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Abstract. Based on radiation modes and phase relations in di�erent ARROW structures, the characteristic

equations are presented that can avoid root searching in the complex plane and ®nd the e�ective index,

loss and ®eld pro®le easily. This simple model gives an accurate intuitive picture for low loss leaky modes

and it can be used to design and optimize the low loss ARROW devices of practical interest.
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1. Introduction

Antiresonant re¯ecting optical waveguides (ARROW) (Duguay et al. 1986)
have attracted a great deal of interest during the past several years. Instead of
total internal re¯ection in conventional waveguides, ARROWs use antires-
onant re¯ection as the guiding mechanism. This gives ARROW some re-
markable features that are used in many applications, such as remote
couplers (Gehler et al. 1994), ®lters (Chu et al. 1996), and polarization
splitters (Trutschel 1995). In order to design ARROW devices, the knowledge
of the characteristics of ARROW modes is important. An approximate ex-
pression for the propagation constant and loss have been given by Baba et al.
(1998) and Baba and Kokubun (1992). The equivalent transmission line
(Jiang et al. 1989) and the transverse resonance method (Huang et al. 1992)
have also been used to investigate the dispersion and loss. A rigorous nu-
merical method is based on a well known transfer matrix method (Chilwell
and Hodgkinson 1984; Kubica et al. 1990). Because of the leaky property of
ARROW modes, the solutions must be found in the complex plane. The root
searching in the complex plane could be time consuming and tedious, espe-
cially for optimization of multiple layer structures. In this paper, we will give
a set of simple characteristic equations for ARROW structures. The root
searching for the new equations needs to be carried only on the real axis and
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the error is negligible for low loss ARROW modes of practical interest (loss
smaller than a few dB/cm). In section 2, characteristic equations of di�erent
ARROW structures are presented, which are based on radiation modes and
the phase relation in ARROW devices. Section 3 examines the modal char-
acteristics such as e�ective index, loss and mode pro®les in most of the
ARROW structures proposed up to now.

The results from our equations and the exact model are then compared.
Furthermore, a new ARROW ®lter, which combines a conventional InP/
InGaAsP waveguide and an AlGaAs/GaAs ARROW, is proposed and
simulated in Section 4.

2. Characteristic equations

We consider a planar multilayer waveguide as shown in Fig. 1. The general
solution of the wave equation in each layer is well known:

Ey;j � Aj exp�kj�xÿ xj�� � Bj exp�ÿkj�xÿ xj�� �1�

where kj �
�������������������
b2 ÿ k20n2

j

q
, Aj and Bj are the complex ®eld coe�cients, k0 is the

free space wavenumber, b � k0neff is the propagation constant, neff is the
e�ective index and xj is the position of layer j. By imposing the continuity of
the ®eld and its derivative for each interface, it is easy to ®nd:

Fig. 1. Schematic diagrams of a planar ARROW structure and the ®eld pro®le (dash line).
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dj is the thickness of jth layer and

fj �
1; TE
n2j�1=n2

j ; TM

�

So we can relate ®eld coe�cients in the cover (Ac and Bc) with the coe�cients
in the substrate �As and Bs):

As

Bs

� �
� T

Ac

Bc

� �
�2�

T � TN � � � T1Tc � t11 t12
t21 t22

� �
For the guiding modes, the ®elds should be evanescent in the cap and the

substrate layers, so Ac � 0 and Bs � 0 that results in the characteristic
equation:

t11�b� � 0 �3�

For ARROW modes, since they are leaky, a characteristic equation
t11�b� � 0 can be found by assuming outgoing waves in the cover and
substrate layers, with correct sign of kc and ks chosen (Chilwell and
Hodgkinson 1984). The root b resides in the complex plane, so the root
searching for structures with many layers and for optimization purposes
could be time consuming and tedious. In the following, based on physical
arguments, we will introduce a di�erent characteristic equation for the
radiation modes, that gives the ARROW mode e�ective indices on the
real axis.

Radiation modes require both incoming and outgoing components to
form standing waves in the substrate layer for one sided radiation modes,
or in both cover and substrate layers for two sided radiation modes.
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Equation (1) holds for radiation modes as well. Since the number of un-
known variables is larger than the number of boundary conditions, a
characteristic equation cannot be established. A simple relation between As

�Ac� and Bs �Bc� will allow us to get a characteristic equation for the case of
low loss ARROW modes. When the interference layers in ARROW
waveguides satisfy the antiresonant condition, the re¯ectivity is very close
to unity and the phase shift in each layer is 90�. This assures that the ®eld
at the outermost interface is a node or an anti-node. i.e., As � �Bs or
Ac � �Bc for one sided radiation modes and As � �Bs; Ac � �Bc for two
sided radiation modes from Equation (1). The sign depends on the index of
outermost two layers.

Now, let us look at each case separately.

�a� One sided ARROW modes: In one sided ARROW, the ®eld in one side
(cover) is evanescent Bc � 0 and in another side (substrate) is standing wave
(actually the amplitude of the `mode' is increased with the distance because of
its lossy nature (Peierls 1979), i.e. neff > nc and neff < ns. When the substrate
index is larger than that of the last layer, ns > nN (the right side of Fig. 1), the
®eld in the outmost interface is a node, As � ÿBs. From Equation (1) we get
the characteristic equation:

t11 � t21 � 0 �4�

When the index of substrate is smaller than that of the last ®lm layer ns < nN,
the ®eld in the outmost interface is a anti-node (the left side of Fig. 1),
As � Bs. So

t11 ÿ t21 � 0 �5�

�b� Two sided ARROW modes: In two sided ARROW, the ®eld in both sides
are standing waves, i.e. neff < nc and neff < ns. There are three cases:

· ns > nN and nc > n1. In this case, As � ÿBs and Ac � ÿBc, so

t11 ÿ t12 � t21 ÿ t22 � 0 �6�

· ns > nN and nc < n1 (Fig. 1) or ns < nN and nc > n1, As � ÿBs and
Ac � Bc or As � Bs and Ac � ÿBc, so

t11 � t12 � t21 � t22 � 0 �7�

· ns < nN and nc < n1, As � Bs and Ac � Bc, so

t11 � t12 ÿ t21 � t22 � 0 �8�
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Equations (3)±(8) are the characteristic equations for all kinds of ARROW
structures. For all of these the e�ective index for guided (Equation (3)) and
leaky modes (Equations (4)±(8)) for lossless materials can be found on the
real axis. After ®nding the mode's e�ective index, it is simple to get its
pro®le if we choose the correct Ac and Bc. Based on the ®rst order per-
turbation theory, the loss of leaky modes can be found: a � 4:34k0
Im t11�neff�=t011�neff�
� �

dB=lm, where Im is the imaginary part, t011�neff� is the
di�erential with respect to neff.

3. Examples

In order to check the accuracy of our characteristic equations for di�erent
ARROW structures, we have compared the calculations with the exact model
(Chilwell and Hodgkinson 1984; Kubica et al. 1990). Figs. 2(a)±(d) show the
calculated e�ective index, loss and error as a function of the ®rst interference
layer thickness d1 of an ARROW-A structure using our method and the exact
model (Chilwell and Hodgkinson 1984; Kubica et al. 1990). Although this
model is based on antiresonant condition, our computation shows that

Fig. 2a,b
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antiresonance is not critical. Even when the thickness d1 is far away from
antiresonant condition, the current model matches the exact calculations very
well (see Fig. 2). For example, when d1 is around the resonant point where
loss is the highest, the error between our method and the exact model is still
smaller than 0.2% for TE1 mode. Table 1 displays the e�ective index and
loss for several ARROW waveguides including ARROW-B (Baba
and Kokubun 1992), two sided ARROWs and ARROW couplers (Chen and
Huang 1996). We can see that for low loss ARROW modes, which are of
main interest in practical applications, the approximate model with real roots
in identical to the exact complex analysis.

4. InP/InGaAsP±AlGaAs/GaAs ARROW ®lter

In this section, we propose and design an ARROW ®lter (Fig. 3) which is
based on two di�erent waveguides: a conventional InGaAsP/InP waveguide

Fig. 2. The calculated e�ective index (a) and loss (c) of TE0 mode of ARROW-A structure as a function

of the thickness of the ®rst antiresonant layer. (b) and (d) are the errors in our model comparing to the

exact calculations.
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and an AlGaAs/GaAs ARROW waveguide. Since ARROW has a very small
waveguide dispersion (Duguay et al. 1986; Chu et al. 1996) and AlGaAs has
a low material dispersion compared to a high material dispersion of InGaAsP
around 1:55 lm, this structure can realize a narrowband ®lter. Another
advantage of this structure is that ARROW's large mode allows e�cient
coupling with ®bers. In order to make such a ®lter, the large lattice mismatch
between InP and GaAs can be overcome with the use of wafer fusion tech-
nology (Liu et al. 1999).

To optimize the design of this ARROW, ®rst we use the approximation
equations in Baba et al. (1988) to get the initial d1 (0:382 lm) and d2
(2:204lm), then use an iteration technique to ®nd the optimal d1
�0:406lm� and d2 �2:21lm� for minimum loss. Since there is no root
searching in the complex plane, the calculating time is reduced and the
calculated value is the same as the rigorous model. For example, when
k � 1:55lm, d1 � 0:406 lm, d2 � 2:21lm, starting with an initial e�ective
index 3.24 and an initial searching step 0.00001, our model takes 18 s to

Table 1. Comparison of the e�ective index and loss between our model and exact model

Structurea Characteristic equation Mode E�ective

index

(this study)

Loss

(dB/cm)

(this study)

E�ective

index

(exact)

Loss

(dB/cm)

(exact)

One sided t11 + t21 = 0 TE1 1.4417085 0.25 1.4417085 0.25

ARROW-A TE2 1.41798 270 1.4176 407

One sided t11 + t21 = 0 TE1 1.5382528 0.11 1.5382527 0.11

ARROW-B TE2 1.5336896 95 1.5336856 98

Two sided t11 ) t12 + t21 ) t22 = 0 TE1 1.4578523 0.11 1.4578523 0.11

ARROW 1 TE2 1.4518589 76 1.4518454 98

Two sided t11 + t12 ) t21 ) t22 = 0 TE1 3.1540497 0.53 3.1540497 0.53

ARROW 2 TE2 3.1393856 103 3.1393856 113

Two sided t11 + t12 + t21 + t22 = 0 TE1 1.4578558 0.06 1.4578558 0.06

ARROW 3 TE2 1.4518726 49 1.4518551 58

ARROW t11 ) t21 = 0 Even 3.1541037 0.12 3.1541037 0.12

Coupler Odd 3.1539980 0.14 3.1539980 0.14

a The structures (index, thickness (from the cap to substrate layers) and wavelength) of calculated

ARROWs are listed below:

1. ARROW-A: n = 1/1.45/3.5/1.45/3.5; d = ¥/4/0.1019/2.0985/¥/lm; k = 1.3 lm (Jiang et al. 1989;

Kubica et al. 1990; Huang et al. 1992).

2. ARROW-B: n = 1/1.54/1.46/1.54/3.85; d = ¥/4/0.3/2/¥/lm; k = 0.633 lm (Baba and Kokubun

1992).

3. Two sided ARROW 1: n = 3.8/1.46/2.3/1.46/2.3/1.46/3.8; d = ¥/2/0.088/4/0.088/2/¥/lm; k =

0.633 lm.

4. Two sided ARROW 2: n = 3.16/3.55/3.16/3.55/3.16/3.55/3.16/3.55/3.16; d = ¥/0.237/2/0.237/4/0.237/

2/0.237/¥/lm; k = 1.55 lm.

5. Two sided ARROW 3: n = 1.46/2.3/1.46/2.3/1.46/2.3/1.46/3.5; d = ¥/0.089/2/0.089/4/0.089/2/¥/lm;

k = 0.6328 lm.

6. ARROW coupler: n/1/3.16/3.55/3.16/3.55/3.16/3.55/3.16/3.55/3.16/3.55/3.16/; d/¥/2/0.237/4/0.237/2/

0.237/4/0.237/2/0.237/¥/; k = 1.55 lm (Chen and Huang 1996).
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®nd the root with < leÿ 10 error, while the rigorous model takes 31 s on a
PC (Pentium II, 266 MHz). The thickness of InGaAsP/InP waveguide is
chosen to be 0:403 lm in order to satisfy the phase matching around
1:55lm. The important characteristics of the ®lter are the dispersion curves
of the two waveguides. Figs. 4 and 5 show the e�ective index and the loss
of the separated waveguides and the even and odd supermodes of the
coupled structure. As we expect from the design, the e�ective indices of
two separated waveguides are the same at the phase matching point at
1:549 lm. Without coupling, the conventional InGaAsP/InP waveguide has
no loss (neglecting the loss introduced by the material and process), and
the AlGaAs/GaAs ARROW has a small loss, which increases slightly with
the wavelength. When the two waveguides are coupled, the losses of even
and odd modes of the coupler are the same at the phase matching con-
dition. The ®eld pro®les of even and odd modes are also calculated and
they are shown in Fig. 3. All these calculations match very well the
rigorous model.

Fig. 3. The structure of InGaAsP/InP±AlGaAs/GaAs ARROW ®lter and the pro®les of even and odd

modes. The detailed structure is (from left to right): InP/In0:81Ga0:19As0:4P0:6 �0:403lm�=InP
�2 lm�=Al0:4Ga0:6As �4lm�=GaAs �d1�=Al0:4Ga0:6As �d2�=GaAs �d1�=Al0:4Ga0:6As �d2�=GaAs.
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5. Conclusion

In this paper, a set of simple and versatile characteristic equations is given
for di�erent ARROW structures. This method gives the precise e�ective
index, loss and mode pro®le for low loss ARROWmodes of practical interest
(i.e. when their loss is smaller than a few dB/cm). This enables root searching
in the real domain. The physical argument is simply based on the property of
antiresonance and small loss, which means that the re¯ectivity at the outer-
most boundaries is near 1, and a phase relation existing for the ®eld at the
outermost layers. The use of these characteristic equations is demonstrated
for di�erent ARROW waveguides, couples and ®lter. This simple physical

Fig. 4. The dispersion for the modes of the individual waveguides and the supermodes of the coupler

®lter. The calculations include the material dispersion.
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argument gives an accurate intuitive picture for loss leaky modes and it can
be used to design and optimize ARROW devices.
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