
Dynamic Partial-Order Reduction
for Model Checking Software

Cormac Flanagan
University of California at Santa Cruz

cormac@cs.ucsc.edu

Patrice Godefroid
Bell Laboratories, Lucent Technologies

god@bell-labs.com

ABSTRACT
We present a new approach to partial-order reduction for
model checking software. This approach is based on ini-
tially exploring an arbitrary interleaving of the various con-
current processes/threads, and dynamically tracking inter-
actions between these to identify backtracking points where
alternative paths in the state space need to be explored. We
present examples of multi-threaded programs where our new
dynamic partial-order reduction technique significantly re-
duces the search space, even though traditional partial-order
algorithms are helpless.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs

General Terms
Algorithms, Verification, Reliability

Keywords
Partial-order reduction, software model checking

1. INTRODUCTION
Over the last few years, we have seen the birth of the first

software model checkers for programming languages such as
C, C++ and Java. Roughly speaking, two broad approaches
have emerged. The first approach consists of automatically
extracting a model out of a software application by statically
analyzing its code and abstracting away details, applying
traditional model checking to analyze this abstract model,
and then mapping abstract counter-examples back to the
code or refining the abstraction (e.g., [1, 14, 4]). The sec-
ond approach consists of systematically exploring the state
space of a concurrent software system by driving its exe-
cutions via a run-time scheduler (e.g., [10, 27, 5]). Both
of these approaches to software model checking have their
advantages and limitations (e.g., [11]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’05, January 12–14, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-830-X/05/0001 ...$5.00.

In the context of the second approach, partial-order re-
duction seems (so far) to be the most effective technique
for reducing the size of the state space of concurrent soft-
ware systems at the implementation level. Two main core
partial-order reduction techniques are usually considered:
persistent/stubborn sets and sleep sets.

In a nutshell, the persistent/stubborn set technique [25, 9]
computes a provably-sufficient subset of the set of enabled
transitions in each visited state such that unselected enabled
transitions are guaranteed not to interfere with the execu-
tion of those being selected. The selected subset is called a
persistent set, while the most advanced algorithms for com-
puting such sets are based on the notion of stubborn sets [25,
9]. These algorithms exploit information about “which oper-
ations on which communication objects each process might
execute in the future”. This information is typically ob-
tained from a static analysis of the code. Minimally, such a
static analysis can simply attempt to identify objects acces-
sible by a single process only, and then classify operations
on such objects as local (e.g., [5]).

In contrast, the sleep set technique (see [9]) exploits infor-
mation on dependencies exclusively among the transitions
enabled in the current state, as well as information recorded
about the past of the search. Both techniques can be used
simultaneously and are complementary [9].

In the presence of cycles in the state space, these tech-
niques must be combined with additional conditions to make
sure the transition selection is fair with respect to all pro-
cesses in order to verify properties more elaborate than dead-
lock detection, such as checking arbitrary safety and liveness
properties. For instance, an ample set (see [2]) is a per-
sistent set that satisfies additional conditions sufficient for
LTL model checking. Techniques for dealing with cycles are
mostly orthogonal to the two “core” techniques mentioned
above, which are sufficient for detecting deadlocks.

In what follows, we will assume that the state spaces we
consider do not contain any cycles, and focus the discussion
on detecting deadlocks and safety-property violations such
as assertion failures (e.g., specified with assert() in C).
Note that acyclic state spaces are quite common in the con-
text of model checking of software implementations: the ex-
ecution of most software applications eventually terminates,
either because the application is input driven and reacts to
external events specified in a test driver encoding only fi-
nite sequences of inputs, or because the execution length is
bounded at run/test time and hence forced to terminate.

Unfortunately, existing persistent/stubborn set techniques
suffer from a severe fundamental limitation: in the context

1

Figure 1: Indexer Program.

Thread-global (shared) variables:
const int size = 128;

const int max = 4;

int[size] table;

Thread-local variables:
int m = 0, w, h;

Code for thread tid:
while (true) {

w := getmsg();

h := hash(w);

while (cas(table[h],0,w) == false) {
h := (h+1) % size;

}
}

int getmsg() {
if (m < max) {

return (++m) * 11 + tid;

} else {
exit(); // terminate

}
}
int hash(int w) {

return (w * 7) % size;

}

of concurrent software systems executing arbitrary C, C++
or Java code, determining “which operations on which com-
munication objects each process might execute in the fu-
ture” with acceptable precision is often difficult or impossi-
ble to compute precisely. If this information is too imprecise,
persistent/stubborn sets techniques cannot prune the state
space very effectively. Sleep sets can still be used, but used
alone, they can only reduce the number of explored tran-
sitions, not the number of explored states [9], and hence
cannot avoid state explosion.

To illustrate the nature of this problem, consider the pro-
gram Indexer shown in Figure 1, where multiple concur-
rent threads manipulate a shared hash table. Each thread
has a a thread identifier tid ∈ {1, . . . , n} and receives a
number of incoming messages w and inserts each message
into the hash table at corresponding index h=hash(w). If a
hash table collision occurs, the next free entry in the table
is used. All hash table entries are initially 0. The atomic
compare-and-swap instruction cas(table[h],0,w) checks if
table[h] is initially 0; if so, then it updates table[h] to
w and returns true, and otherwise returns false (without
changing table[h]).

A static alias analysis for determining when two different
threads can access the same memory location would need to
know all the possible messages received by all the threads
as well as predict the hash values computed for all such
messages, for all execution paths. Since this is clearly not
realistic, static analyses conservatively assume that every
access to the hash table may access the same entry. The
latter is equivalent to treating the entire hash table as a
single shared variable, and prevents partial-order reduction
techniques from significantly pruning the state space of this
program. Instead, all possible interleavings of accesses to

the hash table are still explored, resulting in state explosion
and making model checking intractable for all but a small
number of threads.

We propose in this paper a new approach to partial-order
reduction that avoids the inherent imprecisions of static
alias analyses. Our new algorithm starts by executing the
program until completion, resolving nondeterminism com-
pletely arbitrarily, and it dynamically collects information
about how threads have communicated during this specific
execution trace, such as which shared memory locations were
read or written by which threads and in what order. This
data is then analyzed to add backtracking points along the
trace that identify alternative transitions that need to be
explored because they might lead to other execution traces
that are not “equivalent” to the current one (i.e., are not
linearizations of the same partial-order execution). The pro-
cedure is repeated until all alternative executions have been
explored and no new backtracking points need be added.
When the search stops, all deadlocks and assertion failures
of the system are guaranteed to have been detected.

For the Indexer example, if it is detected dynamically
during the first execution trace of the program that the var-
ious threads access disjoint memory location, then no back-
tracking points are added along that trace, and the reduced
state space with our dynamic partial-order reduction is a
single path. This turns out to be the case for this program
with up to 11 threads, as we will show in Section 5.

The paper is organized as follows. After some background
definitions, we present in Section 3 a general dynamic partial-
order reduction algorithm for detecting deadlocks in acyclic
state spaces. In section 4, we discuss how to optimize this
algorithm to the case of multithreaded programs. In Sec-
tion 5, we present preliminary experimental results on some
small examples. Section 6 discusses other related work, and
we conclude with Section 7.

2. BACKGROUND DEFINITIONS

2.1 Concurrent Software Systems
We consider a concurrent system composed of a finite set

P of threads or processes, and define its state space using a
dynamic semantics in the style of [10]. Each process exe-
cutes a sequence of operations described in a deterministic
sequential program written in a language such as C, C++ or
Java. The processes communicate by performing atomic op-
erations on communication objects, such as shared variables,
semaphores, locks, and FIFO buffers. In what follows, pro-
cesses that share the same heap are called threads. Threads
are thus a particular type of processes. Unless otherwise
specified, the algorithms discussed in this paper apply to
both processes and threads.

Operations on communication objects are called visible
operations, while other operations are invisible. The execu-
tion of an operation is said to block if it cannot currently
be completed; for instance, an operation “acquire(l)” may
block until the lock is released by an operation “release(l)”.
We assume that only executions of visible operations may
block.

A state of the concurrent system consists of the local
state LocalState of each process, and of the shared state

2

SharedState of all communication objects:

State = SharedState × LocalStates
LocalStates = P → LocalState

For ls ∈ LocalStates , we write ls[p := l] to denote the map
that is identical to ls except that it maps p to local state l.

A transition moves the system from one state to a subse-
quent state, by performing one visible operation of a chosen
process, followed by a finite sequence of invisible operations
of the same process, ending just before the next visible op-
eration of that process. The transition tp,l of process p for
local state l ∈ LocalState is defined via a partial function:

tp,l : SharedState ⇀ LocalState × SharedState

Let T denote the set of all transitions of the system. A
transition tp,l ∈ T is enabled in a state s = 〈g, ls〉 (where
g ∈ SharedState and ls ∈ LocalStates) if l = ls(p) and tp,l(g)
is defined. If t is enabled in s and tp,l(g) = 〈g′, l′〉, then we
say the execution of t from s produces a unique1 successor

state s′ = 〈g′, ls[p := l′]〉, written s
t→ s′. We write s

w⇒ s′

to mean that the execution of the finite sequence w ∈ T ∗

leads from s to s′.
We define the behavior of the concurrent system as a tran-

sition system AG = (State , ∆, s0), where ∆ ⊆ State × State
is the transition relation defined by

(s, s′) ∈ ∆ iff ∃t ∈ T : s
t→ s′

and s0 is the initial state of the system.
In any given state s = 〈g, ls〉, let next(s, p) = tp,ls(p) de-

note the (unique) next transition to be executed by process
p. For any transition tp,l, let proc(tp,l) = p denote the pro-
cess executing the transition (we thus assume all processes
have disjoint sets of transitions). A state in which no tran-
sition is enabled is called a deadlock, or a terminating state.

The state transformation resulting from the execution of
a transition may vary depending on the current state. For
instance, if the next visible operation of thread p in a state
s is read(x) in the program:

{if (read(x)) then i=0 else i=2}; write(x);

where x is a shared variable and i is a local variable, the
invisible operation(s) following read(x) will depend on the
value of x. However, the transition t = next(s, p) is still
unique and can thus be viewed as the entire block between
the braces. Note that next(s, p) does not change even if
other processes execute other transitions changing the value
of x from s: for all s′ such that s

w⇒ s′ where w does not con-
tain any transition from p, we have next(s′, p) = next(s, p).

Consider again the Indexer example of Figure 1. Its state
space AG (for two threads and max=1) is shown in Figure 2.
Transitions in AG are labeled with the visible operation of
the corresponding thread transition being executed. Nonde-
terminism (branching) in AG is caused only by concurrency.
This state space contains a single terminating state (where
both threads are blocked on their exit() statement) since
the two threads access distinct hash table entries.

Observe how the above definition of state space collapses
purely-local computations into single transitions, by com-
bining invisible operations with the last visible one. This
1To simplify the presentation, we do not consider operations
that are nondeterministic [10] or that create dynamically
new processes, although both features are compatible with
the algorithms and techniques discussed in the paper.

Figure 2: State space for Indexer example for two
threads T1 and T2 and max=1.

terminating state

T2: cas(table[91],0,13)

T1: cas(table[84],0,12) T2: cas(table[91],0,13)

T1: cas(table[84],0,12)

s0

definition avoids including the (unnecessary) interleavings
of invisible operations as part of the state space (hence al-
ready reducing state explosion), while still being provably
sufficient for detecting deadlocks and assertion violations as
shown in [10]. Also, a model checker for exploring such state
spaces needs only control and observe the execution of visi-
ble operations, as is done in the tool VeriSoft [10, 11].

2.2 Definitions for Partial-Order Reduction
We briefly recall some basic principles of partial-order re-

duction methods. The basic observation exploited by these
techniques is that AG typically contains many paths that
correspond simply to different execution orders of the same
uninteracting transitions. When concurrent transitions are
“independent”, meaning that their execution does not in-
terfere with each other, changing their order of execution
will not modify their combined effect. This notion of inde-
pendency between transitions and its complementary notion,
the notion of dependency, can be formalized by the following
definition (adapted from [15]).

Definition 1. Let T be the set of transitions of a con-
current system and D ⊆ T × T be a binary, reflexive, and
symmetric relation. The relation D is a valid dependency
relation for the system iff for all t1, t2 ∈ T , (t1, t2) �∈ D
(t1 and t2 are independent) implies that the two following
properties hold for all states s in the state space AG of the
system:

1. if t1 is enabled in s and s
t1→ s′, then t2 is enabled in

s iff t2 is enabled in s′; and

2. if t1 and t2 are enabled in s, then there is a unique

state s′ such that s
t1t2⇒ s′ and s

t2t1⇒ s′.

Thus, independent transitions can neither disable nor en-
able each other, and enabled independent transitions com-
mute. This definition characterizes the properties of possible
“valid” dependency relations for the transitions of a given
system. In practice, it is possible to give easily-checkable
conditions that are sufficient for transitions to be indepen-
dent (see [9]). Dependency can arise between transitions
of different processes that perform visible operations on the
same shared object. For instance, two acquire operations
on the same lock are dependent, and so are two write op-
erations on the same variable; in contrast, two read opera-
tions on the same variable are independent, and so are two
write or compare-and-swap operations on different variables
(such as cas(table[84],0,12) and cas(table[91],0,13)

in the program of Figure 1). To simplify the presentation,
we assume in this paper that the dependency relation is not
conditional [15, 9] and that all the transitions of a particular
process are dependent.

3

Traditional partial-order algorithms operate as classical
state-space searches except that, at each state s reached
during the search, they compute a subset T of the set of
transitions enabled at s, and explore only the transitions
in T . Such a search is called a selective search and may
explore only a subset of AG. Two main techniques for com-
puting such sets T have been proposed in the literature:
the persistent/stubborn set and sleep set techniques. The
first technique actually corresponds to a whole family of al-
gorithms [25, 12, 13, 20], which can be shown to compute
persistent sets [9]. Intuitively, a subset T of the set of tran-
sitions enabled in a state s of AG is called persistent in s if
whatever one does from s, while remaining outside of T , does
not interact with T . Formally, we have the following [12].

Definition 2. A set T ⊆ T of transitions enabled in a
state s is persistent in s iff, for all nonempty sequences of
transitions

s1
t1→ s2

t2→ s3 . . .
tn−1→ sn

tn→ sn+1

from s in AG and including only transitions ti �∈ T , 1 ≤ i ≤
n, tn is independent with all the transitions in T .

It is beyond the scope of this paper to review stubborn-set-
like algorithms for computing persistent sets. In a nutshell,
these algorithms can exploit information on the static struc-
ture of the system being verified, such as “from its current
local state, process x could perform operation y on shared
object z in some of its executions”, and inferred (approxi-
mated) by a static analysis of the system code. For instance,
see [9] for several such algorithms and a comparison of their
complexity.

The new partial-order reduction algorithm introduced in
the next section also explores at each visited state s the tran-
sitions in a persistent set in s. But unlike previously known
algorithms, these persistent sets are computed dynamically.

Before presenting this new algorithm, we briefly recall
some properties of persistent sets that will be used later.
First, a selective search of AG using persistent sets is guar-
anteed to visit all the deadlocks in AG (see Theorem 4.3
in [9]). Moreover, if AG is acyclic, a selective search using
persistent sets is also guaranteed to visit all the reachable
local states of every process in the system (see Theorem
6.14 in [9]), and hence can be used to detect violations of
any property reducible to local state reachability, including
violations of local assertions and of safety properties.

3. DYNAMIC PARTIAL-ORDER
REDUCTION

We present in this section a new partial-order reduction
algorithm that dynamically tracks interactions between pro-
cesses and then exploits this information to identify back-
tracking points where alternative paths in the state space
AG need to be explored. The algorithm is based on a tradi-
tional depth-first search in the (reduced) state space of the
system.

The algorithm maintains the traditional depth-first search
stack as a transition sequence executed from the initial state
s0 of AG. Specifically, a transition sequence S ∈ T ∗ is a
(finite) sequence of transitions t1t2 . . . tn where there exist
states s1, . . . , sn+1 such that s1 is the initial state s0 and

s1
t1→ s2 . . .

tn→ sn+1

Given a transition sequence S, we use the following notation:

• Si refers to transition ti;

• S.t denotes extending S with an additional transition
t;

• dom(S) means the set {1, . . . , n};
• pre(S, i) for i ∈ dom(S) refers to state si; and

• last(S) refers to sn+1.

A transition t ∈ T can appear multiple times in a transition
sequence S. We write ti = tj to denote that transitions ti

and tj are occurrences of a same transition in T .
We say a transition t1 may be co-enabled with a transition

t2 if there may exist some state in which both t1 and t2 are
both enabled. For example, an acquire and release on the
same lock are never co-enabled, but two write operations on
the same variable may be co-enabled.

If two adjacent transitions in a transition sequence are
independent, then they can be swapped without changing
the overall behavior of the transition sequence. A transi-
tion sequence thus represents an equivalence class of sim-
ilar sequences that can be obtained by swapping adjacent
independent transitions. To help reason about the equiva-
lence class represented by a particular transition sequence,
we maintain a “happens-before” ordering relation on these
transitions. The happens-before relation →S for a transition
sequence S = t1 . . . tn is the smallest relation on {1, . . . , n}
such that

1. if i ≤ j and Si is dependent with Sj then i →S j;

2. →S is transitively closed.

By construction, the happens-before relation →S is a partial-
order relation, often called a “Mazurkiewicz’s trace” [18, 9],
and the sequence of transitions in S is one of the lineariza-
tions of this partial order. Other linearizations of this par-
tial order yield “equivalent” transition sequences that can
be obtained by swapping adjacent independent transitions.

We also use a variant of the happens-before relation to
identify backtracking points. Specifically, the relation

i →S p

holds for i ∈ dom(S) and process p if either

1. proc(Si) = p or

2. there exists k ∈ {i + 1, . . . , n} such that i →S k and
proc(Sk) = p.

Intuitively, if i →S p, then the next transition of process p
from the state last(S) is not the next transition of process
p in the state right before transition Si in either this tran-
sition sequence or in any equivalent sequence obtained by
swapping adjacent independent transitions.

The new partial-order reduction algorithm is presented in
Figure 3. In addition to maintaining the current transition
sequence or search stack S, each state s in the stack S is also
associated with a “backtracking set”, denoted backtrack(s),
which represents processes with a transition enabled in s
that needs to be explored from s.

Whenever a new state s is reached during the search, the
procedure Explore is called with the stack S with which the
state is reached. Initially (line 0), the procedure Explore is
called with the empty stack as argument. In line 2, last(S)

4

Figure 3: Dynamic Partial-Order Reduction Algorithm.

0 Initially: Explore(∅);

1 Explore(S) {
2 let s = last(S);
3 for all processes p {
4 if ∃i = max({i ∈ dom(S) | Si is dependent and may be co-enabled with next(s, p) and i �→S p}) {
5 let E = {q ∈ enabled(pre(S, i)) | q = p or ∃j ∈ dom(S) : j > i and q = proc(Sj) and j →S p};
6 if (E �= ∅) then add any q ∈ E to backtrack(pre(S, i));
7 else add all q ∈ enabled(pre(S, i)) to backtrack(pre(S, i));
8 }
9 }
10 if (∃p ∈ enabled(s)) {
11 backtrack(s) := {p};
12 let done = ∅;
13 while (∃ p ∈ (backtrack(s) \ done)) {
14 add p to done;
15 Explore(S.next(s, p));
16 }
17 }
18 }

is the state reached by executing S from the initial state
s0. Then, for all processes p, the next transition next(s, p)
of each process p in state s is considered (line 3). For each
such transition next(s, p) (which may be enabled or disabled
in s), one then computes (line 4) the last transition i in S
such that Si and next(s, p) are dependent (cf. Definition 1)
and may be co-enabled, and such that i �→S p.

If there exists such a transition i, there might be a race
condition or dependency between i and next(s, p), and hence
we might need to introduce a “backtracking point” in the
state pre(S, i), i.e., in the state just before executing the
transition i.2 This is determined in line 5 by computing the
set E of processes q with an enabled transition in pre(S, i)
that “happens-before” next(s, p) in the current partial or-
der →S . Intuitively, if E is nonempty, the execution of all
the processes in E is necessary (although perhaps not suf-
ficient) to reach transition next(s, p) and to make it enable
in the current partial order →S; in that case, it is therefore
sufficient to add any single one of the processes in E to the
backtracking set associated with pre(S, i). In contrast, if E
is empty, the algorithm was not able to identify a process
whose execution is necessary for next(s, p) to become en-
abled from pre(S, i); by default (line 7), the algorithm then
adds all enabled processes in backtrack(pre(S, i)).

Once the computation of possibly new backtracking points
of lines 3–9 is completed, the search can proceed from the
current state s. If there are enabled processes in s (line 10),
any one of those is selected to be explored by being added
to the backtracking set of s (line 11). As long as there are
enabled processes in the backtracking set associated with
the current state s that have not been explored yet, those
processes will be executed one by one by the code of lines
13–15. When all the processes in backtrack(s) have been

2Only the last transition i in S satisfying the constraints of
line 4 needs be considered: if there are other such transitions
j < i before i in S that require adding other backtracking
points, these are added later through the recursion of the
algorithm.

explored this way, the search from s is over and state s is
said to be “backtracked”.

Note that the algorithm of Figure 3 is stateless [10]: it does
not store previously visited states in memory since efficiently
computing a canonical representation for states of large con-
current (possibly distributed) software applications is prob-
lematic and prohibitively expensive. Backtracking can be
performed without storing visited states in memory, for in-
stance by re-executing the program from its initial state, or
“forking” new processes at each backtracking point, or stor-
ing only backtracking states using checkpointing techniques,
or a combination of these [11].

To illustrate the recursive nature of our dynamic par-
tial order reduction algorithm, consider two concurrent pro-
cesses p1 and p2 sharing two variables x and y, and executing
the two programs:

p1: x=1; x=2;

p2: y=1; x=3;

Assume the first (arbitrary and maximal) execution of this
concurrent program is:

p1:x=1; p1:x=2; p2:y=1; p2:x=3;

Before executing the last transition p2:x=3 of process p2, the
algorithm will add a backtracking point for process p2 just
before the last transition of process p1 that is dependent with
it (the transition p1:x=2), forcing the subsequent exploration
of:

p1:x=1; p2:y=1; p2:x=3; p1:x=2;

Similarly, before executing the transition p2:x=3 in that sec-
ond sequence, the algorithm will add a backtracking point
for process p2 just before p1:x=1, which in turn will force
the exploration of:

p2:y=1; p2:x=3; p1:x=1; p1:x=2;

5

Note that the two possible terminating states (deadlocks)
and three possible partial-order executions of this concurrent
program are eventually explored. This example illustrates
why it is sufficient to consider only the last transition in S
in line 4 of our algorithm of Figure 3.

The correctness of the above algorithm is established via
the following theorem.

Theorem 1. Whenever a state s is backtracked during
the search performed by the algorithm of Figure 3 in an
acyclic state space, the set T of transitions that have been
explored from s is a persistent set in s.

Proof: See Appendix.

Since the algorithm of Figure 3 explores a persistent set in
every visited state, it is guaranteed to detect every deadlock
and safety-property violation in any acyclic state space (see
Section 2). The complexity of the algorithm depends on
how the happens-before relation →S is implemented and is
discussed further in the next section.

Theorem 1 specifies the type of reduction performed by
our new algorithm, as well as its complementarity and com-
patibility with other partial-order reduction techniques. In
particular, any algorithm for computing statically persis-
tent sets, such as stubborn-set-like algorithms, can be used
in conjunction of the algorithm in Figure 3: in lines 5 and 7,
replace enabled(pre(S, i)) by PersistentSet(pre(S, i))), and
in line 10, replace enabled(s) by PersistentSet(s), where
the function PersistentSet(s) computes “statically” a per-
sistent set T in state s and returns {proc(t) | t ∈ T}. These
modifications will restrict the search space to transitions
contained in the statically-computed persistent sets for each
visited state s, while using dynamic partial-order reduction
to further refine these statically-computed persistent sets.

Moreover, sleep sets can also be used in conjunction with
the new dynamic technique, combined or not with statically-
computed persistent sets. In our context (i.e., for acyclic
state spaces), sleep sets can be added exactly as described
in [10]. The known benefits and limitations of sleep sets
compared to persistent sets remain unchanged: used alone,
they can only reduce the number of explored transitions, but
used in conjunction with (dynamic or static) persistent set
techniques, they can further reduce the number of states as
well [9].3

We conclude this section by briefly discussing two opti-
mizations of the algorithm of Figure 3.

1. Since any process q in E can be added to the set
backtrack(pre(S, i)) in line 6, it is clearly preferable to
pick a process q that is already in backtrack(pre(S, i)),
whenever possible, in order to minimize the size of
backtrack(pre(S, i)).

2. A more subtle optimization consists of not adding all
enabled processes to backtrack(pre(S, i)) in line 7 when

3There is a nice complementarity between sleep sets and our
dynamic partial-order reduction algorithm: when a process
q is introduced in backtrack(pre(S, i)) in line 6 or 7 be-
cause of a potential conflict between i and next(s, p), there
is no point in executing Si following next(pre(S, i), q) before
next(s, p) is executed; this optimization is captured exactly
by sleep sets.

E is empty, but instead of selecting a single other
process q enabled in pre(S, i) and not previously exe-
cuted from pre(S, i), and to re-start a new persistent-
set computation in pre(S, i) with q as the initial pro-
cess. However, to avoid circularity in this reasoning
and to ensure the correctness of this variant algorithm,
it is then necessary to “mark” process proc(ti) in state
pre(S, i) so that, if proc(ti) is ever selected to be back-
tracked in pre(S, i) during this new persistent-set com-
putation starting with q, yet another fresh persistent-
set computation may be needed in pre(S, i), and so
on.

4. IMPLEMENTATION
In this section, we discuss how to implement the previous

general algorithm. We assume that the system has m pro-
cesses p1, . . . , pm; that d is the maximum size of the search
stack; and that r is the number of transitions explored in
the reduced search space.

4.1 Clock Vectors
The implementation of the algorithm of Figure 3 is mostly

straightforward, apart from identifying the necessary back-
tracking points in lines 3–9, which requires deciding the
happens-before relation i →S p. A natural representation
strategy for the happens-before relation is to use clock vec-
tors [17]. A clock vector is a map from process identifiers to
indices in the current transition sequence S:

CV = P → N

We maintain a clock vector C(p) ∈ CV for each process p.
If process pi has clock vector C(pi) = 〈c1, . . . , cm〉, then cj

is the index of the last transition by process pj such that
cj →S pi. More generally:

i →S p if and only if i ≤ C(p)(proc(Si))

Thus clock vectors allow us to decide the happens-before
relation i →S p in constant time.

We use max (·, ·) to denote the pointwise maximum of two
clock vectors; C[pi := c′i] to update the clock vector C so
that the clock for process pi is c′i; and ⊥ to denote the
minimal clock vector:

max (〈c1, .., cm〉, 〈c′1, .., c′m〉) = 〈max(c1, c
′
1), .., max(cm, c′m)〉

〈c1, . . . , cm〉[pi := c′i] = 〈c1, . . . , ci−1, c
′
i, ci+1, . . . , cm〉

⊥ = 〈0, . . . , 0〉

Whenever we explore a transition of a process p, we need
to update the clock vector C(p) to be the maximum of the
clock vectors of all preceding dependent transitions. For this
purpose, we also keep a clock vector C(i) for each index i in
the current transition sequence S.

Clock vectors can also be used to compute the set E as
in line 5 of Figure 3. However, this requires O(m2.d) time
per explored transition. Instead, for simplicity, our modified
algorithm just backtracks on all enabled processes in the case
where p is not enabled in pre(S, i) (line 7). Note that this
last modification is independent of the use of clock vectors.

Figure 4 presents a modified algorithm that maintains and
uses these per-process and per-transition clock vectors. The
code at lines 14.1–14.5 that updates these clock vectors re-
quires O(m.d) time per explored transition. Line 4 of the
algorithm searches for an appropriate backtracking point,

6

Figure 4: DPOR using Clock Vectors.

0 Initially: Explore(∅, λx.⊥);

1 Explore(S, C) {
2 let s = last(S);
3 for all processes p {
4 if ∃i = max({i ∈ dom(S) | Si is dependent

and may be co-enabled with next(s, p)
and i �≤ C(p)(proc(Si))})

{
5 if (p ∈ enabled(pre(S, i)))
6 then add p to backtrack(pre(S, i));
7 else add enabled(pre(S, i)) to backtrack(pre(S, i));
8 }
9 }
10 if (∃p ∈ enabled(s)) {
11 backtrack(s) := {p};
12 let done = ∅;
13 while (∃ p ∈ (backtrack(s) \ done)) {
14 add p to done;
14.1 let t = next(s, p);
14.2 let S′ = S.t;
14.3 let cv = max{C(i) | i ∈ 1..|S| and

Si dependent with t};
14.4 let cv2 = cv[p := |S′|];
14.5 let C′ = C[p := cv2, |S′| := cv2];
15 Explore(S′, C′);
16 }
17 }
18 }

and can be implemented as a sequential search through the
transition stack S. The worst-case time complexity of this
algorithm is O(m.d.r).

The following invariants hold on each call to Explore: for
all i, j ∈ dom(S) and for all p ∈ P :

i →S p iff i ≤ C(p)(proc(Si))
i →S j iff i ≤ C(j)(proc(Si))

Using these invariants, we can show that the algorithm of
Figure 4 is a specialized version of the algorithm of Fig-
ure 3 (although it may conservatively add more backtracking
points in line 7).

4.2 Avoiding Stack Traversals
This section refines the previous algorithm to avoid travers-

ing the entire transition stack S. Instead, we assume that
each transition t operates on exactly one shared object,
which we denote by α(t) ∈ Object . In addition, we as-
sume that two transitions t1 and t2 are dependent if and
only if they access the same communication object, that is,
if α(t1) = α(t2). Under these assumptions, the dependence
relation is an equivalence relation and all accesses to an ob-
ject o are totally ordered by the happens-before relation.

In this case, it is sufficient to only keep a clock vector
C(o) for the last access to each object o. The use of per-
object instead of per-transition clock vectors significantly
reduces the time and space requirements of our algorithm.
Maintaining these per-object clock vectors requires O(m)
time per explored transition, as shown in lines 14.3–14.4 of
Figure 5.

Figure 5: DPOR without Stack Traversals.

0 Initially: Explore(∅, λx.⊥, λx.0);

1 Explore(S, C, L) {
2 let s = last(S);
3 for all processes p {
4 let i = L(α(next(s, p)));

if i �= 0 and i �≤ C(p)(proc(Si))
{

5 if (p ∈ enabled(pre(S, i)))
6 then add p to backtrack(pre(S, i));
7 else add enabled(pre(S, i)) to backtrack(pre(S, i));
8 }
9 }
10 if (∃p ∈ enabled(s)) {
11 backtrack(s) := {p};
12 let done = ∅;
13 while (∃ p ∈ (backtrack(s) \ done)) {
14 add p to done;
14.1 let S′ = S.next(s, p);
14.2 let o = α(next(s, p));
14.3 let cv = max(C(p), C(o))[p := |S′|];
14.4 let C′ = C[p := cv, o := cv];
14.5 let L′ = if next(s, p) is a release

then L
else L[o := |S′|];

15 Explore(S′, C′, L′);
16 }
17 }
18 }

To avoid a stack traversal for identifying backtracking
points, we also make some assumptions about the co-enabled
relation. Specifically, for any object o that is not a lock, we
assume that any two transitions that access o may be co-
enabled. (Even if two operations are never co-enabed, it is
still safe to assume that they may be co-enabled – this may
limit the amount of reduction obtained, but will not affect
correctness.) We use an auxiliary variable L(o) to track the
index of the last transition that accessed o. When we con-
sider a subsequent access to o by a transition next(s, p), we
need to find the last dependent, co-enabled transition that
does not happen-before p. By our assumptions, the last ac-
cess L(o) must be co-enabled and dependent with next(s, p),
as they both access the same object o, which is not a lock.
Therefore, L(o) is the appropriate backtracking point, pro-
vided L(o) does not happen-before p. In the case where
L(o) happens-before p, since the accesses to o are totally-
ordered, there cannot be any previous access to o that does
not happen-before p, and therefore no backtracking point is
necessary.

For a lock acquire, the appropriate backtracking point is
not the preceding release, since an acquire and a release on
the same lock are never co-enabled. Instead, the appropriate
backtracking point for a lock acquire is actually the preced-
ing lock acquire. Hence, for any lock o, we use L(o) to record
the index of the last acquire (if any) on that lock.

Figure 5 contains a model checking algorithm based on
these ideas. On each call to Explore, finding backtrack-
ing points requires constant time per process, or O(m) time
per explored transition. The clock vector operations on

7

lines 14.3–14.4 also require O(m) time per explored tran-
sition. Thus, the overall time complexity of this algorithm
is O(m.r). In the following section, we evaluate the perfor-
mance of this optimized algorithm.

We can show that this algorithm implements Figure 3,
based on the following invariants that hold on each call to
Explore: for all i ∈ dom(S), for all p ∈ P , and for all
o ∈ Object :

i →S p iff i ≤ C(p)(proc(Si))
L(o) = max{i ∈ dom(S) | α(Si) = o and Si is not a release}

Note that this implementation supports arbitrary com-
munication objects such as shared variables, but it requires
that all operations on shared variables are dependent. In
particular, it does not exploit the fact that two concurrent
reads on a shared variable can commute. We could improve
the algorithm along these lines by recording two clock vec-
tors for each shared variable, one for read accesses and for
write accesses, and by using additional data structures to
correctly identify backtracking points. The time complexity
of the resulting algorithm is O(m2.r). Due to space con-
straints we do not present this algorithm.

5. EXPERIMENTAL EVALUATION
In this section, we present a preliminary performance com-

parison of three different partial-order reduction algorithms:

• No POR: A straightforward model-checking algorithm
with no partial-order reduction.

• Static POR: A high-precision stubborn-set-like algo-
rithm for statically computing persistent sets based
on a precise static analysis of the program.

• Dynamic POR: Our new dynamic partial-order reduc-
tion algorithm for multi-threaded programs shown in
Figure 5.

We describe the impact of using sleep sets in conjunction
with each algorithm. We also show the benefit of extending
No POR and Static POR to perform a stateful search, where
visited states are stored in memory and the model checking
algorithm backtracks whenever it visits a previously-visited
state. We do not have a Dynamic POR implementation
that supports a stateful search, since it is not obvious how
to combine these ideas. Thus, we have ten model checking
configurations, and we evaluate each model checking config-
uration on two benchmark programs.

5.1 Indexer Benchmark
Our first benchmark is the Indexer program of Figure 1,

where each threads inserts 4 messages into the shared hash
table. For this benchmark, since a static analysis cannot
reasonably predict with sufficient accuracy the conditions
under which hash table collisions would occur, Static POR
yields the same performance as No POR. For clarity, we do
not show the results for No POR, since they are identical
to those for Static POR. Our experimental results are pre-
sented in Figure 6. The key for this figure is the same as
in Figure 8: we use triangles for Dynamic POR, circles for
Static POR, squares for No POR, dotted lines to indicate
a stateful search, and hollow objects to indicate the use of
sleep sets. Run-time is directly proportional to the number
of explored transitions in all these experiments.

For configurations with up to 11 threads, since there are
no conflicts in the hash table and each thread accesses dif-
ferent memory locations, the reduced state space with Dy-
namic POR is a single path. In comparison, the Static POR
quickly suffers from state explosion. When combined with
sleep sets, Static POR performs better, but still cannot avoid
state explosion. Using a stateful search in addition to sleep
sets does not significantly further reduce the number of ex-
plored transitions.

5.2 File System Benchmark
Our second example in Figure 7 is derived from a syn-

chronization idiom found in the Frangipani file system [24],
and illustrates the statically-hard-to-predict use of shared
memory that motivates this work. For each file, this ex-
ample keeps a data structure called an inode that contains
a pointer to a disk block that holds the file data. Each
disk block b has a busy bit indicating whether the block
has been allocated to an inode. Since the file system is
multi-threaded, these data structures are guarded by mu-
tual exclusive locks. In particular, distinct locks locki[i]

and lockb[b] protect each inode inode[i] and block busy
bit busy[b], respectively. The code for each thread picks an
inode i and, if that inode does not already have an associ-
ated block, the thread searches for a free block to allocate to
that inode. This search starts at an arbitrary block index,
to avoid excessive lock contention.

Figure 8 shows the number of transitions executed when
model checking this benchmark for 1 to 26 threads, using
each of the ten model checking algorithms. For No POR,
the search space quickly explodes, although sleep sets and a
stateful search provide some benefit. Static POR identifies
that all accesses to the inode and busy arrays are protected
by the appropriate locks, thus reducing the number of in-
terleavings explored. Again, sleep sets help, but a stateful
search does not provide noticable additional benefit once
sleep sets are used. Indeed, the two lines in Figure 8 are
essentially identical.

Static POR must conservatively consider that acquires of
the locks locki[i] may conflict, and similarly for lockb[b].
In contrast, Dynamic POR dynamically detects that such
conflicts do not occur for up to 13 threads, thus reducing the
search space to a single path. For larger numbers of threads,
since conflicts do occur, sleep sets provide additional benefits
in combination with Dynamic POR.

5.3 Discussion
The results obtained with the two previous benchmarks

clearly demonstrate that our dynamic partial-order reduc-
tion approach can sometimes significantly outperform prior
partial-order reduction techniques.

However, note that Dynamic POR is not always strictly
better than Static POR, since Dynamic POR arbitrarily
picks the initial transition t from each state, and then dy-
namically computes a persistent set that includes t. In con-
trast, Static POR may be able to compute a smaller persis-
tent set that need not include t. Since Static POR and Dy-
namic POR are compatible, they can be used simultaneously
and benefit from each other’s strengths – these experiments
simply show that Dynamic POR can go much beyond Static
POR in cases where the latter is helpless.

8

Figure 8: Number of transitions explored for the File System Benchmarks.

 10

 100

 1000

 10000

 100000

 1e+06

 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

N
um

be
r

of
 T

ra
ns

iti
on

s

Number of Threads

File System Benchmark

Dynamic POR, stateless, no sleep sets
Static POR, stateless, no sleep sets

Static POR, stateful, no sleep sets
No POR, stateless, no sleep sets

No POR, stateful, no sleep sets

Dynamic POR, stateless, sleep sets
Static POR, stateless, sleep sets

Static POR, stateful, sleep sets
No POR, stateless, sleep sets

No POR, stateful, sleep sets

Figure 6: Indexer Benchmark. (See Fig. 8 for key.)

 10

 100

 1000

 10000

 100000

 1e+06

 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

N
um

be
r

of
 T

ra
ns

iti
on

s

Number of Threads

Indexer Benchmark

Figure 7: File System Example.

Global variables:
const int NUMBLOCKS = 26;

const int NUMINODE = 32;

boolean[NUMINODE] locki;

int[NUMINODE] inode;

boolean[NUMBLOCKS] lockb;

boolean[NUMBLOCKS] busy;

Thread-local variables:
int i, b;

Code for thread tid:
i := tid % NUMINODE;

acquire(locki[i]);

if (inode[i] == 0) {
b := (i*2) % NUMBLOCKS;

while (true) {
acquire(lockb[b]);

if (!busy[b]) {
busy[b] := true;

inode[i] := b+1;

release(lockb[b]);

break;

}
release(lockb[b]);

b := (b+1)%NUMBLOCKS;

}
}
release(locki[i]);

exit();

9

6. RELATED WORK
Our dynamic partial-order reduction technique has some

general similarities with the “least-commitment search strat-
egy” used in non-linear planners (e.g., see [3]) which origi-
nally inspired the work on partial-order reduction via net-
unfoldings [19], later extended from deadlock detection to
full model checking [6, 7]. Loosely speaking, the term “least-
commitment strategy” means that every enabled transition
is assumed by default not to interfere with any other concur-
rent transition, unless this assumption is proved wrong later
during the search. The net-unfolding technique uses an elab-
orate data structure, called net-unfolding, for representing
explicitly all the partial-order executions explored so far plus
all the nondeterminism (branching) to go from one to the
other. In contrast, our technique only uses a partial-order
representation →S of a single execution trace S. Another
key difference is that detecting deadlocks in a net-unfolding
is itself NP-hard in the size of the net-unfolding in gen-
eral [19], while checking whether the current state is a dead-
lock is immediate with an explicit state-space exploration,
as in our approach. We are not aware of any implementation
of the net-unfolding technique for languages (like C or Java)
more expressive than Petri-net-like formalisms. It would be
worth further comparing both approaches.

A number of recent techniques have considered various
kinds of exclusive access predicates for shared variables that
specify synchronization disciplines such as “this variable is
only accessed when holding its protecting lock” [21, 22, 8,
5]. These exclusive access predicates can be leveraged to re-
duce the search space, while simultaneously being verified or
inferred during reduced state-space exploration. However,
these techniques do not work well when the synchronization
discipline changes during program execution, such as when
an object is initialized by its allocating thread without syn-
chronization, and subsequently shared in a lock-protected
manner by multiple threads. Also, these techniques would
not help in the case of the examples considered in the pre-
vious section. Note that dynamic partial-order reduction is
also compatible and complementary with these techniques.

Partial-order representations of execution traces [16] have
also been used for detecting invariant violations in distributed
systems (e.g., see [23]). In contrast with this prior work, we
exploit partial-order information to determine the possible
existence of execution traces that are not part of the cur-
rent partial-order execution, and to introduce backtracking
points accordingly in order to prune the state space safely
for verification purposes.

7. CONCLUSIONS
We have presented a new approach to partial-order reduc-

tion for model checking software. This approach is based on
dynamically tracking interactions between concurrent pro-
cesses/threads at run time, and then exploiting this informa-
tion using a new partial-order reduction algorithm to iden-
tify backtracking points where alternative paths in the state
space need to be explored.

In comparison to static partial-order methods, our algo-
rithm is easy to implement and does not require a compli-
cated and approximate static analysis of the program. In
addition, our dynamic POR approach can easily accommo-
date programming constructs that dynamically change the
structure of the program, such as the dynamic creation of

additional processes or threads, dynamic memory allocation,
or the dynamic creation of new communication channels be-
tween processes. In contrast, static analysis of such con-
structs is often difficult or overly-approximate.

We therefore believe that the idea of dynamic partial-
order reduction is significant since it provides an attractive
and complementary alternative to the three known fam-
ilies of partial-order reduction techniques, namely persis-
tent/stubborn sets, sleep sets and net unfoldings.

The algorithms presented in this paper can be used to
prune acyclic state spaces while detecting deadlocks and
safety-property violations without any risk of incomplete-
ness. In practice, these algorithms can be used for system-
atically and efficiently testing the correctness of any concur-
rent software system, whether its state space is acyclic or
not. However, in the presence of cycles, the depth of the
search has to be bounded somehow, by simply using some
arbitrary bound [10] for instance.

For application domains and sizes where computing canon-
ical representations for visited system states is tractable,
such representations could be stored in memory and used
both to avoid the re-exploration of previously visited states
and to detect cycles. It would be worth studying how to
combine the type of dynamic partial-order reduction in-
troduced in this paper with techniques for storing states
in memory and with existing partial-order reduction tech-
niques for dealing with cycles, liveness properties, and full
temporal-logic model checking (e.g., [26, 9, 2]).

Acknowledgements: We thank the anonymous review-
ers for their helpful comments. This work was funded in
part by NSF CCR-0341658 and NSF CCR-0341179.

8. REFERENCES
[1] T. Ball and S. Rajamani. The SLAM Toolkit. In

Proceedings of CAV’2001 (13th Conference on Computer
Aided Verification), volume 2102 of Lecture Notes in
Computer Science, pages 260–264, Paris, July 2001.
Springer-Verlag.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

[3] P. R. Cohen and E. A. Feigenbaum. Handbook of Artificial
Intelligence. Pitman, London, 1982.

[4] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasareanu, Robby, and H. Zheng. Bandera: Extracting
Finite-State Models from Java Source Code. In Proceedings
of the 22nd International Conference on Software
Engineering, 2000.

[5] M. B. Dwyer, J. Hatcliff, V. R. Prasad, and Robby.
Exploiting Object Escape and Locking Information in
Partial Order Reduction for Concurrent Object-Oriented
Programs. To appear in Formal Methods in System Design,
2004.

[6] J. Esparza. Model Checking Using Net Unfoldings. Science
of Computer Programming, 23:151–195, 1994.

[7] J. Esparza and K. Heljanko. Implementing LTL model
checking with net unfoldings. In Proceedings of the 8th
SPIN Workshop (SPIN’2001), volume 2057 of Lecture
Notes in Computer Science, pages 37–56, Toronto, May
2001. Springer-Verlag.

[8] C. Flanagan and S. Qadeer. Transactions for Software
Model Checking. In Proceedings of the Workshop on
Software Model Checking, pages 338–349, June 2003.

[9] P. Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems – An Approach to the State-Explosion
Problem, volume 1032 of Lecture Notes in Computer
Science. Springer-Verlag, January 1996.

10

[10] P. Godefroid. Model Checking for Programming Languages
using VeriSoft. In Proceedings of POPL’97 (24th ACM
Symposium on Principles of Programming Languages),
pages 174–186, Paris, January 1997.

[11] P. Godefroid. Software Model Checking: The VeriSoft
Approach. To appear in Formal Methods in System Design,
2005. Also available as Bell Labs Technical Memorandum
ITD-03-44189G.

[12] P. Godefroid and D. Pirottin. Refining dependencies
improves partial-order verification methods. In Proceedings
of CAV’93 (5th Conference on Computer Aided
Verification), volume 697 of Lecture Notes in Computer
Science, pages 438–449, Elounda, June 1993.
Springer-Verlag.

[13] P. Godefroid and P. Wolper. Using partial orders for the
efficient verification of deadlock freedom and safety
properties. Formal Methods in System Design,
2(2):149–164, April 1993.

[14] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
Abstraction. In Proceedings of the 29th ACM Symposium
on Principles of Programming Languages, pages 58–70,
Portland, January 2002.

[15] S. Katz and D. Peled. Defining conditional independence
using collapses. Theoretical Computer Science,
101:337–359, 1992.

[16] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM,
21(7):558–564, 1978.

[17] F. Mattern. Virtual Time and Global States of Distributed
Systems. In Proc. Workshop on Parallel and Distributed
Algorithms, pages 215–226. North-Holland / Elsevier, 1989.

[18] A. Mazurkiewicz. Trace theory. In Petri Nets: Applications
and Relationships to Other Models of Concurrency,
Advances in Petri Nets 1986, Part II; Proceedings of an
Advanced Course, volume 255 of Lecture Notes in
Computer Science, pages 279–324. Springer-Verlag, 1986.

[19] K. McMillan. Using unfolding to avoid the state explosion
problem in the verification of asynchronous circuits. In
Proc. 4th Workshop on Computer Aided Verification,
volume 663 of Lecture Notes in Computer Science, pages
164–177, Montreal, June 1992. Springer-Verlag.

[20] D. Peled. All from one, one for all: on model checking using
representatives. In Proc. 5th Conference on Computer
Aided Verification, volume 697 of Lecture Notes in
Computer Science, pages 409–423, Elounda, June 1993.
Springer-Verlag.

[21] S. D. Stoller. Model-Checking Multi-Threaded Distributed
Java Programs. International Journal on Software Tools
for Technology Transfer, 4(1):71–91, October 2002.

[22] S. D. Stoller and E. Cohen. Optimistic
Synchronization-Based State-Space Reduction. In
H. Garavel and J. Hatcliff, editors, Proceedings of the 9th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume
2619 of Lecture Notes in Computer Science, pages 489–504.
Springer-Verlag, April 2003.

[23] S. D. Stoller, L. Unnikrishnan, and Y. A. Liu. Efficient
Detection of Global Properties in Distributed Systems
Using Partial-Order Methods. In Proceedings of the 12th
Conference on Computer Aided Verification, volume 1855
of Lecture Notes in Computer Science, pages 264–279,
Chicago, July 2000. Springer-Verlag.

[24] C.A. Thekkath, T. Mann, and E.K. Lee. Frangipani: A
scalable distributed file system. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles, pages
224–237, October 1997.

[25] A. Valmari. Stubborn sets for reduced state space
generation. In Advances in Petri Nets 1990, volume 483 of
Lecture Notes in Computer Science, pages 491–515.
Springer-Verlag, 1991.

[26] A. Valmari. On-the-fly verification with stubborn sets. In
Proc. 5th Conference on Computer Aided Verification,

volume 697 of Lecture Notes in Computer Science, pages
397–408, Elounda, June 1993. Springer-Verlag.

[27] W. Visser, K. Havelund, G. Brat, and S. Park. Model
Checking Programs. In Proceedings of ASE’2000 (15th
International Conference on Automated Software
Engineering), Grenoble, September 2000.

APPENDIX: Proof of Theorem 1
Let AG denote the state space of the system being analyzed,
and let s0 denote its unique initial state.

Define E(S, i, p) as:

{ q ∈ enabled(pre(S, i)) |
q = p or
∃j ∈ dom(S) : j > i and q = proc(Sj) and j →S p}

Define PC(S, j, p) as:

if
S is a transition sequence from s0 in AG

and i = max({i ∈ dom(S) | Si is dependent and
co-enabled with next(last(S), p) and i �→S p})
and i ≤ j

then
if E(S, i, p) �= ∅
then backtrack(pre(S, i)) ∩ E(S, i, p) �= ∅
else backtrack(pre(S, i)) = enabled(pre(S, i))

Define the postcondition PC for Explore(S) as:

∀p ∀w : PC(S.w, |S|, p)

We first show that the set of transition explored from each
reached state is a persistent set, provided the postcondition
holds for each recursive call to Explore(·).

Lemma 1. Whenever a state s reached after a transition
sequence S is backtracked during the search performed by
the algorithm of Figure 3, the set T of transitions that have
been explored from s is a persistent set in s, provided the
postcondition PC holds for every recursive call Explore(S.t)
for all t ∈ T .

Proof. Let

s = last(S)
T = {next(s, p) | p ∈ backtrack(s)}

We proceed by contradiction, and assume that there exist
t1, . . . , tn �∈ T such that:

1. S.t1 . . . tn is a transition sequence from s0 in AG and

2. t1, . . . , tn−1 are all independent with T and

3. tn is dependent with some t ∈ T .

By property of independence, this implies that t is enabled
in the state last(S.t1 . . . tn−1) and hence co-enabled with
tn. Without loss of generality, assume that t1 . . . tn is the
shortest such sequence. We thus have that

∀1 ≤ i < n : i →t1...tn−1 n

(If this was not true for some i, the same transition se-
quence without i would also satisfy our assumptions and
be shorter.) Let w denote the resulting (possibly empty)
transition sequence produced by removing from t1 . . . tn−1

all the transitions ti (if any) such that

i �→t1...tn−1 proc(tn)

11

By definition, S.w is itself a transition sequence from s0 in
AG and we have

next(last(S.w), proc(tn))
= next(last(S.t1 . . . tn), proc(tn))
= tn

(Although tn is enabled in last(S.t1 . . . tn−1), tn may no
longer be enabled in last(S.w), but this does not matter
for the proof.)

If proc(t) = proc(tn) then

t = next(last(S), proc(t))
= next(last(S.w), proc(t))
= tn

since t is independent with all the transitions in w, contra-
dicting that tn �∈ T . Hence proc(t) �= proc(tn).

Since t is in a different process than tn and since t is
independent with all the transitions in w, we have

tn = next(last(S.w), proc(tn))
= next(last(S.w.t), proc(tn))
= next(last(S.t.w), proc(tn))

Let i = |S| + 1. Consider the postcondition

PC(S.t.w, i, proc(tn))

for the recursive call Explore(S.t). Clearly,

i �→S.t.w proc(tn)

(since t is in a different process than tn and since t is inde-
pendent with t1, . . . , tn−1). In addition, we have (by defini-
tion of E):

E(S.t.w, i, proc(tn)) ⊆
{proc(t1), . . . , proc(tn−1), proc(tn)} ∩ enabled(s)

Moreover, we have by construction:

∀j ∈ dom(S.w) : j > i ⇒ j →S.t.w proc(tn)

Hence, by the postcondition PC for the recursive call Explore(S.t),
either E(S.t.w, i, proc(tn)) is nonempty and at least one pro-
cess in E(S.t.w, i, proc(tn)) is in backtrack(s), or E(S.t.w, i, proc(tn))
is empty and all the processes enabled in s are in backtrack(s).
In either cases, at least one transition among {t1, . . . , tn} is
in T . This contradicts the assumption that t1, . . . , tn �∈ T .

We now turn to the proof of Theorem 1.

Theorem 1. Whenever a state s reached after a transi-
tion sequence S is backtracked during the search performed
by the algorithm of Figure 3 in an acyclic state space, the
postcondition PC for Explore(S) is satisfied, and the set T
of transitions that have been explored from s is a persistent
set in s.

Proof. Let

s = last(S)
T = {next(s, p) | p ∈ backtrack(s)}

The proof is by induction on the order in which states are
backtracked.

(Base case) Since the state space AG is acyclic and since
the search is performed in depth-first order, the first back-
tracked state must be a deadlock where no transition is en-
abled. Therefore, the postcondition for that state becomes

∀p : PC(S, |S|, p), and is directly established by lines 3–9
of the algorithm of Figure 3.

(Inductive case) We assume that each recursive call to
Explore(S.t) satisfies its postcondition. That T is a per-
sistent set in s then follows by Lemma 1. We show that
Explore(S) ensures its postcondition for any p and w such
that S.w is a transition sequence from s0 in AG.

1. Suppose some transition in w is dependent with some
transition in T . In this case, we split w into X.t.Y ,
where all the transitions in X are independent with
all the transitions in T and t is the first transition in
w that is dependent with some transition in T . Since
T is a persistent set in s, t must be in T (otherwise,
T would not be persistent in s). Therefore, t is inde-
pendent with all the transitions in X. By property of
independence, this implies that the transition sequence
t.X.Y is executable from s. By applying the inductive
hypothesis to the recursive call Explore(S.t), we know

∀p : PC(S.t.X.Y, |S| + 1, p)

which implies (by the definition of PC) that

∀p : PC(S.t.X.Y, |S|, p)

Since t is independent with all the transitions in X, we
also have that

∀i ∈ dom(S.t.X.Y) : i →S.t.X.Y p iff i →S.X.t.Y p

Therefore, by definition,

PC(S.t.X.Y, |S|, p) iff PC(S.X.t.Y, |S|, p)

We can thus conclude that

∀p : PC(S.X.t.Y, |S|, p)

2. Suppose that all the transitions in w are independent
with all the transitions in T and p ∈ backtrack(s).
Then

(a) next(s, p) ∈ T ;

(b) next(s, p) is independent with w;

(c) p is a different process from any transition in w;

(d) next(last(S.w), p) = next(last(S), p);

(e) ∀i ∈ dom(S) : i →S.w p iff i →S p.

Thus, we have PC(S.w, |S|, p) iff PC(S, |S|, p), and the
latter is directly established by the lines 3–9 of the al-
gorithm for all p.

3. Suppose that all the transitions in w are independent
with all the transitions in T and p �∈ backtrack(s). Pick
any t ∈ T . We then have that

(a) proc(t) �= p;

(b) t independent with all the transitions in w;

(c) next(last(S.w), p) = next(last(S.t.w), p);

(d) ∀i ∈ dom(S) : i →S.w p iff i →S.t.w p.

Thus, we have PC(S.w, |S|, p) iff PC(S.t.w, |S|, p). By
applying the inductive hypothesis to the recursive call
Explore(S.t), we know

∀p : PC(S.t.w, |S| + 1, p)

which implies (by the definition of PC) that

∀p : PC(S.t.w, |S|, p)

which in turn implies

∀p : PC(S.w, |S|, p)

as required.

12

