houdini/rcc with All Flags Enabled

Races
Annotations
per KLOC Warnings

Number (found/

Time of clusters
Program KLOC Candidate Valid (min) per KLOC Total Clusters examined)
Ambit 4.5 433 78 4 7.1 32 6 0/6
WebL 20.0 262 43 9 1.9 37 10 6/10
jbb2000 30.8 282 74 9 0.6 17 17 0/17
TLC 53.5 758 124 31 1.0 52 30 4/30
jigsaw 128.9 375 49 62 2.9 367 78 0/30
orange 28.0 863 135 74 3.6 100 84 1/84
red 445.0 358 64 286 2.2 957 340 5/70

various extensions turned on. These extensions are the two flags (-no warn
thread local override and -constructor holds lock) described in Section 4
and the two inference modifications (-read only and -main lock) described in
Section 6.2. Note that the additions to Houdini/rcc are cumulative across the
columns so that, for example, the “-constructor holds lock” column reflects
Basic Houdini/rcc run with both the “-no warn thread local override” and
“-constructor holds lock” extensions. All of the columns are normalized to
show the number of warnings reported per 1,000 lines of code.

Excluding method override warnings reduced the number of warnings by
roughly a factor of two across the test programs. The read-only field inference
also decreased the number of warnings by another factor of two. Although the
other two extensions were not as consistent in their effectiveness, there were
some programs in which they also significantly reduced the number of warnings
produced by Houdini/rcc.

Table IV shows more detailed statistics for running Houdini/rcc with all of
the extensions described. From this table, it is clear that Houdini/rcc infers a
nontrivial number of annotations. In general, it guesses roughly 350 candidate
annotations per 1,000 lines of code, with roughly 1/4 of these annotations being
valid. Our system ran in time proportional to the size of the program, process-
ing approximately 2,000 lines per minute on a 667 MHz Alpha workstation.
However, we have not optimized our tool for performance, and there are sev-
eral architectural improvements that would significantly speed up the system.
For instance, Houdini/rcc makes heavy use of temporary files, and reading and
writing these files accounts for a sizable fraction of its run time.

In most examples, the clustering algorithm was successful at grouping re-
lated warnings. A representative situation of this appears in jigsaw. In that pro-
gram, a DebugThread object gathers and prints statistics about the program as
it runs. This object accesses fields of a number of different objects both directly
and through multiple levels of accessor methods without acquiring the neces-
sary locks for those fields. The clustering algorithm identified the DebugThread
class implementation as the common source of 92 such potential race condi-
tions. All of these race conditions were deemed benign because the debugging
code was intentionally designed to read data in this manner.

The last column in Table IV reflects how many nonbenign race conditions we
identified while studying the warnings reported by Houdini/rcc. Since we have
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not examined every cluster for the larger examples, this column shows both the
number of real race conditions found and the number of warning clusters exam-
ined. For example, six race conditions were found in WebL while examining all
10 clusters. These race conditions include one that had been mistakenly consid-
ered benign when WebL was annotated by hand (hence the slight discepancy
with Table I).

8. RELATED WORK

A number of tools have been developed for detecting race conditions, both stat-
ically and dynamically. We review many of them below. Several of these tools
have been developed since the initial publication of our results.

Warlock [Sterling 1993] is a static race-detection system for ANSI C pro-
grams. It supports the lock-based synchronization discipline through annota-
tions similar to ours. However, Warlock uses a different analysis mechanism;
it works by tracing execution paths through the program, but it fails to trace
paths through loops or recursive function calls, and thus may not detect certain
race conditions. In addition, Warlock assumes, but does not verify, the thread-
local annotations introduced by the programmer. However, these soundness
issues have not prevented Warlock from being a practical tool. It has been
used to catch race conditions in several programs, including an X-windows
library.

The extended static checker for Java (ESC/Java) is a tool for static detec-
tion of software defects [Leino et al. 1999; Flanagan et al. 2002; Detlefs et al.
1998]. It uses an underlying automatic theorem prover to reason about program
behavior and to verify the absence of certain kinds of errors, such as null deref-
erences and array-out-of-bounds errors. ESC/Java supports multithreaded pro-
gramming via annotations similar to our guarded by and requires clauses, and
verifies that the appropriate lock is held whenever a guarded field is accessed.
However, it may still permit race conditions on unguarded fields, since it does
not verify that such unguarded fields occur only in thread-local classes. Over-
all, ESC/Java is a complex but powerful tool capable of detecting many kinds
of errors, whereas rccjava is a lightweight tool tuned specifically for detecting
race conditions.

Aiken and Gay [1998] also investigate static race detection, in the context of
SPMD programs. Since synchronization in these programs is performed using
barriers, rather than locks, their system does not need to track the locks held
at each program point or the association between locks the fields they protect.
Their system has been used successfully on a number of SPMD programs.

Eraser is a tool for detecting race conditions and deadlocks dynamically
[Savage et al. 1997], rather than statically. This approach has the advantage
of being applicable to unannotated programs, but it may fail to detect certain
errors because of insufficient test coverage. The Eraser algorithm has been
extended to handle features, such as constructors, that are common in object-
oriented programming languages [von Praun and Gross 2001]. Another recent
approach has combined dynamic analysis with a global static analysis to im-
prove precision and performance [Choi et al. 2002].
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Boyapati and Rinard [2001] have defined a type system much like
RACEFREEJAVA but with a notion of object ownership. Their system allows a
single class declaration to yield both thread-local and thread-shared instances.
Tracking thread locality on a per-object basis in this manner seems to be a
promising alternative to the notion of thread-local classes presented in this
article (which forbid a class to yield both thread-local and thread-shared in-
stances). In the system of Boyapati and Rinard, synchronization is expressed
only at the object level, and not at the field level. They have extended their
analysis to identify deadlocks [Boyapati et al. 2002] by using a partial ordering
over the lock names manipulated by the program, much as in Flanagan and
Abadi [1999b].

Grossman [2003] has developed a type system for preventing race conditions
in Cyclone, a statically safe variant of C, adapting our approach. The differ-
ences between class-based languages and Cyclone cause his system to differ
from ours in several ways. Most significantly, Grossman permits functions to
be polymorphic over the locks guarding the parameters of the function. In an-
other interesting approach, Bacon et al. [2001] developed Guava, an extension
to the Java language with a form of monitor capable of sharing object state in
a race-free manner.

RACEFREEJAVA has also been extended to verify atomicity [Flanagan and
Qadeer 2003a, 2003b; Flanagan et al. 2004]. Whereas race conditions yield valu-
able indications of unintended interference between threads, atomicity guar-
antees the absence of such interference. In particular, a method is atomic if
for every program execution, there is an equivalent serial execution where the
actions of the method are executed contiguously, without interleaved actions
of other threads. Atomic methods are amenable to sequential reasoning, which
significantly simplifies subsequent (formal or informal) correctness arguments.

Vault [DeLine and Fähndrich 2001] is a system for checking resource man-
agement protocols, and is mainly focused on sequential programs. Capabilities
in Vault are encoded using a combination of singleton types and existential
types (much as in Flanagan and Abadi [1999b]). While Vault has been used to
reason about protocols involving mutual exclusion locks, it does not currently
have a multithreaded execution model.

A variety of other approaches have been developed for race condition and
deadlock prevention; these include model checking [Chamillard et al. 1996;
Corbett 1996; Fajstrup et al. 1998; Yahav 2001], dataflow analysis [Dwyer and
Clarke 1994], and type systems for process calculi [Kobayashi 1998; Kobayashi
et al. 2000].

A number of formal calculi for Java have been presented in recent litera-
ture. These include attempts to model the entire Java language [Drossopoulou
and Eisenbach 1997; Syme 1997; Nipkow and von Oheimb 1998] and, also,
smaller systems designed to study specific features and extensions [Igarashi
et al. 2001]. We chose to use the CLASSICJAVA calculus of Flatt, Krishnamurthi,
and Felleisen [Flatt et al. 1998] as the starting point for our study.

There have been many suggested language extensions for supporting Java
classes parameterized by types [Odersky and Wadler 1997; Bracha et al. 1998;
Agesen et al. 1997; Myers et al. 1997; Cartwright and Steele 1998]. Our work

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 2, March 2006.



Types for Safe Locking: Static Race Detection for Java • 233

uses a different notion of parameterization, namely, classes parameterized by
values (more specifically, lock expressions). Apart from this distinction, our
class parameterization approach most closely follows that of GJ [Bracha et al.
1998], in that information about class parameters is not preserved at run
time.

The requires annotations used by rccjava are similar to effects [Jouvelot
and Gifford 1991; Lucassen and Gifford 1988; Nielson 1996]. Thus, the analysis
performed by Houdini/rcc includes a basic form of effect reconstruction [Tofte
and Talpin 1994, 1997; Amtoft et al. 1997; Talpin and Jouvelot 1992], and
the Houdini/rcc interface provides an explanation of why certain effects were
inferred.

The Houdini/rcc algorithm can be viewed as an abstract interpreta-
tion [Cousot and Cousot 1977], where the abstract state space is the power-
set lattice over the candidate annotations and rccjava is used to compute the
abstract transition relation. Houdini/rcc may also be seen as a variant of pred-
icate abstraction [Graf and Saidi 1997] in which each candidate annotation
corresponds to a predicate. The Houdini algorithm finds the largest conjunc-
tion of these predicates that holds in all reachable states.

Houdini/rcc infers thread-local annotations for classes whose instances
are never shared between threads. Other work on this escape-analysis prob-
lem [Choi et al. 1999; Blanchet 1999; Bogda and Hölzle 1999; Whaley and
Rinard 1999; Aldrich et al. 1999] has primarily focused on optimizing synchro-
nization operations. Because of its intended application, Houdini/rcc includes
an interface that provides explanations.

9. CONCLUSIONS

Type systems have proven remarkably effective for preventing errors in se-
quential programs. In this work, we adapt type-based analysis techniques to
multithreaded programs, and focus in particular on race conditions, a common
source of errors in multithreaded programs.

In comparison to both traditional testing and dynamic analysis techniques
such as Eraser [Savage et al. 1997], the main benefit of our type-based analysis
is that it is not limited by the test coverage concerns of dynamic approaches. In
particular, our core type system is provably sound, although in practice we use
unsound (but useful) extensions to this core system.

Dependent types are a key feature of our type system, since the type of a field
includes its protecting lock. Many dependent type systems are undecidable,
since they require checking the semantic equality of two expressions [Cardelli
1988]. Our type system approximates semantic equality by syntactic equality
modulo substitution; this approximation yields a decidable type system with-
out substantially reducing expressiveness in practice. Our type system also
supports dependent or parameterized classes, which significantly extend its
expressiveness.

Further extensions to the type system could help reduce the number of false
alarms. For example, an escape analysis would permit safe, synchronization-
free initialization of an object that is not yet thread-shared, and it would remove
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the need for our implementation’s unsound assumption that objects are never
shared before being fully constructed. Similarly, a unique pointer analysis could
statically guarantee the soundness of typecasts that change the ghost param-
eters in an object type. However, such extensions would also result in a more
complex type system, and perhaps more complex type annotations.

Providing type annotations is perhaps the dominant obstacle to the wider
adoption of RACEFREEJAVA. The experimental results with Houdini/rcc are
promising, but are limited by Houdini/rcc’s inability to infer ghost parame-
ters. We believe that developing a cost-effective type system for race freedom
requires a type inference algorithm that infers ghost parameters. This more
general type inference problem is NP-complete and we are tackling this prob-
lem via reduction to propositional satisfiability [Flanagan and Freund 2004].

APPENDIX

We present the syntax, semantics, and type system for RACEFREEJAVA without
thread-local classes in Appendix A and the soundness proof for this system in
Appendix B. We extend the type system to thread-local classes and discuss the
modifications to the soundness proof needed for thread-local classes in Appen-
dices C and D. We divide the formal development in this manner for simplicity
of presentation, and also because we believe that, without thread-local classes,
our semantics and type system should be a useful starting point for future work
on other analysis problems that require dependent types and parameterized
classes.

A. FORMAL DEFINITION OF RACEFREEJAVA

A.1 Syntax

The grammar for RACEFREEJAVA is presented in Figure 11. In order to sup-
port a substitution-based operational semantics, the set of values is ex-
tended to include addresses, which are described below. The set of expres-
sions is also extended to include the construct in-sync p e, which indicates
that the lock p has been acquired and e is being evaluated. Addresses and
the in-sync construct should not appear in source programs. The grammar
also defines class instantiations, which are instantiations of parameterized
classes.

A.2 Semantics

We specify the operational semantics of RACEFREEJAVA using the abstract ma-
chine in Figure 12. The machine evaluates a program by stepping through a
sequence of states. A state consists of two components: an object store and a
sequence of expressions, each of which is a thread. The result of a program
is the result of the initial thread, which will always appear at the beginning
of a sequence of thread expressions. New threads are added to the end of the
sequence. We use T.T ′ to denote the concatenation of two sequences.

Objects are kept in an object store σ that maps addresses to objects. An object
{|db |}m

c has three components: a map db from field names to values, a lock state
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Fig. 11. The grammar for RACEFREEJAVA.

m, and the class c of the object. The field map db is a list fn1 = v1, . . . , fnn = vn,
and we use ε to denote the empty field map. The lock state is either unlocked
or locked, denoted by ◦ and •, respectively.

Program evaluation begins in a state with an empty store and a single
thread. Evaluation proceeds according to the evaluation rules, and terminates
when all the threads are reduced to values. We use σ [p �→ d ] to denote the
store that agrees with σ at all addresses except p, which is mapped to d . The
store σ [p.fn �→ v] denotes the store that agrees with σ at all addresses ex-
cept p, which is mapped to the object σ (p) updated so that field fn contains
value v.

The reduction rules are mostly straightforward. They rely on the following
auxiliary judgments. The rule [RED NEW] uses the auxiliary judgment P ; c �initial

db to determine the initial field map db for a newly allocated object. The rule
for method dispatch uses the auxiliary judgment P ; c �dispatch meth to deter-
mine the correct method to call. The judgment P �inst ci states that the class
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Fig. 12. The semantics for RACEFREEJAVA.
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declaration ci is a well-formed instantation of a class appearing in the program
P .

Judgment Meaning
P ; c �initial db db are the initialized fields of an object of class c
P ; c �dispatch meth meth is a resolved method for c
P �inst ci ci is an instantiated class from P

These auxiliary judgments are defined as follows:

P ; c �initial db

[INIT EMPTY]

P ; Object �initial ε

[INIT OBJECT]
P ; c′ �initial db

P �inst class c extends c′ { field1..m meth1..n }
fieldi = ([final]opt ti fni = vi [guarded by li ]opt) ∀i ∈ 1..m

P ; c �initial db, fn1 = v1, . . . , fnm = vm

P ; c �dispatch meth

[LOOKUP]
P �inst class c extends c’

{. . . meth . . .}
P ; c �dispatch meth

[LOOKUP SUPER]
P �inst class c extends c′ { . . . meth1..k }

P ; c′ �dispatch meth
meth = t mn(arg1..n) requires ls { e }

methi = ti mni(argi,1..ni
) requires lsi { ei } ∀i ∈ 1..k

mn �= mni ∀i ∈ 1..k
P ; c �dispatch meth

P �inst ci

[INST]
class cn〈ghost ti x i∈1..n

i 〉 body ∈ P
P �inst class cn〈l1..n〉 [li/x i∈1..n

i ]body

The rule [RED FORK] for p.fork creates a new thread to evaluate p. run(), and
returns 0 as the (dummy) result of the fork expression. The rule [RED SYNC]
evaluates the expression synchronized p e by acquiring the lock of p, and it
yields the expression in-sync p e. The new expression denotes that the lock of
p has been acquired and e is being evaluated. After e evaluates to some value
v, the rule [RED IN-SYNC] releases the lock of p and returns the value v. We say
that an expression e is in a critical section on p if e = E[in-sync p e′] for some
evaluation context E and expression e′.

We use the semantics to formalize the notion of a race condition. An expres-
sion e accesses p.fn if e = E[p.fn] or e = E[p.fn = v] for some E and v. A state
has conflicting accesses on p.fn if its thread sequence contains two or more (top-
level) expressions that access p.fn and at least one of the accesses is a write.
A program has a race condition if its evaluation may yield a state with con-
flicting accesses. In other words, a program P = defn∗ e has a race condition if
P � 〈∅, e〉 �−→∗ S where S has conflicting accesses.

A.3 Type System

We first define a number of predicates used in the type system informally. These
predicates are based on similar predicates from a previous article [Flatt et al.
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1998], to which we refer the reader for their precise formulation.

Predicate Meaning

ClassOnce(P ) no class is declared twice in P
WFClasses(P ) there are no cycles in the class hierarchy
FieldsOnce(P ) no class contains two fields with the same name,

either declared or inherited
MethodsOncePerClass(P ) no method name appears more than once per class
OverridesOK(P ) overriding methods have the same return type, parameter

types, and requires set as the method being overridden

A typing environment maps variables to types, addresses to classes, and ghost
variables to types:

E ::= ∅ | E, arg | E, c p | E, garg

We define the type system using the following judgments.

Judgment Meaning

� P : t program P yields type t
P � defn defn is a well-formed class declaration
P � E E is a well-formed typing environment
P ; E � t t is a well-formed type
P ; E � s <: t s is a subtype of t
P ; E � meth meth is a well-formed method
P ; E � field field is a well-formed field
P ; E � ς y .field ∈ c class c declares/inherits field, where y is the self-reference

variable
P ; E � ς y .meth ∈ c class c declares/inherits meth, where y is the self-reference

variable
P ; E �final e : t e is a final expression with type t
P ; E � ls ls is a well-formed lock set
P ; E � l ∈ ls l appears in ls
P ; E � ls1 ⊆ ls2 lock set ls1 is contained in ls2

P ; E; ls � e : t expression e has type t
P � S : E S is a well-formed state with environment E
P � σ : E σ is a well-formed store with environment E
P ; E; p � ls : c db is a well-formed object of class c at address p

The typing rules for these judgments are presented below.

� P : t

[PROG]
ClassOnce(P ) WFClasses(P )

FieldsOnce(P ) MethodsOncePerClass(P )
OverridesOK(P )

P = defn1..n e
P � defni ∀i ∈ 1..n

P ; ∅; ∅ � e : t
� P : t

P � defn

[CLASS]
P ; ∅ � ti ∀i ∈ 1..n

gargi = ghost ti xi ∀i ∈ 1..n
E = garg1..n, cn〈x1..n〉 this

P ; garg1..n � c
P ; E � fieldi ∀i ∈ 1.. j
P ; E � methi ∀i ∈ 1..k

P � class cn〈garg1..n〉 extends c
{ field1.. j meth1..k }
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P � E

[ENV EMPTY]

P � ∅

[ENV X]
P ; E � t x �∈ dom(E)

P � E, [ghost]opt t x

[ENV ADDRESS]
P ; E � c p �∈ dom(E)

P � E, c p

P ; E � t

[TYPE C]
class cn 〈ghost ti x i∈1..n

i 〉 body ∈ P
P ; E �final li : ti ∀i ∈ 1..n

P ; E � cn〈l1..n〉

[TYPE OBJECT]
P � E

P ; E �Object

[TYPE INT]
P � E

P ; E � int

P ; E � s <: t

[SUBTYPE REFL]
P ; E � t

P ; E � t <: t

[SUBTYPE CLASS]
P ; E � c <: cn〈l1..n〉

class cn〈ghost ti x i∈1..n
i 〉 extends c′ . . . ∈ P

P ; E � c <: [li/xi
i∈1..n]c′

P ; E � field

[FIELD]
P ; E �final l : c
P ; E; ∅ � v : t

P ; E � t fn = v guarded by l

[FINAL FIELD]
P ; E; ∅ � v : t

P ; E � final t fn = v

P ; E � meth

[METHOD]
P ; E � t
P ; E � ls

P ; E, arg1..n; ls � e : t
P ; E � t mn(arg1..n)

requires ls { e }

P ; E � ς y .field ∈ c

[FIELD C]
P ; E � c <: cn〈l1..n〉

y does not appear in l1..n

class cn〈ghost ti x i∈1..n
i 〉

extends c′ { . . . field . . . } ∈ P
P ; E � ς y .([li/xi

i∈1..n, y/this] field) ∈ c

P ; E � ς y .meth ∈ c

[METH C]
P ; E � c <: cn〈l1..n〉

y does not appear in l1..n

class cn〈ghost ti x i∈1..n
i 〉

extends c′ { . . . meth . . . } ∈ P
P ; E � ς y .([li/x i∈1..n

i , y/this] meth) ∈ c

P ; E �final e : t

[FINAL VAR]
P � E

E = E1, [ghost]opt c x, E2

P ; E �final x : c

[FINAL ADDR]
P � E

E = E1, c p, E2

P ; E �final p : c

[FINAL NULL]
P ; E � c

P ; E �final null : c

[FINAL SUB]
P ; E �final e : s
P ; E � s <: t

P ; E �final e : t

P ; E � ls

[LS EMPTY]
P � E

P ; E � ∅

[LS ADD]
P ; E � ls

P ; E �final l : c
P ; E � ls ∪ {l }

P ; E � l ∈ ls

[LS ELEM]
l ∈ ls

P ; E � ls
P ; E � l ∈ ls

P ; E � ls1 ⊆ ls2

[LS SUBSET]
P ; E � ls1 P ; E � ls2

ls1 ⊆ ls2

P ; E � ls1 ⊆ ls2

P ; E; ls � e : t

[EXP SUB]
P ; E; ls � e : s
P ; E � s <: t

P ; E; ls � e : t

[EXP INT]
P ; E � ls

n ∈ integers
P ; E; ls � n : int

[EXP NULL]
P ; E � ls
P ; E � c

P ; E; ls � null : c

[EXP VAR]
P ; E � ls

E = E1, t x, E2

P ; E; ls � x : t
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[EXP ADDRESS]
P ; E � ls

E = E1, c p, E2

P ; E; ls � p : c

[EXP NEW]
P ; E � ls
P ; E � c

P ; E; ls � new c() : c

[EXP REF UNGUARDED]
P ; E; ls � e : c

P ; E � ςthis.([final]opt t fn = v) ∈ c
P ; E � [e/this]t

P ; E; ls � e.fn : [e/this]t

[EXP REF GUARDED]
P ; E; ls � e : c

P ; E � ςthis.([final]opt t fn = v guarded by l) ∈ c
P ; E � [e/this]l ∈ ls

P ; E � [e/this]t
P ; E; ls � e.fn : [e/this]t

[EXP ASSIGN]
P ; E; ls � e : c

P ; E � ςthis.(t fn = v guarded by l) ∈ c
P ; E � [e/this]l ∈ ls

P ; E; ls � e′ : [e/this]t
P ; E; ls � e.fn = e′ : [e/this]t

[EXP INVOKE]
P ; E; ls1 � e : c

P ; E � ςthis.(t mn(sj y j∈1..n
j )

requires ls2 { e′ }) ∈ c
P ; E; ls1 � e j : [e/this]sj ∀ j ∈ 1..n

P ; E � [e/this]ls2 ⊆ ls1
P ; E � [e/this]t

P ; E; ls1 � e.mn(e1..n) : [e/this]t

[EXP LET]
P ; E; ls � e1 : t

P ; E, t x; ls � e2 : s P ; E � [e1/x]s
P ; E; ls � let t x = e1 in e2 : [e1/x]s

[EXP FORK]
P ; E; ls � e : c

P ; E � ςthis.(t run() requires ∅ { e′ }) ∈ c
P ; E; ls � e.fork : int

[EXP SYNC]
P ; E �final e1 : c P ; E; ls ∪ {e1} � e2 : t

P ; E; ls � synchronized e1 e2 : t

[EXP IN-SYNC]
P ; E �final p : c P ; E; ls ∪ {p} � e : t

P ; E; ls � in-sync p e : t

P � S : E

[STATE]
P � σ : E
|T | > 0

P ; E; ∅ � Ti : ti ∀i ∈ 1..|T |
P � 〈σ, T 〉 : E

P � σ : E

[STORE]
� P : t

dom(σ ) = {p1, . . . , pn}
σ (pi ) = {| . . . |}mi

ci ∀i ∈ 1..n
E = c1 p1, . . . , cn pn

P ; E; pi � σ (pi ) : ci ∀i ∈ 1..n
P � σ : E

P ; E; p � db : t

[VAL OBJECT]

P ; E; p � {||}m
Object : Object

[VAL SUBCLASS]
P ; E � c

P �inst class c extends c′ { field1..n meth1..m }
fieldi = . . . ti fni . . . ∀i ∈ 1..n

P ; E; ∅ � vi : [p/this]ti ∀i ∈ 1..n
P ; E; p � {|db |}m′

c′ : c′

P ; E; p � {|db, fn1 = v1, . . . , fnn = vn |}m
c : c

B. SOUNDNESS

In this section, we prove that well-typed RACEFREEJAVA programs without
thread-local classes cannot have race conditions. The preliminary lemmas are
routine, and much of their structure is derived directly from previous work
on similar systems [Flatt et al. 1998]. Therefore, we primarily focus on the
novel aspects of RACEFREEJAVA, including how lock sets and dependent types are
handled.

We start by presenting a lemma that states that, given a well-typed expres-
sion, there is a deduction that yields that the expression has a type and that
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does not end with an application of [EXP SUB]. This lemma enables us to establish
a number of properties, such as that subexpressions of a well-typed expression
are well-typed.

LEMMA 1. Suppose there exists a deduction that concludes P ; E; ls � e : t.
Then that deduction contains a subdeduction that concludes P ; E; ls � e : t ′

and does not end with an application of rule [EXP SUB] for some type t ′ where
P ; E � t ′ <: t.

PROOF. Induction over the derivation of P ; E; ls � e : t.

LEMMA 2 (CONTEXT SUBEXPRESSION). Suppose there is a deduction that con-
cludes P ; E; ls � E[e] : t. Then that deduction contains, at a position corre-
sponding to the hole in E , a subdeduction that concludes P ; E; ls′ � e : t ′ for
some t ′ and ls′ such that P ; E � ls ⊆ ls′ and for all l ∈ ls′ \ ls, E[e] is in a critical
section on l .

PROOF. The proof is a routine induction on the structure of E . We show the
representative case where E = E ′.fn. If P ; E; ls � E ′[e].fn : t, then Lemma 1
indicates that P ; E; ls � E ′[e].fn : s for some s, where an application of [EXP SUB]
is not the last step of the derivation. Suppose that [EXP REF GUARDED] is used to
conclude that P ; E; ls � E ′[e].fn : s, using the antecedent P ; E; ls � E ′[e] : c. By
the induction hypothesis, P ; E; ls′ � e : t ′ for some t ′ and ∀l ∈ ls′ \ ls. E[e] is in
a critical section on l . The case for [EXP REF UNGUARDED] is similar.

Note that the subexpression e is typed with the original lock set, extended only
with locks for which E[e] is in a critical section.

LEMMA 3. Suppose there is a deduction that concludes P ; E; ls � E[e] : t.
Then that deduction contains, at a position corresponding to the hole in E , a
subdeduction that concludes P ; E; ls′ � e : t ′ for some t ′ and ls′ such that P ; E �
ls ⊆ ls′ and for all l ∈ ls′ \ ls, E[e] is in a critical section on l . In addition, the
subdeduction ends with an application of a rule other than [EXP SUB].

PROOF. Simple application of Lemmas 1 and 2.

The next lemma shows that a subexpression e1 may be replaced by a different
subexpression with the same type, provided e1 is not a value. (If e1 is a value,
it may appear in the type t or in the lock set ls, since our system supports
dependent types that contain values.)

LEMMA 4 (CONTEXT REPLACEMENT). Suppose a deduction concluding
P ; E; ls � E[e1] : t contains a deduction concluding P ; E; ls′ � e1 : t ′ at a
position corresponding to the hole in E . If e1 is not a value and P ; E; ls′ � e2 : t ′,
then P ; E; ls � E[e2] : t.

PROOF. Induction on the structure of E .

The next lemma shows that judgments from the formal system are preserved
under capture-free variable substitution. We use Z as a place holder for the
right-hand side of any judgment used in the type system.

LEMMA 5 (SUBSTITUTION). If P ; E; ls′ � v : s then:

(1) if P � E, s x, E ′ then P � E, [v/x]E ′, and
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(2) if P ; E, s x, E ′ � Z then P ; E, [v/x]E ′ � [v/x]Z , and
(3) if P ; E, s x, E ′; ls � Z then P ; E, [v/x]E ′; [v/x]ls � [v/x]Z , and
(4) if P ; E, s x, E ′ �final Z then P ; E, [v/x]E ′ �final [v/x]Z .

PROOF. The proof is by a simultaneous induction on the four parts of the
lemma. We present details of the proof of part 3 for expression typing judgments.
In particular, we show that if P ; E; ls′ � v : s and P ; E, s x, E ′; ls � e : t
then P ; E, [v/x]E ′; [v/x]ls � [v/x]e : [v/x]t by induction over the derivation of
P ; E, s x, E ′; ls � e : t. We consider three representative cases:

[EXP SUB]: To have applied this rule, it must be the case that P ; E, s x, E ′; ls �
e : t ′ and P ; E, s x, E ′ � t ′ <: t. By the induction hypothesis:

P ; E, [v/x]E ′; [v/x]ls � [v/x]e : [v/x]t ′

P ; E, [v/x]E ′ � [v/x]t ′ <: [v/x]t

Thus, we apply [EXP SUB] to conclude P ; E, [v/x]E ′; [v/x]ls � [v/x]e : [v/x]t.
[EXP REF GUARDED]: Let e be the expression e′.fn. Then:

P ; E, s x, E ′; ls � e′ : c
P ; E, s x, E ′ � ςthis.([final]opt t ′ fn = v′ guarded by l ) ∈ c
P ; E, s x, E ′ � [e′/this]l ∈ ls
P ; E, s x, E ′ � [e′/this]t ′

where t = [e′/this]t ′. We may assume x �= this and v �= this, renaming the
bound variable if necessary. By the induction hypothesis:

P ; E, [v/x]E ′; [v/x]ls � [v/x]e′ : [v/x]c
P ; E, [v/x]E ′ � [v/x](ςthis.([final]opt t′ fn = v′ guarded by l) ∈ c)
P ; E, [v/x]E ′ � [v/x]([e′/this]l ) ∈ [v/x]ls
P ; E, [v/x]E ′ � [v/x]([e′/this]t ′)

The second line above simplifies to:
P ; E, [v/x]E ′ �

ςthis.([final]opt [v/x]t ′ fn = [v/x]v′ guarded by [v/x]l ) ∈ [v/x]c

In addition, [v/x]t = [v/x]([e′/this]t ′) = [([v/x]e′)/this]([v/x]t ′), and we may
transform lines 3 and 4 into:

P ; E, [v/x]E ′ � [([v/x]e′)/this]([v/x]l ) ∈ [v/x]ls
P ; E, [v/x]E ′ � [([v/x]e′)/this]([v/x]t ′)

Using these conditions, we can apply the rule [EXP REF GUARDED] to conclude
P ; E, [v/x]E ′; [v/x]ls � [v/x]e : [v/x]t.
[EXP LET]: Let e be the expression let t1 y = e1 in e2. It must be that:

P ; E, s x, E ′; ls � e1 : t1

P ; E, s x, E ′, t1 y ; ls � e2 : t2

P ; E, s x, E ′ � t

where t = [e1/ y]t2. We know that the variable x is different from y because
E, s x, E ′, t1 y is a well-formed environment. By the induction hypothesis:

P ; E, [v/x]E ′; [v/x]ls � [v/x]e1 : [v/x]t1

P ; E, [v/x]E ′, [v/x]t1 y ; [v/x]ls � [v/x]e2 : [v/x]t2

P ; E, [v/x]E ′ � [v/x]t
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Since x and y are distinct and y is not free in v, [v/x]t = [v/x]([e1/ y]t2) =
[([v/x]e1)/ y]([v/x]t2). Therefore, P ; E, [v/x]E ′ � [([v/x]e1)/ y]([v/x]t2). We
may thus conclude P ; E, [v/x]E ′; [v/x]ls � [v/x]e : [v/x]t using rule
[EXP LET].

A similar lemma is used to substitute values for ghost variables.

LEMMA 6 (GHOST SUBSTITUTION). If P ; E �final v : t, then:

(1) if P � E, ghost t x, E ′ then P � E, [v/x]E ′, and
(2) if P ; E, ghost t x, E ′ � Z then P ; E, [v/x]E ′ � [v/x]Z , and
(3) if P ; E, ghost t x, E ′; ls � Z then P ; E, [v/x]E ′; [v/x]ls � [v/x]Z , and
(4) if P ; E, ghost t x, E ′ �final Z then P ; E, [v/x]E ′ �final [v/x]Z .

PROOF. Proof is by simultaneous induction on the four parts.

Next we show the conditions under which an environment can be strength-
ened with additional variable declarations.

LEMMA 7 (ENVIRONMENT STRENGTHENING). If E = E ′, [ghost]opt t v, E ′′ and
P � E then:

(1) if P ; E ′, E ′′ � Z then P ; E � Z , and
(2) if P ; E ′, E ′′; ls � Z then P ; E; ls � Z , and
(3) if P ; E ′, E ′′ �final Z then P ; E �final Z .

PROOF. By simultaneous induction on the three parts of the lemma.

The previous two lemmas are sufficient to prove that the fields, methods, and
class names of instantiations are well-formed. We begin by showing that class
names appearing in typing derivations are well-formed.

LEMMA 8 (CLASS NAME INSTANTIATION). If � P : t and P ; E; ls � p : c then
P ; E � c.

PROOF. If we deduce P ; E; ls � p : c with rule [EXP ADDRESS], then E =
E1, c p, E2, where P � E. Well-formed environments contain only valid class
names. Thus, P ; E � c.

If we deduce P ; E; ls � p : c with rule [EXP SUB], then P ; E; ls � p : c1 where
P ; E � c1 <: c for some c1. We proceed to show by induction on the deduction of
P ; E � c1 <: c that if P ; E; ls � p : c1 and P ; E � c1 <: c, then P ; E � c. There
are two cases:

[SUBTYPE REFL]: A hypothesis of the rule is P ; E � c.
[SUBTYPE CLASS]: In this case:

P ; E � c1 <: cn〈l1..n〉
class cn〈ghost ti xi

i∈1..n〉 extends c′ { . . . } ∈ P
c = [li/xi

i∈1..n]c′

The inductive hypothesis indicates that P ; E � cn〈l1..n〉. Therefore, P ; E �final

li : ti for i ∈ 1..n. Since � P : t, we know that the definition of cn is well-
formed, which implies that P ; ghost ti xi

i∈1..n � c′ as a requirement of
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rule [CLASS]. Assuming that x1..n do not appear in E (α-renaming if neces-
sary), we may apply Lemma 7 to obtain

P ; E, ghost ti xi
i∈1..n � c′

Replacing each xi with li using Lemma 6 gives us P ; E � c.

LEMMA 9 (FIELD AND METHOD INSTANTIATION). If � P : t and P ; E; ls � p : c
then:

(1) if P ; E � ς y .field ∈ c then P ; E � [p/ y]field, and
(2) if P ; E � ς y .meth ∈ c then P ; E � [p/ y]meth.

PROOF. We consider fields. We can handle methods in a similar fashion. If
P ; E � ς y .field ∈ c, then

P ; E � c <: cn〈l1..n〉
y does not appear in l1..n

class cn〈ghost ti xi
i∈1..n〉 . . . { . . . field ′ . . .} ∈ P

field = [li/xi
i∈1..n, y/this]field ′

Since P ; E; ls � p : cn〈l1..n〉 by rule [EXP SUB], Lemma 8 indicates that
P ; E � cn〈l1..n〉. Thus, P ; E �final li : ti for i ∈ 1..n. Since � P : t,
we know that the declaration of cn is well-formed, which requires that
P ; ghost ti xi

i∈1..n, cn〈x1..n〉 this � field′. Assuming that x1..n and y do not
appear in E (α-renaming if necessary), we may apply Lemma 7 and rename
this to obtain

P ; E, ghost ti xi
i∈1..n, cn〈x1..n〉 y � [ y/this]field′

After replacing xi with li for i ∈ 1..n, we have P ; E, cn〈l1..n〉 y � field, which
leaves us with P ; E � [p/ y]field after replacing y with p.

We next show that the types assigned to addresses are supertypes of the
allocated type of the corresponding heap objects.

LEMMA 10 (INFERRED TO EXACT TYPES). If P � 〈σ, T 〉 : E and P ; E; ls � p : c,
then P ; E; ∅ � p : c and there exists c′ such that P ; E � c′ <: c, E(p) = c′, and
σ (p) = {|db |}m

c′ .

PROOF. Lemma 1 indicates that there exists a c′ such that P ; E � c′ <: c and
P ; E; ls � p : c′ is derivable by a rule other than [EXP SUB]. Since P ; E; ls � p : c′

is derivable only by rule [EXP ADDRESS], E(p) = c′. In addition, to have concluded
that P � 〈σ, T 〉 : E, the object σ (p) must have type c′. Thus, σ (p) = {|db |}m

c′ .
Furthermore, P ; E � ∅ by rule [LOCK SET EMPTY], and rules [EXP ADDRESS] and
[EXP SUB] allow us to conclude that P ; E; ∅ � p : c.

Every value stored in an object has the appropriate type.

LEMMA 11 (OBJECT FIELDS WELL-TYPED). If σ (p) = {| . . . , fn = v, . . . |}m
c and

P � σ : E and P ; E � ςthis.([final]opt t fn = v′ [guarded by l ]opt) ∈ c then
P ; E; ∅ � v : [p/this]t.
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PROOF. Proof is a straightforward induction on the subtyping deduction used
to conclude P ; E � ςthis.([final]opt t fn = v′ [guarded by l ]opt) ∈ c.

LEMMA 12 (LOCK SET STRENGTHENING). If P ; E; ls � v : t and P ; E � ls ⊆ ls′,
then P ; E; ls′ � v : t.

PROOF. By induction on the derivation of P ; E; ls � v : t.

The first of several subject-reduction lemmas states that types are preserved
by reduction steps. Note that this itself does not prove that a program is free of
race conditions, but it does allow us to conclude that all states reached from a
well-typed state are also well-typed.

LEMMA 13 (TYPE SUBJECT REDUCTION). If P � S : E and P � S �−→ S′ then
P � S′ : E ′ for some E ′.

PROOF. We proceed by case analysis on the rule used to conclude P � S �−→
S′.

In the first four cases presented, we assume that thread k is reduced, and
let S = 〈σ, e1..ek ..en〉 and S′ = 〈σ, e1..e′

k ..en〉. Since σ and all ei, for i �= k, do not
change, it is sufficient to show that P ; E; ∅ � e′

k : tk follows from P ; E; ∅ � ek : tk .
Proving this guarantees that P � S′ : E via [STATE].

[RED LET]: In this case:
ek = E[let t x = v in e]
e′

k = E[[v/x]e]

Lemma 3 implies that there is a deduction of P ; E; ls � let t x = v in e : s
that does not end with an application of rule [EXP SUB] for some ls and s. The
only possible rule to conclude that statement is [EXP LET]. Therefore, P ; E; ls �
v : t and P ; E � s and P ; E, t x; ls � e : s′, where s = [v/x]s′. Given the
first and third statements, Lemma 5 establishes that P ; E; [v/x]ls � [v/x]e :
[v/x]s′. Since E, t x is a well-formed environment, x does not appear in E.
Therefore, x cannot appear in the well-formed lock set ls, and [v/x]ls = ls.
Thus, P ; E; ls � [v/x]e : s, and P ; E; ∅ � e′

k : tk follows by Lemma 4.
[RED READ]: In this case:

ek = E[p.fn]
e′

k = E[v]

where σ (p) = {| . . . , fn = v, . . . |}mp
cp . Lemma 3 implies that the derivation of

P ; E; ∅ � ek : tk includes a derivation that concludes that P ; E; ls � p.fn : s
where the last rule is not rule [EXP SUB]. We proceed to show that P ; E; ls �
v : s, and this shall allow us to establish that P ; E; ∅ � e′

k : tk by Lemma 4.
We consider each possible rule used to derive P ; E; ls � p.fn : s:

[EXP REF GUARDED]: It must be that
P ; E; ls � p : c
P ; E � ςthis.([final]opt tv fn = v′ guarded by l) ∈ c
s = [p/this]tv

Thus, we may apply Lemmas 10 and 11 to conclude that P ; E; ∅ � v : s,
which implies that P ; E; ls � v : s by Lemma 12.
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[EXP REF UNGUARDED]: This case is similar to the previous.
[RED INVOKE]: In this case,

ek = E[p.mn(v1..m)]
e′

k = E[[vi/xi
i∈1..m, p/this]e]

where σ (p) = {|db |}m
c and P ; c �dispatch t mn(si xi

i∈1..m) requires ls′ { e }.
Lemma 3 implies that there is a deduction of P ; E; ls � p.mn(v1..m) : s that
does not end with an application of rule [EXP SUB] for some ls and s. The only
possible rule to conclude that statement is [EXP INVOKE]. Therefore,

P ; E; ls � p : c
P ; E � ςthis.(t mn(sj x j

j∈1..m) requires ls′ { e′ }) ∈ c
P ; E; ls � vj : [p/this]sj ∀ j ∈ 1..m
P ; E � [p/this]ls′ ⊆ ls
P ; E � [p/this]t

The method resolution in line 2 identifies a method with the same signature,
but possibly a different implementation, than the dynamically dispatched
version of mn. The predicate OverridesOK(P ) ensures that the signatures
will match. From the deduction of P ; c �dispatch t mn(ti xi

i∈1..m) requires ls′

{ e } we can deduce P ; E � ςthis.(t mn(sj x j
j∈1..m) requires ls′ { e }) ∈ c

for the dynamically resolved method. We may then use Lemma 9 to show
that P ; E � [p/this](t mn(sj x j

j∈1..m) requires ls′ { e }). Therefore, P ; E �
[p/this]t, and P ; E � [p/this]ls′, and P ; E, [p/this]sj x j

j∈1..m; [p/this]ls′ �
[p/this]e′ : [p/this]t. The formal parameters x1..m cannot appear in t or
ls′, and substituting the values v1..m in for x1..m gives us P ; E; [p/this]ls′ �
[vi/xi

i∈1..m, p/this]e′ : [p/this]t. We may then use Lemma 12 to conclude
P ; E; ls � [vi/xi

i∈1..m, p/this]e′ : s, and P ; E; ∅ � e′
k : tk follows by Lemma 4.

[RED SYNC]: In this case ek = E[synchronized p e] and e′
k = E[in-sync p e].

As in the previous cases, we determine that there is a derivation that yields
P ; E; ls � synchronized p e : s that ends in a rule other than [EXP SUB] for
some ls and s. The rule must be [EXP SYNC], meaning that P ; E �final p : c
and P ; E; ls ∪ {p} � e : t, and these statements allow us to conclude that
P ; E; ls � in-sync p e : s by rule [EXP IN-SYNC]. As before, P ; E; ∅ � e′

k : tk
follows by Lemma 4.

We examine [RED FORK] separately. Assume that thread k is reduced, and let
ek = E[p.fork], S = 〈σ, e1..ek ..en〉, e′

k = E[0], and S′ = 〈σ, e1..e′
k ..en.(p. run())〉.

Since σ and all ei, i �= k, do not change, it is sufficient to show that, given
P ; E; ∅ � ek : tk , it follows that (1) P ; E; ∅ � e′

k : tk , and (2) P ; E; ∅ � e. run() : te
for some te. As before, we use Lemma 3 to conclude that P ; E; ls � p.fork : t is
derivable by a rule other than [EXP SUB]. The rule must be [EXP FORK]; this means
that t is int and there exists some class c such that P ; E; ls � p : c and P ; E �
ςthis.(t run() requires ∅ { e′ }) ∈ c. Lemma 4 implies that P ; E; ∅ � e′

k : tk . By
Lemma 10, P ; E; ∅ � p : c, and P ; E; ∅ � p. run() : t. Thus, P � S′ : E.

The case for [RED NEW] is similar to the previous cases, although we must
construct a new environment E ′ containing the new object address in order to
apply [STATE] to S′. Lemma 7 shows that the new environment is sufficient to
deduce that all threads are well-typed in the post-state.
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All other cases are similar to the above.

We now turn our attention to the relationship between lock sets and critical
sections. We introduce a new judgment ls �cs e to indicate that ls contains all
locks for which e is in a critical section. In other words, ls �cs e only if for all p
such that e = E[in-sync p e′], the lock p is in the set ls. This property is stated
as a lemma below.

ls �cs f

[CS EXP]
e does not contain in-sync

∅ �cs e

[CS IN-SYNC]
ls �cs e p �∈ ls

ls ∪ {p} �cs in-sync p e

[CS NOT IN-SYNC]
ls �cs e

E does not contain in-sync

ls �cs E[e]

We also extend the notion of well-formed critical sections to states with the
judgment �cs S. The set ls1 � ls2 is the disjoint union of ls1 and ls2.

�cs S

[CS STATE]
lsi �cs Ti ∀i ∈ 1..|T |

ls = ls1 � . . . � lsn
∀p ∈ ls. σ (p) = {| . . . |}•cp

�cs 〈σ, T 〉

LEMMA 14. If e is in a critical section on p and ls �cs e, then p ∈ ls.

PROOF. The proof is a straightforward induction on the derivation of ls �cs

e.

In order to conclude that a program state has well-formed critical sections, the
[CS STATE] rule requires that a distinct set of locks be held by each thread. This
property is preserved by reduction steps on well-typed states:

LEMMA 15 (MUTUAL EXCLUSION SUBJECT REDUCTION). If P � S : E and �cs S
and P � S �−→ S′ then �cs S′.

PROOF. The proof is by case analysis on the reduction rule for P � S �−→
S′. All cases are straightforward except [RED SYNC] and [RED IN-SYNC]. In each
case, let S = 〈σ, e1..n〉. Since �cs S, we know that lsi �cs ei for all i ∈ 1..n,
ls = ls1 � . . . � lsn, and ∀q ∈ ls. σ (q) = {| . . . |}•cq

. Also, assume that the reduction
happens in thread k and S′ = 〈σ ′, e1..e′

k ..en〉.
[RED SYNC]: In this case, ek = E[synchronized p e] and σ (p) = {| . . . |}◦cp

. Also,
e′

k = E[in-sync p e] and σ ′ = σ [p �→ {| . . . |}•cp
]. Therefore, lsk ∪ {p} �cs e′

k ,
ls′ = ls ∪ {p}, and ∀q ∈ ls′

. σ ′(q) = {| . . . |}•cq
, and we may conclude �cs S′ by

rule [CS STATE].
[RED IN-SYNC]: In this case, ek = E[in-sync p v] and σ (p) = {| . . . |}•cp

. Also, e′
k =

E[v] and σ ′ = σ [p �→ {| . . . |}◦cp
]. Therefore, lsk \ {p} �cs e′

k , ls′ = ls \ {p}, and
∀q ∈ ls′

. σ ′(q) = {| . . . |}•cq
, and we may conclude �cs S′ by rule [CS STATE].

Before proving that a well-typed program state does not have conflicting
accesses, we state the conditions under which an object will be accessed. In
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particular, we show that a nonfinal field will be accessed by a thread only when
that thread is in a critical section on the lock protecting the field.

LEMMA 16 (FIELD ACCESS). Suppose P � S : E and P ; E; ∅ � e : t and e
accesses p.fn. Then P ; E; ∅ � p : c, and either:

(1) P ; E � ςthis.(t fn = v guarded by l ) ∈ c and e is in a critical section on
[p/this]l , or

(2) P ; E � ςthis.(final t fn = v) ∈ c.

PROOF. We examine two cases, starting with the case where e = E[p.fn].
Using Lemma 3, we know that there is a derivation of P ; E; ls � p.fn : s that
ends with the application of a rule other than [EXP SUB] such that for all l in ls,
e is in a critical section on l . Note that E has the form c1 p1, . . . , cn pn since
it is the environment used to type a store. This means that ls contains only
addresses. There are two possible rules used for deducing P ; E; ls � p.fn : s:

[EXP REF GUARDED]: For this case, it must be that P ; E; ls � p : c and P ; E �
ςthis.(t fn = v guarded by l) ∈ c. Also, P ; E � [p/this]l ∈ ls. Hence e is in
a critical section on [p/this]l .
[EXP REF UNGUARDED]: For this case, it must be that P ; E; ls � p : c and
P ; E � ςthis.([final]opt t fn = v) ∈ c. Lemma 9 indicates that P ; E �
[p/this]([final]opt t fn = v). This could only be derived with [FINAL FIELD],
and so fn must be declared as final.

In the case where e = E[p.fn = v], we may follow reasoning similar to
the case for [EXP REF GUARDED] above to conclude that P ; E � ςthis.(t
fn = v guarded by l ) ∈ c and that e is in a critical section on [p/this]l .

Since a nonfinal field will be accessed only when the appropriate lock is held,
and two different threads cannot hold a lock at the same time, well-formed
program states cannot have conflicting accesses.

LEMMA 17 (NO CONFLICTING ACCESSES). If P � S : E and �cs S then S does
not have conflicting accesses.

PROOF. Suppose S = 〈σ, e1..n〉. Rule [STATE] requires that P ; E; ∅ � ei : ti, and
rule [CS STATE] requires that ls = ls1 � . . .� lsn, where lsi �cs ei for each thread ei.
Suppose S has conflicting accesses on p.fn. Then there exist distinct j and k,
such that e j and ek both access some field p.fn and at least one of the accesses
is a write. According to Lemma 16, P ; E; ∅ � p : c and one of the following two
cases holds:

P ; E � ςthis.(t fn = v guarded by l ) ∈ c and e j , ek are in critical sections on
[p/this]l : Lemma 14 indicates that [p/this]l ∈ ls j and [p/this]l ∈ lsk . How-
ever, this contradicts the assumption that ls = ls1 � . . . � lsn. In other words,
the sets of locks held by each thread are not disjoint, and a contradiction
exists. Therefore, no such e j and ek exist.
P ; E � ςthis.(final t fn = v) ∈ c: In this case, neither access to p.fn can be
a write because fn is a final field. Therefore, e j and ek do not have conflicting
accesses on p.fn.
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We extend the previous lemma to cover all states reachable during the execution
of a well-typed program.

THEOREM 18 (RACE-FREEDOM). If � P : t then P does not have a race
condition.

PROOF. Let P = defn∗ e and P � 〈∅, e〉 �−→∗ S. To have concluded � P : t,
rule [PROG] requires that P ; ∅; ∅ � e : t, which is sufficient to derive P � 〈∅, e〉 : ∅
with rule [STATE]. Using induction over the execution sequence and Lemma 13,
we may conclude that that P � S : E for some E. Clearly, �cs 〈∅, e〉 holds, and
�cs S follows from Lemma 15 using induction over the execution steps from
〈∅, e〉 to S. By Lemma 17, S does not have conflicting accesses. This argument
holds for any S reached during the execution of P , so P does not have a race
condition.

C. THREAD-LOCAL CLASSES

This section extends the type system presented in Appendix A with thread-local
classes, and Appendix D sketches the corresponding extension to the correct-
ness proof.

C.1 Syntax

First, we extend the grammar to include an optional thread local modifier on
class declarations and instantiations:

defn ::= [thread local]opt class cn〈garg∗〉 body
ci ::= [thread local]opt class c body

C.2 Semantics

We extend class instantiation to thread-local classes in a straightforward
manner.

P �inst ci

[INST LOCAL]
thread local class cn〈ghost ti x i∈1..n

i 〉 body ∈ P
P �inst thread local class cn〈l1..n〉 [li/x i∈1..n

i ]body

Other semantic rules from Appendix A.2 that match class instantiations
of the form class c . . . are extended to match instantiations of the form
thread local class c . . . as well. For example, the rule [LOOKUP] is extended as
follows:

P ; c �dispatch meth

[LOOKUP]
P �inst [thread local]opt class c extends c′ {. . . meth . . .}

P ; c �dispatch meth
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C.3 Type System

The following judgments are added to the system:

Judgment Meaning
P ; E � t shared values of type t can be shared between threads
P ; E � field shared field has a shared type and is guarded by a lock or is final
P ; E � field local field has no guarding lock
P ; E; c � meth meth does not override a method from any thread-shared

super class of c

The type rules for these judgments and modified type rules for earlier judgments
are presented below. Rules with subscripted names like [CLASS2] replace earlier
rules with the same base name, like [CLASS].

P ; E � t shared

[CLASS SHARED]
P ; E � c

P �inst class c body
P ; E � c shared

[OBJECT SHARED]
P � E

P ; E � Object shared

[INT SHARED]
P � E

P ; E � int shared

P ; E � field shared

[SHARED FIELD]
field = [final]opt t fn = v [guarded by l]opt

P ; E � field
P ; E � t shared

P ; E � field shared

P ; E � field local

[LOCAL FIELD]
P ; E; ∅ � v : t

P ; E � ([final]opt t fn = v) local

P � defn

[CLASS2]
P ; ∅ � ti shared ∀i ∈ 1..n

gargi = ghost ti xi ∀i ∈ 1..n
E = garg1..n, cn〈x1..n〉 this

P ; garg1..n � c shared
P ; E � fieldi shared ∀i ∈ 1.. j

P ; E � methi ∀i ∈ 1..k
P � class cn〈garg1..n〉

extends c { field1.. j meth1..k }

[LOCAL CLASS]
P ; ∅ � ti shared ∀i ∈ 1..n

gargi = ghost ti xi ∀i ∈ 1..n
E = garg1..n, cn〈x1..n〉 this

P ; garg1..n � c
P ; E � fieldi local ∀i ∈ 1.. j

P ; E � methi ∀i ∈ 1..k
P ; E; c � methi ∀i ∈ 1..k

P � thread local class cn〈garg1..n〉
extends c { field1.. j meth1..k }

P ; E; c � meth

[OVERRIDE OK]

∀c′.
[

P ; E � c <: c′
∧ P ; E � ςthis.(. . . mn( . . . ) requires . . .) ∈ c′

]
⇒ P ; E �� c′ shared

P ; E; c � t mn(arg1..n) requires ls { e }

P ; E; ls � e : t

[EXP FORK2]
P ; E; ls � e : c

P ; E � c shared
P ; E � ςthis.(t run() requires ∅ { e′ }) ∈ c

P ; E; ls � e.fork : int

[EXP ASSIGN UNGUARDED]
P ; E; ls � e : c

P ; E � ςthis.(t fn = v) ∈ c
P ; E; ls � e′ : [e/this]t

P ; E; ls � e.fn = e′ : [e/this]t
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The typing rules from Appendix A.3 that match class declarations and instan-
tiations are extended to match thread local declarations and instantiations.
Two rules in this category are the following:

P ; E � s <: t

[SUBTYPE CLASS]
P ; E � c <: cn〈l1..n〉

thread local class cn〈ghost ti x i∈1..n
i 〉 extends c′ . . . ∈ P

P ; E � c <: [li/xi
i∈1..n]c′

P ; E � t

[TYPE LOCAL C]
thread local class cn〈ghost ti x i∈1..n

i 〉 body ∈ P
P ; E �final li : ti ∀i ∈ 1..n

P ; E � cn〈l1..n〉

D. SOUNDNESS WITH THREAD-LOCAL CLASSES

The soundness proof in Appendix B can be extended to thread-local classes.
Rather than repeat many of the details already presented, we give a
brief, informal overview of the main technical issues involved with this
extension.

The primary challenge is to ensure that two threads never have access to the
thread-local part of an object, since those fields are accessed without synchro-
nization. To do this, we require that only the thread that allocates a thread-local
object has access to its thread-local fields. Other threads may access the shared
part of the object because subsumption allows it to be treated as a thread-shared
object. The typing rules prevent a thread from downcasting a thread-shared ob-
ject to a thread-local subtype, ensuring that this type of sharing does not permit
two threads to access the thread-local part of an object. The case in which both
thread-local and thread-shared data are stored in the same object does not oc-
cur in similar systems [Grossman 2003], and a simpler proof strategy suffices
for such systems.

We must change rule [STATE] in several substantial ways in order to preserve
the necessary invariants. First, we type each thread i in a separate environment
Ei, where Ei is derived from E, the environment constructed from the store. In
other words, we have

P ; Ei; ∅ � Ti : ti

To construct Ei, we first partition the store into disjoint sets of addresses
L1, . . . , Ln, and G. The set Li contains all objects treated as thread-local by
thread i and the set G contains all thread-shared objects. We then require that
the judgment P � E�Li Ei holds; this judgment is defined by the rule [TL ENV]:

[TL ENV]
dom(E) = dom(Ei)

∀p ∈ (Li ∪ G). E(p) = Ei(p)
∀p ∈ dom(E) \ (Li ∪ G). Ei(p) is the closest ancestor of E(p) with shared type

P � E�Li Ei
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Thus, any object treated as local by thread i is assigned the most specific type
possible (its allocated type), and any other object is assigned the most specific
shared type possible. Thread i will be unable to access any thread-local parts
of the objects assigned shared types. In essence, using the most specific types
allows us to show that if thread i reads from the store, the value obtained
is consistent with Ei, and if thread i updates the store, the resulting store
is consistent with E (and hence with E j , for all j ).

Since the sets of addresses Li are disjoint, we can extend Lemma 17 to prove
that two threads never have conflicting accesses on fields declared in thread-
local classes. In order to ensure that this property is closed under reduction,
we require that Li be closed under thread-local field access. The following two
hypotheses capture this requirement for thread i:

∀p ∈ FP(Ti). P ; Ei �� Ei(p) shared ⇒ p ∈ Li
∀p ∈ Li. ∀p′. p′ is stored in a thread-local field of p ⇒ p′ ∈ Li

where FP(Ti) is the set of all addresses occurring in the expression Ti. Thus,
the new rule [STATE2] is as follows:

[STATE2]
P � σ : E
|T | > 0

P ; Ei ; ∅ � Ti : ti ∀i ∈ 1..|T |
L1, . . . , L|T | are disjoint
P � E�Li Ei ∀i ∈ 1..|T |

∀p ∈ FP(Ti). P ; Ei �� Ei(p) shared ⇒ p ∈ Li ∀i ∈ 1..|T |
∀p ∈ Li . ∀p′. p′ is stored in a thread-local field of p ⇒ p′ ∈ Li ∀i ∈ 1..|T |

P � 〈σ, T 〉 : E

Lemmas 13, 15, and 17 and the Race-freedom Theorem (Theorem 18) can all
be extended to cover thread-local classes using this new invariant.
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