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Abstract. The use of passwords in security protocols is particularly delicate be-
cause of the possibility of off-line guessing attacks. We study password-based
protocols in the context of a recent line of research that aims to justify symbolic
models in terms of more concrete, computational ones. We offer two models for
reasoning about the concurrent use of symmetric, asymmetric, and password-
based encryption in protocol messages. In each of the models we define a notion
of equivalence between messages and also characterize when passwords are used
securely in a message or in a set of messages. Our new definition for the com-
putational security of password-based encryption may be of independent interest.
The main results of this paper are two soundness theorems. We show that un-
der certain (standard) assumptions about the computational implementation of
the cryptographic primitives, symbolic equivalence implies computational equiv-
alence. More importantly, we prove that symbolically secure uses of passwords
are also computationally secure.

1 Introduction

Passwords and other weak secrets sometimes serve as cryptographic keys in security
protocols and elsewhere (e.g., [5, 14, 16, 21]). The use of weak secrets is particularly
delicate because of the possibility of off-line guessing attacks. In such an attack, data
that depends on a weak secret is used in checking guesses of the values of the weak
secret. Consider, for example, a protocol where two parties exchange the encryptionc
of some fixed message, sayOk, under a shared passwordpwd . If pwd is picked from
a relatively small dictionary, then an attacker that obtains a transcript of the protocol
execution can mount the following off-line attack. It decrypts the ciphertextc with the
passwords in the dictionary, one by one, until the result of the decryption is the textOk.
The password used for this last decryption is likely to bepwd . Guessing attacks such as
this one are passive, in the sense that they do not require interaction with the protocol
participants, so they are hard to detect. A guessing attack may however be carried out
after an active attack, relying on the messages exchanged in the course of the active
attack.

Early research on the design and analysis of protocols based on weak secrets fo-
cused on techniques for defending against guessing attacks (e.g. [13]). These techniques
basically aim to ensure that plaintexts encrypted under passwords do not contain redun-
dancy that can later be used to verify a password guess. While this is a helpful guide-
line, its informal application need not guarantee security. As experience demonstrates
(e.g., [23]), conjecturing the security of a protocol, or arguing it only heuristically, is
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not sufficient. Instead, and this is the goal pursued by recent research on the subject,
the security of protocols should be rigorously analyzed. Models for carrying out such
analyzes have been designed using two different, yet related approaches.

The first approach, known as the symbolic or formal methods approach, adopts
an abstract view of executions. Messages are modeled as elements of a term algebra
constructed with symbolic operations that represent various cryptographic primitives.
Parties operate on terms using a limited number of inference rules, sometimes generi-
cally known as the Dolev-Yao rules. The rules reflect a common understanding of the
security of cryptographic primitives. For example, they say that the message encrypted
in a ciphertext can be recovered only if the appropriate decryption key is known. Quite
often, proofs that rely on these rules can be mechanized. Work done on symbolic mod-
els for password-based protocol has concentrated on extending the Dolev-Yao rules to
guessing attacks [7–9, 18]. Typical formalisms enrich standard symbolic models with
an operation that represents encryption under passwords, and they offer a careful ac-
count of when a password guess can be verified from a given set of terms (presumably
a transcript of a protocol execution). The resulting decision procedure has been auto-
mated [7, 8, 18]; a corresponding decision problem has been shown NP-complete [9].
Unfortunately, as remarked by authors of prior work [18], it is quite difficult to deter-
mine if a set of formal criteria for the existence of guessing attacks is exhaustive. Hence,
the possibility remains that a formal analysis would miss some attacks, and unsoundly
conclude that a protocol is secure when in fact it is not.

The second approach, known as the computational approach, uses a concrete (bit
level) representation, for protocol executions. The attacker is modeled as a powerful,
arbitrary probabilistic polynomial-time Turing machine. Although proofs with this ap-
proach tend to be lengthy, difficult, and tedious, it is generally accepted that it provides
strong guarantees. For the case of password-based protocols, work with the computa-
tional approach seems to have focused almost exclusively on the important use of pass-
words for authenticated key exchange. This work includes designing models and giving
provably secure constructions [4, 6, 10, 11, 15]. Surprisingly, the security of password-
based encryption as a stand-alone primitive has not been addressed.

A recent line of research aims to justify the abstractions made by symbolic methods
with respect to computational models (e.g., [1, 2, 17, 20, 22]) via soundness theorems.
These theorems typically state that, under certain assumptions on the implementation of
cryptographic primitives, symbolic security proofs imply security in the computational
model. The applications of soundness theorems are quite appealing: simple reasoning
techniques and automatic tools, specific to the symbolic setting, can be used to carry
out proofs that guarantee strong, computational security.

This paper is a first exploration on the subject of computationally sound symbolic
analysis for protocols based on passwords. We concentrate on off-line guessing attacks,
because they are the main original concern in the analysis of those protocols and be-
cause they appear mostly orthogonal to the standard active attacks. Our framework is an
extension of the framework introduced by Abadi and Rogaway [1] to asymmetric and
password-based encryption. That framework focuses, as an initial step, on passive at-
tacks; in that respect, it is a good match for our purposes, since off-line guessing attacks
are passive by definition (even if they may occur in conjunction with active attacks).
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We introduce a language of expressions whose elements are abstract representations
of the messages sent during protocol executions. The cryptographic primitives that we
consider are symmetric encryption, asymmetric encryption, and encryption that uses
passwords as keys. To these expressions we attach two different semantics. The first is
symbolic; it is based on an extension of the classical Dolev-Yao inference rules to in-
clude password-based encryption. The second is computational; it is based on concrete
implementations of the encryption operations. In current protocols, password-based
encryption typically serves for achieving authenticity rather than secrecy properties,
despite the use of the term “encryption” (which we preserve for historical reasons).
Accordingly, our semantics do not require that the encryption of a plaintext under a
password ensure the secrecy of the plaintext. Further, we give symbolic and computa-
tional definitions for expression equivalence (when two expressions convey the same
information to an adversary) and for secure use of passwords (which expressions do not
leak passwords despite guessing attacks). The main results of our paper are soundness
theorems that link the two models. We prove that if two expressions are equivalent sym-
bolically then they are equivalent computationally. We also prove that if an expression
hides a password symbolically then it hides the password computationally.

In Section 2 we give the syntax of the language of expressions. As a counterpart, we
introduce a computational setting in Section 4. We define expression equivalence and
password hiding, symbolically and computationally, in Sections 3 and 5, respectively.
In Section 6 we give our main results; as an example, we show an application to the
EKE protocol [5]. We conclude in Section 7. Because of space constraints, we leave
many details and proofs to a longer version of this paper.

2 Syntax

In this section we define the language of expressionsExp. We consider messages con-
structed from bits and cryptographic keys by using pairing, symmetric and asymmetric
encryption, as well as encryption that employs passwords as keys. In what follows,
Bool is the set of bits{0, 1}. Keys is the set of cryptographic keys; it is the union of the
disjoint setsSKeys, EKeys, DKeys, andPasswd which contain symbols for symmetric
keys, asymmetric encryption keys, asymmetric decryption keys, and passwords, respec-
tively. We writeEncKeys for SKeys∪ EKeys∪Passwd, the set of keys that can be used
for encryption; and write(·)−1 : SKeys∪ EKeys→ SKeys∪DKeys for a bijection that
maps an encryption key to the associated decryption key. We usually follow the con-
vention thatKs

1 ,Ks
2 , . . . represent symmetric keys,Ke

1 ,Ke
2 , . . . asymmetric encryption

keys, andKd
1 ,Kd

2 , . . . the corresponding asymmetric decryption keys. In this paper we
concentrate on the simple setting where expressions use a single password symbol for
encryption, so the setPasswd contains a single elementW. This setting is sufficient for
analyzing multiple concurrent runs of the execution of a protocol between principals
that share a password; with some complications, our approach extends to the general
case where multiple passwords are used simultaneously.

The setExp of formal expressions is defined by the grammar:

Exp ::= Bool | Passwd | EKeys | DKeys | SKeys | (Exp,Exp) | {Exp}EncKeys
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For example, expression{Ks}W , {(0, 0)}Ks represents the encryption of symmetric
keyKs under the passwordW paired with the encryption of(0, 0) under keyKs. The
expression{Ke}Ke , {Ks}Ke , {0}Ks represents the encryption of public keyKe under
itself, paired with the encryption of symmetric keyKs underKe and the encryption
of the bit 0 underKs. As we do here, we omit parenthesis when there is no risk of
ambiguity or when ambiguity is harmless.

An important subset ofExp is that of acyclic expressions. Acyclicity was intro-
duced in previous work [1] for expressions that use only symmetric encryption. Here
we generalize this notion to deal also with asymmetric encryption. Given an expression
E ∈ Exp we build the following directed graph. The nodes of the graph are pairs of
encryption and decryption keys(K, K−1) ∈ SKeys × SKeys ∪ EKeys × DKeys for
which at least one of the components appears inE. We add an edge between nodes
(K1,K

−1
1 ) and (K2,K

−1
2 ), and say thatK1 encryptsK2, if there existsE′ ∈ Exp

such that{E′}K1 occurs inE and K−1
2 occurs inE′. We say that an expression

E ∈ Exp is acyclic if its associated graph is acyclic. For example, the two expres-
sions{Ke

1}Ke
1

and({Ke
1}Ks

1
, {Ks

1}Ke
1
) are acyclic, and the three expressions{Ks

1}Ks
1
,

({Ks
1}Ks

2
, {Ks

2}Ks
1
), and({Kd

1}Ks
1
, {Ks

1}Ke
1
) are not.

3 A symbolic model for expressions

In this section we introduce a symbolic semantics for expressions inExp. Intuitively, the
semantics of an expression is apatternthat represents the information that an adversary
learns by observing the expression. With this interpretation, we give an equivalence
relation on the set of expressions that identifies expressions that convey the same infor-
mation to the adversary (extending [1]). Furthermore, we use the symbolic semantics to
give a characterization of expressions that do not leak a password.

Symbolic semantics and expression equivalence.The inference rules that an adversary
can use for deriving new information are formalized by theentailmentrelationM ` N ,
which is the least relation that satisfies:

1. M ` 0 andM ` 1,
2. M `M ,
3. if M ` N1 andM ` N2 thenM ` (N1, N2),
4. if M ` (N1, N2) thenM ` N1 andM ` N2,
5. if M ` N andM ` K thenM ` {N}K , for K ∈ EncKeys,
6. if M ` {N}K andM ` K−1 thenM ` N , for K ∈ SKeys ∪ EKeys,
7. if M ` {N}W thenM ` N , for W ∈ Passwd.

Most of the rules are self-explanatory: for example, they allow an adversary to pair
messages that it knows (rule (3)), recover the components of a pair (rule (4)), and com-
pute the encryption of a messageM under a certain keyK, provided the adversary can
compute bothM andK (rule (5)). Rule (6) is the standard rule of Dolev-Yao deduction
systems: an adversary can decrypt a ciphertext if it has the right decryption key. For
instance, we have:Kd

1 , {W}Ke
1
` W and{{Ks

1}Ks
2
, {Kd

1}Ks
1
}Ks

2
, {W}Ke

1
,Ks

2 ` W.
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Rule (7) shows that our definitions make a pessimistic (but perhaps realistic!) assump-
tion about the secrecy of plaintexts encrypted under a password. For instance, we have
Kd

1 , {{0,Ks
2}Ke

1
}W ` Ks

2 . As indicated in the introduction, this assumption is com-
patible with current uses of passwords for authentication. However, none of the rules
allows the recovery ofW by simply observing encryptions of messages underW .

Patterns are elements of the languagePat obtained by extending the languageExp
with symbols that represent undecryptable (symmetric and asymmetric) ciphertexts. We
let Undec = {2s,2a}. The set of patterns is defined by the grammar:

Pat ::= Exp | Undec | (Pat,Pat) | {Pat}EncKeys

The patternp(M,T ) represents what an adversary can see in an expressionM ∈ Exp
using for decryption the keys inT ⊆ Keys. It is defined inductively by:

p(M,T ) = M for M ∈ Bool ∪ Keys

p((M,N), T ) = (p(M,T ), p(N,T ))
p({M}W , T ) = {p(M,T )}W

p({M}Ks , T ) =
{
{p(M,T )}Ks if Ks ∈ T
2s otherwise

p({M}Ke , T ) =
{
{p(M,T )}Ke if Kd ∈ T
2a otherwise

We let recoverable(M) = {K ∈ Keys | M ` K} be the set of keys that can
be recovered from an expressionM . The pattern associated toM is the pattern com-
puted fromM given the set of keys recoverable fromM , that is: pattern(M) =
p(M, recoverable(M)). For instance, in the case of the expression{Ks

1}W , {Ke
1}W ,

{{Ks
2}Ks

1
}Ks

3
, {0}Ke

1
,Ks

2 , {{Kd
1}Ks

3
, 0}Ks

1
, the recoverable keys areKs

1 , Ke
1 , andKs

2 ,
and the pattern is{Ks

1}W , {Ke
1}W ,2s,2a,Ks

2 , {2s, 0}Ks
1
.

We use patterns for defining equivalence of expressions: two expressions are equiv-
alent if they have the same pattern. Much as in previous work, this equivalence relation
can be a little too restrictive, so we relax it by using key renaming functions. A key
renaming function is a bijection on the setKeys that preserves the types of keys: it
maps passwords to passwords, asymmetric encryption (decryption) keys to asymmetric
encryption (respectively decryption) keys, and symmetric keys to symmetric keys.

Definition 1. M ≡ N if and only ifpattern(M) = pattern(N), andM ∼= N if and
only if there exists a key renamingσ such thatM ≡ Nσ.

For example, we have{0}Ks
1
∼= {1}Ks

2
and {0}Ke

1
∼= {1}Ke

2
. These equivalences

reflect the standard assumption that symmetric and asymmetric encryption hide plain-
texts. We also have{0}Ks 6∼= {0}Ke : symmetric and asymmetric ciphertexts can in
principle be distinguished. Coming to passwords, we have{0}W ∼= {0}W and{0}W 6∼=
{1}W : password-based encryptions of different known plaintexts are inequivalent. On
the other hand, we have{Ks

1}W ∼= {Ks
2}W : encryptions of random keys with a

password cannot be distinguished. Finally, in contrast, we have({Ks
1}W , {0}Ks

1
) 6∼=

({Ks
2}W , {1}Ks

2
): if keys encrypted with a password are used elsewhere, then the two

resulting expressions may not be equivalent anymore.
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Secure use of passwords, symbolically.Next we identify a set of expressions in which a
password is used securely, that is, the password is not subject to a guessing attack. Our
definition is in two steps. First we introduce patterns with variables. Then we say that
an expression uses passwords securely if its pattern can be obtained from a pattern with
variables by instantiating the variables in a certainappropriateway.

Let Var = {x1, x2, . . .} be a set of variables. The setPat[Var] of patterns with
variables fromVar is defined by the grammar:

Pat[Var] ::= Bool | EKeys | DKeys | SKeys | Undec | (Pat[Var],Pat[Var]) |
{Pat}EKeys | {Pat}SKeys | {Var}Passwd

Informally, in a pattern with variables, a password may appear only as an encryption
key, and only be used for encrypting variables. For example,({x1}W , {({x2}W , 0)}Ks)
is in Pat[Var], but (W, {x1}W ) and {W}Ks are not. Intuitively, the variables mark
places in an expression where we can place concrete subexpressions.

For security, we should ensure that these subexpressions do not offer redundancy
that could permit a guessing attack. The subexpressions that we consider benign (in this
sense) are ciphertexts and keys that do not themselves appear elsewhere in the pattern.
More precisely, an instantiation of a pattern with variables into a pattern is appropriate
if variables are mapped to one of the symbols2s or2a or to (symmetric or asymmetric)
encryption keys that do not appear elsewhere in the pattern. For example, the pattern
with variables{x1}W , {({x2}W , 0)}Ks ,Ks has occurrences ofKs, so it cannot be in-
stantiated to{Ks}W , {({2s}W , 0)}Ks ,Ks. On the other hand, it can be instantiated
to {2a}W , {({Ke}W , 0)}Ks ,Ks and to{Ke}W , {({2s}W , 0)}Ks ,Ks via the appro-
priate instantiations[x1 7→ 2a, x2 7→ Ke] and [x1 7→ Ke, x2 7→ 2s]. Hence, we
define:

Definition 2. Let p ∈ Pat[Var]. A mappingσ : Var → Pat is appropriate forp if for
all x ∈ Var it holds thatσ(x) ∈ SKeys ∪ EKeys ∪ {2s,2a} and, if σ(x) is a key
K ∈ SKeys ∪ EKeys, then neitherK nor K−1 occur inp.

Definition 3. An expressionE ∈ Exp hides passwords symbolically if there existp ∈
Pat[Var] and a mappingσ : Var→ Pat appropriate forp such thatpattern(E) = pσ.

For example, the expression{{(0, 1)}Ke}W , {({Ke}W , 0)}Ks ,Ks hides passwords
symbolically: its pattern is{2a}W , {({Ke}W , 0)}Ks ,Ks which, as noted above, can
be obtained from a pattern with variables via an appropriate instantiation. On the other
hand, neither{0}W nor {(Ks

1 ,Ks
2)}W hide passwords symbolically. The former is

subject to the attack we sketched in the introduction. The same attack may apply to
the latter if any kind of fixed delimiters are used to implement pairing. This possibility
cannot be ruled outa priori, and is in fact quite reasonable, so we chose to consider this
expression insecure. Further,({Ks}W , {0}Ks) does not hide passwords symbolically
either. AlthoughW encrypts the symmetric keyKs (potentially a random string), and
therefore the same attack does not seem to apply, the keyKs is also used for encrypting
a fixed plaintext, which allows a simple guessing attack: an adversary decrypts the first
part with a possible password, then uses the result for decrypting the second part in
order to check the password guess. It might appear that the same attack does not apply to
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{Ks
1}W , {Ks

2}Ks
1
, since here the keyKs

1 is used for encrypting another symmetric key.
We consider this expression insecure because the symmetric encryption scheme may
well provide a mechanism for ensuring that decryptions succeed only if the appropriate
key is used, as in the case of authenticated encryption (e.g. [3]), thus offering an indirect
way to check a password guess.

Our definitions are at the same level of abstraction as those found in the literature on
formal analysis of guessing attacks. However, those tend to be, at least superficially, in
a somewhat different style. They also model (symmetric and asymmetric) deterministic
encryption, while we focus on probabilistic (symmetric and asymmetric) encryption,
because this is the standard kind of encryption used in modern cryptography. We expect
that a secure expression in the sense defined in this paper is also secure against the
symbolic guessing attacks captured by previous work.

4 Computational security of encryption schemes

A password-based encryption schemeΠp is given by a pair of polynomial-time algo-
rithms (Ep,Dp) for encryption and decryption, respectively. The scheme is used for
encrypting messages in a setPlaintext(Πp) ⊆ {0, 1}∗ under passwords from a dic-
tionary D ⊆ {0, 1}∗. The messages may be chosen according to a probability distri-
bution, part of a distribution ensemble (a parameterized family of distributions). Thus,
for generality, we partition the set of plaintexts and the set of passwords according
to a security parameter:Plaintext(Πp) = ∪ηPlaintext(Πp)η andD = ∪ηDη. Fur-
thermore, we require that dictionaries can be sampled efficiently: each dictionaryD
comes with a probabilistic polynomial-time algorithm that, for security parameterη,
returns a samplew from Dη; we write thisw

R←Dη. For eachη, the encryption func-
tion takes as input a passwordpwd ∈ Dη and a plaintextm ∈ Plaintext(Πp)η and
returns an encryptionEp(pwd ,m) of m underpwd . The decryption functionDp takes
as input a passwordpwd and a ciphertextc and returns the decryptionDp(pwd , c) of
c usingpwd . For any security parameterη, anym ∈ Plaintextη, andpwd ∈ Dη, the
equalitym = Dp(pwd , Ep(pwd ,m)) must hold.

Before this work, it appears that the security of password-based encryption had not
been defined from a computational perspective. We aim to fill this gap. Our definition
captures the idea that, given the encryptions of one or more plaintexts under a password,
it should be hard to recover the password—and, as suggested in the introduction, our
definition does not capture any possible, additional authenticity or secrecy properties.
A common assumption is that passwords are selected from a relatively small dictionary
that is likely to be known to an adversary; the attack sketched in the introduction indi-
cates that, unless the plaintexts are selected from a distribution with sufficient entropy,
there is no hope for the password to be secure. Therefore, in our definition, the plaintexts
are chosen according to distributions. Moreover, the distributions are parameterized by
a security parameter; we require that it be hard to recover the password asymptotically.

For instance, let us consider a protocol where two parties have exchanged a session
keyk (for a security parameterη), without authentication, and wish to use a shared pass-
word pwd for authenticatingk. For this purpose, one party might encrypt a predefined
message, sayOk, underk, with a symmetric encryption algorithmEs, then encrypt it
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further underpwd , and transmit the resultEp(pwd , Es(k,Ok)). The other party would
first decrypt the message that it receives usingpwd and thenk. It would acceptk as
valid only if the result of this last decryption isOk. Ideally,Es(k,Ok) should not ex-
pose redundancy, so that it can be safely encrypted underpwd . The security ofpwd
can be guaranteed only for large values ofη: for small values, an adversary that sees
Ep(pwd , Es(k,Ok)) can check a password guesspwd ′ by decrypting withpwd ′ and
then breaking the inner encryption—a feasible task for small values ofη.

The following definition of security uses an adversaryA that has access to an en-
cryption oracleEp(pwd ,Dist). At each query to the oracle, the oracle samples a string
d according to distributionDist and returnsEp(pwd , d), the encryption ofd underpwd .
Intuitively, the definition says thatA cannot tell which ofw0 andw1 (two possible val-
ues ofpwd ) is used for creating encryptions of plaintexts selected according toDist .

Definition 4. A dictionaryD0 is a subdictionary ofD if D0
η ⊆ Dη for all η. A dic-

tionary D0 is a singleton dictionary if|D0
η| = 1 for all η. Let Πp = (Ep,Dp) be a

password-based encryption scheme. We say thatΠp securely encrypts distribution en-
sembleDist = (Distη)η using passwords from dictionaryD, if for any probabilistic
polynomial-time adversaryA, and any singleton subdictionariesD0 andD1 of D,

AdvΠp,Dist,A(η) def= Pr
[
w0

R←D0
η, w1

R←D1
η : AEp(w1,Distη)(η, w0, w1) = 1

]
−

Pr
[
w0

R←D0
η, w1

R←D1
η : AEp(w0,Distη)(η, w0, w1) = 1

]
is negligible (as a function of the security parameterη).

(Recall that a function is negligible if it is smaller than the inverse of any polynomial
for all sufficiently large inputs.)

In defining the syntax of password-based encryption, we do not require that the en-
cryption function be randomized. Interestingly, randomization and security appear to
be somewhat in conflict for password-based encryption. In order to explain this obser-
vation, let us writeEp(pwd ,m, r) for the encryption ofm under passwordpwd with
random coinsr. Consider an adversaryA with access to an encryption oracle as in the
definition above, but now with the (reasonable) capability of obtaining several encryp-
tions of the same plaintext using different random coins. WhenA queries the encryp-
tion oracle twice, it obtains ciphertextsc0 = Ep(wb,m, r0) andc1 = Ep(wb,m, r1) for
someb ∈ {0, 1}, some plaintextm, and some fresh random coinsr0 andr1. Suppose
that b = 0, without loss of generality. WhenA decryptsc0 andc1 with w0, it obtains
m twice. Forb to remain secret, it also must be the case thatDp(w1, Ep(w0,m, r0)) =
Dp(w1, Ep(w0,m, r1)). In this sense, the use of the random coins is trivial.

In addition to password-based encryption schemes, we rely on symmetric and asym-
metric encryption schemes. As usual, a symmetric or asymmetric encryption scheme
consists of algorithms(K, E ,D) for key generation, encryption, and decryption. We
require that these satisfy a variant of the standard notion of semantic security [12],
calledtype-0 security. This notion was previously introduced for the case of symmet-
ric encryption [1] and extends to the case of asymmetric encryption. We leave precise
definitions and constructions for a longer version of this paper.
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An encryption suiteis a tripleΠ = (Πa,Πs,Πp) with an asymmetric encryp-
tion schemeΠa, a symmetric encryption schemeΠs, and a password-based encryption
schemeΠp. We say that an encryption suite is secure if it provides type-0 secure asym-
metric and symmetric encryption schemes, and its password-based encryption scheme
securely encrypts keys and ciphertexts:

Definition 5. An encryption suiteΠ = (Πa,Πs,Πp) is secure ifΠa = (Ka, Ea,Da)
and Πs = (Ks, Es,Ds) are type-0 secure encryption schemes andΠp securely en-
crypts distribution ensemblessym key, sym ciphertext, asym key, andasym ciphertext
defined by the algorithms below:

sym key(η)
(k, k)

R←Ks(η)
As a sample
returnk

sym ciphertext(η)
(k, k)

R←Ks(η)
As a sample
returnEs(k,0)

asym key(η)
(pk, sk)

R←Ka(η)
As a sample
returnpk

asym ciphertext(η)
(pk, sk)

R←Ka(η)
As a sample
returnEa(pk,0)

5 A computational model for expressions

In this section we give a computational interpretation to expressions in the form of en-
sembles of probability distributions, and give computational definitions for expression
equivalence and password hiding.

For an encryption suiteΠ and a dictionaryD = ∪ηDη, we associate with each ex-
pressionM ∈ Exp a distribution[[M ]]Π[η],D on strings of bits, and thereby an ensemble
[[M ]]Π,D. The definition is inductive:

– Each key symbolK that occurs inM is mapped to a stringτ(K), via the key gen-
eration algorithms ofΠs andΠa for symmetric and asymmetric keys, respectively,
and by selecting at random fromDη for passwords.

– The formal bits0 and1 are mapped to standard string representations for them.
– The image of a pair(M,N) is obtained by concatenating the images ofM andN .
– The image of a formal encryption{M}K is obtained by calculatingEt(K)

τ(K)(x),
wherex is the image ofM andt(K) ∈ {a, s, p} selects the type of encryption.

Definition 6. Two ensemblesD0 andD1 are indistinguishable (D0 ≈ D1) if for any
probabilistic polynomial-time algorithmA,

Advdist
D0,D1,A(η) = Pr

[
x

R←D0
η : A(x, η) = 1

]
− Pr

[
x

R←D1
η : A(x, η) = 1

]
is negligible (as a function of the security parameterη).

Definition 7. The expressionsE0, E1 ∈ Exp are computationally equivalent if their
associated distribution ensembles are indistinguishable, that is,[[E0 ]]Π,D ≈ [[E1 ]]Π,D.

Definition 8. Let Π be an arbitrary encryption suite and letD be a dictionary. An ex-
pressionE ∈ Exp hides passwords inD computationally if for all singleton dictionaries
D0 andD1, subdictionaries ofD, it holds that[[E ]]Π,D0 ≈ [[E ]]Π,D1 .

In this definition, intuitively, an adversary is given two singleton dictionaries and a
sample from the distribution associated with the expressionE. This sample is created by
using one of the two singleton dictionaries, and the goal of the adversary is to determine
which. The expression hides passwords computationally if the adversary has only a
negligible chance of success.
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6 Soundness theorems

Our soundness theorems link the symbolic definitions for expression equivalence and
secure use of passwords to their computational counterparts. The theorem on expres-
sion equivalence can be regarded as an extension of the main theorem of Abadi and
Rogaway [1] to the richer language of expressions of this paper.

Theorem 1 (Soundness for expression equivalence).Let Π be a secure encryption
suite and letD be a dictionary. For any two acyclic expressionsE0, E1 ∈ Exp we have
thatE0

∼= E1 implies[[E0 ]]Π,D ≈ [[E1 ]]Π,D.

Our main theorem says that, under certain hypotheses, if the use of passwords is
secure symbolically, then it is also secure computationally.

Theorem 2 (Soundness of password hiding).LetΠ be a secure encryption suite and
let D be a dictionary. For any acyclic expressionE ∈ Exp if E hides passwords sym-
bolically thenE hides passwords inD computationally.

A question that we do not investigate in this paper is under what conditions the
converses of Theorems 1 and 2 hold. However, it seems quite likely that the techniques
and the assumptions for proving completeness of symbolic equivalence for the case of
symmetric encryption (e.g. [19]) extend to the setting of this paper.

As an example, we show how to apply our results in the case of the influential
Encrypted Key Exchange (EKE) protocol [5]. In the languageExp, the flows of the
protocol between partiesA andB that share a passwordW are as follows.

1. A generates an asymmetric key pair(Ke
1 ,Kd

1 ) and sends{Ke
1}W to B.

2. B decrypts this message usingW . ThenB generates a symmetric keyKs
1 and

sends{{Ks
1}Ke

1
}W to A.

3. At this point the parties share the keyKs
1 , and check if the protocol was executed

as expected:A generates a symmetric keyKs
A and sends{Ks

A}Ks
1

to B.
4. Upon receiving this message,B obtainsKs

A, generates a new symmetric keyKs
B ,

and sends{(Ks
A,Ks

B)}Ks
1

to A. (In the original protocol,Ks
A andKs

B are random
nonces; for simplicity we model these nonces as random symmetric keys.)

5. A decrypts this message and checks that the first component of the resulting pair is
Ks

A. If so, it obtainsKs
B , sends{Ks

B}Ks
1

to B, and terminates successfully.
6. Finally,B decrypts this last message, verifies that it contains the keyKs

B it previ-
ously sent toA, and if so, it terminates successfully.

A transcript of the execution of the protocol is given by the expression:

E = {Ke
1}W , {{Ks

1}Ke
1
}W , {Ks

A}Ks
1
, {(Ks

A,Ks
B)}Ks

1
, {Ks

B}Ks
1

Sincepattern(E) = {Ke
1}W , {2a}W ,2s,2s,2s is the instantiation of a pattern in

Pat[Var] with an appropriate mapping, by definition,E hides the password symboli-
cally. It follows from Theorem 2 thatE also hides the password computationally. Infor-
mally, this means that for any probabilistic polynomial-time adversary, the probability
that the adversary can determine correctly which of two passwordsw0 andw1 was used
in a given protocol execution is negligible. Once we have Theorem 2, the proof of this
fact via the formal definitions is much simpler than a computational proof from scratch.
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7 Conclusions

In this paper we investigate the use of password-based encryption schemes in protocols
from the perspective of a recent line of research aimed at bridging the gap between the
symbolic and computational views of cryptography. We give symbolic and computa-
tional interpretations to the elements of a language of formal expressions built using
symmetric, asymmetric, and password-based encryption. We then prove that symbolic
accounts of expression equivalence and password hiding imply strong, computational
formulations of the same properties. We base our results on a new computational secu-
rity definition for password-based encryption, which may be of independent interest.

Off-line guessing attacks, as typically considered in the literature, are inherently
passive: an adversary, with some data about a protocol execution, analyzes the data in
an attempt to obtain information about the password in use. Our definitions and theo-
rems focus strictly on the data analysis, and do not consider how the data is obtained.
Thus, we neither address nor exclude the possibility that the adversary may play a role
in protocol executions, perhaps mounting standard active attacks, and obtaining data
from interactions with other participants. For protocols that do not rely on passwords,
research on the relations between symbolic and computational models has recently dealt
with active attacks (e.g., [2, 20]). In further work, it may be worthwhile to integrate the
results of that research with the present analysis of password-based encryption.
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