
Copyright ACM, 2005. This is the authors' version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in the ACM Journal of Educational Resources in Computing (volume,
issue, and date not yet specified) http://doi.acm.org/XXX

Female Computer Science Students Who Pair Program Persist

Linda L. Werner, Computer Science, University of California, Santa Cruz
Brian Hanks, Computer Science Information Systems, Fort Lewis College,

Durango, Colorado
Charlie McDowell, Computer Science, University of California, Santa Cruz

Abstract

Pair programming has been found to be very beneficial in educational settings.
Students who pair in their introductory programming course are more confident,
have greater course completion and pass rates, and are more likely to persist in
computer-related majors. Although pairing helps all students, we believe that it is
particularly beneficial for women because it addresses several significant factors
that limit women's participation in computer science. We provide reasons for our
belief that pair programming helps women persist in these majors. We also
repeat, with special emphasis on the impact on women, some details published
elsewhere regarding our experiments on pair programming with college and
university students. Additionally, we provide new data that support our original
findings.

Categories and Subject Descriptors: K.3.2 [Computer and Information Science
Education]: Computer Science Education

General Terms: Experimentation and Human Factors.

Additional Keywords and Phrases: Pair programming, collaboration, and
gender.

1 Introduction

 A 2000 UCLA survey of over 400,000 entering freshman at 717 colleges and
universities across the US reported the largest computer skills confidence gender
gap in the 35-year history of the survey. The gender gap in computer use was
almost non-existent (79.5% men and 77.8% women report frequent computer
use); however, only 23.2% of the women vs. 46.4% of the men rated their
computer skills as “above average” or within the “top 10 percent”. Also 9.3% of
the men vs. 1.8% of the women reported intent to pursue computer programming
careers [Sax 2000]. This gender gap has been extensively written about and,
unfortunately, the pipeline has been shrinking [Camp 1997; Camp 2001]. In

Copyright ACM, 2005. This is the authors' version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in the ACM Journal of Educational Resources in Computing (volume,
issue, and date not yet specified) http://doi.acm.org/XXX

2004, 65% of the SAT I test takers had completed computer literacy related
course work or experience. The majority (55%) of these students were women,
yet when narrowed to course work or experience in computer programming, the
percentage of women drops to 40%. In addition, of the 5% of the 2004 SAT I test
takers who intended to major in computer or information science once in college,
only 14% of these were women [College Entrance Examination Board 2004].
As reported by the Computing Research Association (CRA), little change has
occurred during the years from 1993/1994 to 2002/2003 when less than 20% of
the computer engineering/computer science BS degrees were awarded to
women in each of these years. During that same period when gender data are
available from the National Science Foundation (NSF), the percentages of
science and engineering BS degrees granted to women has steadily increased
with the percentage of women at 50% in the year 2000/2001 [CRA 2005].

Even among the most mathematically talented, women favor medicine and law
as professions over careers in information technology because they perceive
these professions as more socially meaningful and more interactive [Lightbody et
al. 1997]. This is consistent with the AAUW [AAUW 2000] report that girls are not
avoiding high tech careers because they are failing. Rather, the AAUW report
identifies the following reasons why fewer women are majoring in computer
science (CS):

(1) the widely held perception that a career in computing is not well-
rounded or conducive to family life;

(2) the belief that work in the information technology field is conducted in
a competitive rather than collaborative environment;

(3) the perception of CS as a solitary occupation that is not well integrated
into social discourse or social institutions; and

(4) concerns about safety and security reported by women and their
friends and families about working alone at night and on weekends in
computer laboratories.

We propose that using pair programming in college and university CS courses
could address three of these reasons for why fewer women are majoring in CS.
We also have suggestions for removing the last of these four reasons.

We present promising results from three studies regarding the use of pair
programming in beginning programming courses. These findings show that
students who pair programmed were more confident in their programming
solutions and enjoyed completing the assignments more than students who
programmed alone. Paired students were more likely to complete the course and
consequently to pass it. Results have previously been published regarding the
primary study of over 500 primarily residential students in introductory

Copyright ACM, 2005. This is the authors' version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in the ACM Journal of Educational Resources in Computing (volume,
issue, and date not yet specified) http://doi.acm.org/XXX

programming courses at the University of California, Santa Cruz (UCSC)
[McDowell et al. 2003]. We report here previously unpublished findings
regarding a repeat of this study with over 200 students at two additional
institutions of higher education: San Jose State University (SJSU) and Cabrillo
College, both commuter campuses. We found that the new findings mirror those
at UCSC regarding confidence and pass rates. Because of smaller populations,
we do not have statistically significant results in most of the areas for the subset
of women at these two additional institutions. We refer to this second
experimental group as the secondary study. We also report on an additional
group of UCSC students from the 2003-2004 academic year which we refer to in
this paper as the tertiary study.

Paired students performed as well on individually taken final exams as solo
students. For the primary study, we also looked at whether students continued to
be registered as CS-related majors one year later. We found that paired students
were more likely to persist. Significantly more paired women programmers than
solo women programmers went on to declare a CS-related major [McDowell et
al. 2003]. Because of this we claim that pair programming holds promise for
closing the gender gap in CS.

2 What is Pair Programming and how can it be used in education?

Essentially all non-trivial software projects are created collaboratively. Almost all
professional programmers have, on occasion, worked with another colleague
together on one computer to debug a program that didn't work as expected.
This informal process involving two collaborating individuals using a single
computer has been formalized as pair programming, and has become more
widely known because it is a key practice of the extreme programming (XP)
development methodology [Beck 2000].

In XP, all software is designed, developed, and tested using pair programming.
While pairing, one of the programmers, referred to as the 'driver', controls the
keyboard and mouse, and is responsible for entering program code. The second
programmer, known as the 'navigator', sits next to the driver and watches for
errors, discusses alternative design approaches, and offers suggestions. The
programmers regularly trade roles while pairing. One goal of pair programming is
to have all code created collaboratively by the pair and to have the pair
collectively ‘own’ the code. Code that is written by only one member of the pair is
reviewed by both partners together before it is officially accepted as part of the
program.

Copyright ACM, 2005. This is the authors' version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in the ACM Journal of Educational Resources in Computing (volume,
issue, and date not yet specified) http://doi.acm.org/XXX

Traditional undergraduate introductory programming courses generally require
that students work individually on their programming assignments. In these
courses, working with another student on a homework programming assignment
constitutes cheating and is not tolerated. The only resources available to help
students overcome any problems that they are having are the course instructor,
the textbook, and the teaching assistant. They are not allowed to work with their
peers, who are struggling with the same material. A female student interviewed
by Berenson et al [Berenson et al. 2005] observed that “you have to do all this
stuff on your own and there’s nobody to talk to and to ask a question to.” This
pedagogical approach teaches students that software development is an
individual activity, potentially giving students the mistaken impression that
software engineering is an isolating and lonely career.

Often, collaborative methods are used in upper division computer science
courses such as compiler design or software engineering in which group projects
are encouraged or mandated. Sometimes a software engineering instructor
offers assistance to the student groups regarding techniques for collaboration but
these topics are rarely discussed in other CS courses. One example is the
research on using agile processes including pair programming in software
engineering courses at NCSU [Berenson et al. 2005].

By deferring collaborative exercises to the upper division courses, we believe
that many CS departments are losing female students who were interested in
computer science but became discouraged by its focus on individual, socially
isolating work. As reported by Berenson et al. [Berenson et al, 2005], a female
student “said she had been taking computer science courses for three years and
did not know anyone in her classes.” This changed when she began using pair
programming.

We recommend requiring students to pair program in all programming courses,
especially introductory courses. We introduce our students to pair programming
by having them read “All I Really Need to Know about Pair Programming I
Learned In Kindergarten” [Williams and Kessler 2000a]. Additionally, we have
published pair programming implementation guidelines that we derived during
our primary study [Bevan et al. 2002]. One of us (Hanks) also uses the 'pair-
draw' exercise to help students appreciate the benefits of pairing [Kerievsky,
2004].

3 How Does Pair Programming Lead to Persistence for Women in CS?

Copyright ACM, 2005. This is the authors' version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in the ACM Journal of Educational Resources in Computing (volume,
issue, and date not yet specified) http://doi.acm.org/XXX

In the 2000-2001 academic year, 555 students (141 women, 413 men, and 1
whose gender was not reported) participated in a study on pair programming at
UCSC. We studied four sections of our introductory programming course which
were taught by three different instructors. In three of the sections, students pair
programmed; in the fourth they worked by themselves. The instructor of the solo
section also taught one of the paired sections, and is one of the co-authors of this
paper (McDowell). The statistics summarized here were collected as part of that
study and reported in [McDowell et al. 2003]. There was no significant difference
between the pairing students and the non-pairing students with regard to high
school GPA, transfer GPA, or SAT math scores.

We wanted to answer several questions with our study; one of these was, "Are
women who pair program in their introductory programming course more likely to
complete and pass the course?" Our definition of course completion means that
the student took the final exam. To pass the course, a student had to receive a
grade of "C" or better.

A comparison of paired and solo women (101 vs. 39) showed that those who
paired were more likely than those who worked alone to complete the course
(88.1% vs. 79.5%, p=.19). This 8 percentage point difference in completion rate
is practically significant although it is not statistically significant. For men, a 10
percentage point difference in completion rates between the paired and solo
students was significant (91.7% vs. 81.5%, p<.05). Although the increase in
completion rates was similar for women and men, the lack of statistical
significance for the women can be explained by the much smaller population of
women in our study (140 women compared with 411 men). Among those who
completed the course (by taking the final exam), the difference in pass rates
between paired and solo programming students was not statistically significant
(79.6% vs. 78.2%).

Statistics from our secondary study validate these findings. A comparison of
paired and solo women (13 vs. 20) showed that those who paired were more
likely than those who worked alone to complete the course (92.3% vs. 75.0%,
p=.21). This 17 percentage point difference is practically significant although it is
not statistically significant. For men, a 15 percentage point difference between
the paired and solo students was significant (85.1% vs. 69.9%, p<.05). Among
those who completed the course (by taking the final exam), the difference in pass
rates between paired and solo programming students was not statistically
significant (79.1% vs. 87.9%,p=.15), however using our terminology, it can be
said to be practically significant that more of the solo completers passed the
class. If we look at all of the students, significantly more of the paired students
than solo students passed the class (66.0% vs. 52.3%, p<.05).

Copyright ACM, 2005. This is the authors' version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in the ACM Journal of Educational Resources in Computing (volume,
issue, and date not yet specified) http://doi.acm.org/XXX

Further evidence that female students who pair program perform better in an
introductory programming course is provided by data that was collected in three
additional sections of our introductory programming course as part of the tertiary
study conducted by one of the co-authors of this paper (Hanks). All students in
these courses paired. Of the 24 female students who participated in the study, 23
(95.8%) took the final exam; 21 of these passed the course (91.3%). Similar
rates were seen for men. Of the 91 men enrolled in the three sections of the
course, 85 (93.4%) attempted the final exam; 78 of these passed the course
(91.8%) These rates are comparable to or better than those reported in our
primary study.

Our second question concerned retention in CS-related majors. We wanted to
know if pair programming in the introductory classes led to increased numbers of
women persisting in CS. We followed students in our primary study for one full
academic year after the introductory programming course. We only followed
students who had passed the course with a “C” or better. Our sample size was
further decreased by those who were no longer at UCSC. Additionally, the
numbers reported here only include students who stated on the first day of the
introductory class that their major (or intended major) was in CS or a CS-related
field. Even though our introductory programming course is primarily intended for
CS or CS-related majors, the class includes students majoring in a wide variety
of fields. For this part of our analysis, our sample size is 237 (51 women, 186
men).

A significantly higher percentage of the students who paired in the introductory
course attempted the subsequent programming course required for CS-related
majors (76.7% vs. 62.2%, χ2(1) = 6.17, p <.05). A separate analysis by gender
revealed an 18.2% difference for paired vs. solo women (73.8% vs. 55.6%). The
increase in attempt rates by women who paired over solo women was not
statistically significant (χ2(1) = 1.19, p=.27) even though the same approximate
difference (18.6%) in attempt rates was seen for paired men vs. solo men and
was statistically significant (88.0% vs. 69.4% χ2(1) = 7.60, p<.01). Again, the lack
of statistical significance for the data on women is probably attributable to the
relatively small number of women in this part of the analysis.

Among the students in our study who attempted the second course (which did
not use pair programming), we found no significant difference in pass rates
between paired and solo students. Therefore, more students who paired passed
the introductory course, more of these students attempted the second course,

Copyright ACM, 2005. This is the authors' version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in the ACM Journal of Educational Resources in Computing (volume,
issue, and date not yet specified) http://doi.acm.org/XXX

and this larger pool of students passed the second course at similar rates to
those who worked alone in the introductory course.

As a second measure of retention, we wanted to know if the paired women
students were more likely to declare a CS-related major one year after
completing the introductory programming course. We found that 59.5% of the
female potential CS-majors who paired had declared a CS-related major one
year later, compared with only 22.2% of the women who worked alone. This
result is both practically and statistically significant (χ2(1) =4.14, p <.05). Men
who paired were also more likely to have declared a CS-related major one year
later than those who worked individually (74% vs. 47.2%, χ2(1) =9.70, p <.005).
The same pattern of effects was seen with our students who successfully
completed the introductory programming class and were still enrolled at UCSC
one year later regardless of what major (or no major) they declared on the first
day of the introductory course.

The potential impact of this increased retention on the gender gap can be seen
by looking at a hypothetical example. Assume that there are 100 potential
computer science majors (50 women, 50 men) enrolled in an introductory
programming course. If these students worked alone, one year later there would
be 35 declared majors who were 31% female (22.2% of 50 women and 47.2% of
50 men). If these students paired, then one year later there would be 67 declared
majors who were 45% female (59.5% of 50 women and 74% of 50 men).

Another area of concern was the potential impact of pair programming on student
confidence. We believe that students who are confident in their computing
abilities will be more likely to pursue studies in those areas. As part of our study,
we asked students to complete a short questionnaire when they turned in each of
their programming assignments. To assess student confidence levels, we asked
them to respond to the question, "On a scale from 0 (not at all confident) to 100
(very confident), how confident are you in your solution to this assignment?"

Overall, students who paired reported significantly higher confidence in their
program solutions than students who worked independently (89.4 vs. 71.2,
p<.001). This is consistent with the findings from interviews of female students
done by Berenson et al [Berenson et al. 2005]. Although all men as a group were
significantly more confident than all women (87.0 vs. 81.1, p<.001), there was a
significant interaction between pairing and gender with regard to reported
confidence. Simple effects follow-up tests of the interaction indicated that pairing
resulted in increased confidence for both women (86.8 vs. 63.0, p<.001) and men
(90.3 vs. 74.6, p<.001). We also found that the gender of a student's partner was
unrelated to pairers’ confidence levels. Women's confidence increased by 24

Copyright ACM, 2005. This is the authors' version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in the ACM Journal of Educational Resources in Computing (volume,
issue, and date not yet specified) http://doi.acm.org/XXX

points when they paired compared with a 15 point increase for men. It appears
that pairing had a greater effect on confidence levels for women and, therefore,
may have a visible positive impact on the gender gap. Unpaired men reported
1.18 times greater confidence than unpaired women, while paired men reported
1.04 times greater confidence than paired women. Pairing seems to close the
confidence gap between women and men.

Similarly, for our secondary study, paired women reported greater confidence
levels than unpaired women (83.2 vs. 72.6, p=.31) but this increased reported
confidence is not statistically significant probably because of the small sample
size (n=22). The average reported confidence level for all paired students in our
secondary study was 86.6 vs. the average reported confidence level for all
unpaired students of 76.0. This difference is significant with p<.005.

We asked participants in our tertiary study at UCSC (in which all students
paired), to answer the same question pertaining to confidence. We found that
these pairing students exhibited similar levels of confidence as the pairing
students in our original study. In the more recent study, the average confidence
level for all students was 88.7, for men it was 88.8, and for women it was 88.3.
The results from our secondary and tertiary studies add weight to our earlier
finding that students who pair are more confident in their work and that the
gender gap in confidence is diminished with pair programming.

4 Why does Pair Programming lead to Persistence for Women in CS?

Women’s belief about the solitary nature of computer science is confirmed when
they enroll in an introductory programming course that requires programming
assignments to be done individually. Instead, when pair programming is used,
women view programming as a collaborative exercise. Williams and Kessler
suggest that “peer pressure” may be at work as a possible explanation for higher
completion rates among paired vs. solo programming students [Williams and
Kessler 2000a]. It may be the collaborative aspect of pair programming that is a
major reason that the students remain in the class. The increased levels of
confidence that can be attributed to pairing are probably also a factor in improved
retention.

It is important for us that not only do the women stay in the class but they pass at
similar rates to others. Given that the exams are individually taken, we have
paired students mastering the course material at the same rates as the solo
students. Additionally, if a ‘pair-oriented culture’ is encouraged by the use of
short discussion periods during class time, then women might question their

Copyright ACM, 2005. This is the authors' version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in the ACM Journal of Educational Resources in Computing (volume,
issue, and date not yet specified) http://doi.acm.org/XXX

belief that work in the information technology field is conducted in a competitive
rather than collaborative environment. They also might question their perception
of CS as a solitary occupation that is not well integrated into social discourse or
social institutions. Additionally, a serendipitous outcome of pair programming is
that no one works alone late at night or on weekends in a computer laboratory.
Partners work together. We hypothesize that these reasons cause pair
programming to contribute to persistence of women in CS.

There is one remaining reason for why fewer women are majoring in computer
science as identified by the AAUW report that is not addressed by pair
programming. The report states that women perceive that a career in computing
is not well-rounded or conducive to family life. An effort needs to be made by
introductory programming textbook authors to create exercises and examples
that “highlight the human, social, and cultural dimensions and applications of
computers rather than the technical advances, the speed of the machines or the
entrepreneurial culture surrounding them” [AAUW 2000, page 10]. There seems
to be some hope in this area. The recent Java textbook by Cohoon and Davidson
[Cohoon and Davidson 2004] includes programming exercises and examples
drawn from fields such as medicine, personal finance, health and fitness, and
data visualization. We are encouraged by this, and hope that other authors follow
this lead.

5 Conclusions

Pair programming has been shown to be beneficial to all students. We argue that
it is particularly beneficial for women because it addresses factors that potentially
limit their participation in CS. The collaborative nature of pair programming
teaches women students that software development is not the competitive,
socially isolating activity that they imagined. It encourages women to pursue
computer science as a major and as a potential career. Because of this, we
strongly advocate the use of pair programming in all introductory programming
courses. We are now using pair programming in all introductory programming
courses we teach. Additionally, we use optional pair programming in all upper
division programming courses we teach. The teachers who experimented with
pair programming for the secondary study all strongly believe in it and encourage
their students to use it. We suggest you try it too!

6 Acknowledgements

Copyright ACM, 2005. This is the authors' version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in the ACM Journal of Educational Resources in Computing (volume,
issue, and date not yet specified) http://doi.acm.org/XXX

This work was funded by National Science Foundation grants EIA-0089989 and
DUE-0341276. Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not necessarily reflect
the views of the National Science Foundation. We also want to thank both
Heather Bullock and Julian Fernald at UCSC for their participation as
investigators on our NSF study. Thanks also go to Michael Burke and Vladimir
Drobot at SJSU and Susan Nerton and Ed Parrish at Cabrillo College who
graciously allowed us to experiment with their classes. A final thanks goes to the
anonymous reviewers, one of whom suggested the example regarding the
gender gap and a hypothetical class of 100 students.

7 References

American Association of University Women Education Foundation Commission
on Technology, Gender, and Teacher Education, 2000, Tech-Savvy Educating
Girls in the New Computer Age, http://www.aauw.org/2000/techsavvy.html.

Beck, K. 2000, Extreme Programming Explained: Embrace Change, Addison-
Wesley, Reading, Mass.

Berenson, S.B., Slaten, K.M., Williams, L., and Ho, C-w. under review 2005.
Voices of Women in a Software Engineering Course: Reflections on
Collaboration. Journal on Educational Resources in Computing (JERIC).

Bevan, J., L. Werner, and C. McDowell 2002, Guidelines for the Use of Pair
Programming in a Freshman Programming Class, presented at Conference on
Software Engineering Education and Training, Kentucky.

Camp, T. 1997, The Incredible Shrinking Pipeline. Communications of the ACM,
40 (10) 1997, 103-110.

Camp, T. 2001, Women in Computer Science: Reversing the Trend CRA-W
August, 2001, accessed on November 19, 2004 at
http://www2.cs.cmu.edu/~women/resources/aroundTheWeb/hostedPapers/Syllab
us-Camp.pdf.

Cohoon, J., and J. Davidson, 2000, Java 1.5 Program Design, McGraw-Hill,
Boston.

College Entrance Examination Board, 2004, College-Bound Seniors A Profile of
SAT Program Test Takers, accessed on January 23, 2005 at

Copyright ACM, 2005. This is the authors' version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in the ACM Journal of Educational Resources in Computing (volume,
issue, and date not yet specified) http://doi.acm.org/XXX

http://www.collegeboard.com/prod_downloads/about/news_info/cbsenior/yr2004/
2004_CBSNR_total_group.pdf

CRA. 2005, CRA Taulbee Trends: Women Students & Faculty, last updated May
6, 2004. CRA Taulbee Survey. See http://www.cra.org/info/taulbee/women.html.

Kerievsky, Josh, 2004, Pair Draw, accessed on February 6, 2005 at
http://industriallogic.com/games/pairdraw.html

McDowell, C., L. Werner, H. Bullock, & J. Fernald, 2003, The Impact of Pair
Programming on Student Performance, Perception, and Persistence,
Proceedings of the 25th International Conference on Software Engineering,
Portland, OR, 602-607.

Lightbody, P., G. Siann, L. Tait, and D. Walsh 1997, A Fulfilling Career? Factors
Which Influence Women’s Choice of Profession, Educational Studies, 23, 1997,
pp. 25-37.

Sax, L.J., Astin, A.W., Korn, W.S., and Mahoney, K.M. 2000, The American
Freshman: National Norms for Fall 2000. See
http://www.gseis.ucla.edu/heri/norms_pr_oo.html for a summary.

Williams, L.A. and R.R. Kessler. 2000a, The Effects of "Pair-Pressure" and "Pair-
Learning" on Software Engineering Education, in Thirteenth Conference on
Software Engineering Education and Training, Austin Texas: IEEE Computer
Soc.

Williams, L.A. and R.R. Kessler. 2000b, All I Really Need to Know about Pair
Programming I Learned In Kindergarten in Communications of the ACM, 43, 5,
2000. p. 108-114.

