Automatic Mutual Exclusion
and Atomicity Checks

Martin Abadil»?

1 Microsoft Research
2 University of California, Santa Cruz

Abstract. This paper provides an introduction to the Automatic Mu-
tual Exclusion (AME) programming model and to its formal study,
through the AME calculus. AME resembles cooperative multithreading;
in the intended implementations, however, software transactional mem-
ory supports the concurrent execution of atomic fragments. This paper
also studies simple dynamic and static mechanisms for atomicity checks
in AME.

1 Introduction

Transactions promise a practical mechanism for synchronization that should
facilitate the design and coding of a wide range of concurrent systems. In partic-
ular, in shared-memory concurrency, systems based on transactions may achieve
the efficiency of fine-grained locking while reducing the opportunities for dead-
locks, race conditions, and other bugs. For these benefits to be realized, however,
advances in low-level implementations of transactions do not suffice. Also needed
are corresponding languages and programming techniques (e.g., [9, 10, 6, 3]).

The principle “Lo bueno, si breve, dos veces bueno” does not necessarily
apply to transactions. Although long-running transactions can lead to excessive
conflicts and may complicate hardware-based implementation strategies, they
also support a conservative style of programming in which transactions, with
their guarantees, are the default. This style is embodied, in particular, in the
Automatic Mutual Exclusion (AME) model [12,1], which is the focus of this
paper.

AME can be seen as cooperative multithreading on top of software trans-
actional memory (STM) [14]. In the spirit of cooperative multithreading, calls
to the construct yield delimit atomic fragments of computations. STM allows
multiple sequential code fragments to execute at the same time, each within a
transaction.

Yielding requires care. For instance, consider a call to a library method made
from within a transaction. As long as the execution remains within the same
transaction, the caller need not be concerned with concurrent calls to the library
or any other concurrent activity. On the other hand, the library method may
decide to interrupt the transaction by yielding, perhaps in order to interact with
the outside world. In this case, the caller may need to consider interleavings of

other computations, restoring invariants if necessary. In this paper we explore
a mechanism for asserting that, dynamically, yielding should not happen in a
particular piece of code. Yielding can be turned into (caught) run-time errors,
and transactional recovery may optionally mask those errors altogether. We also
define and study a simple static type system that indicates whether yielding
is possible in a piece of code. A practical version of this type system has been
implemented for an extension of C# on Bartok-STM [11].

In sum, the goals of this paper are to provide an introduction to AME and to
its formal study (largely as a review of recent work [12,1]), and also to advance
a specific aspect of AME and its theory. Section 2 describes AME, informally.
Sections 3 and 4 define the AME calculus and its high-level formal semantics.
Section 5 and 6 concern dynamic atomicity checks and the static type system,
respectively. Section 7 establishes the soundness of the static type system with
respect to the dynamic atomicity checks. Section 8 concludes by mentioning
some further work. An appendix contains proofs.

Similar themes have been explored in other projects. For instance, in the
Mianjin language, type annotations distinguish routines that may perform com-
munication [13]. More recently (independently from the AME work), the model
Transactions with Isolation and Cooperation (TIC) includes a type system for
atomicity [15]. In both Mianjin and TIC, the type systems are defined semi-
formally. Further, other research on types for atomicity offers powerful analyses
that apply to Java and similar languages [7]. While some of their ideas may
be useful in implementations of AME, they may be less necessary at the AME
source level, because of the reliance on cooperation and transactions. In another
direction, research on sagas explores techniques that reconcile atomicity and re-
sponsiveness for long-lived transactions, with sophisticated treatments of nest-
ing, parallelism, and compensation (which are beyond the scope of the present
paper) [8, 5]. Finally, research on cooperative multithreading includes techniques
for proving that yielding must eventually happen, guaranteeing fairness in single-
threaded implementations [4].

2 Automatic Mutual Exclusion

AME encourages programmers to use transactions: code is executed in transac-
tions by default. The intent is that the pervasive use of transactions will lead
to clearer programs with fewer synchronization bugs. However, for interactions
with legacy components and other computations that should not be placed in
transactions, code can be marked explicitly as “unprotected”.

In AME, running a program consists of executing a set of asynchronous
method calls. The semantics of AME guarantees that the program execution
is equivalent to executing each of these calls (or their fragments, as explained
below) in some serial order. An asynchronous method call is created by an in-
vocation async MethodName (<args>). The caller continues immediately after
this invocation. AME achieves concurrency by executing asynchronous method
calls in transactions, overlapping the execution of multiple calls, with roll-backs

Ve Value =c|x| Ax.e
¢ € Const = unit | false | true

xz,y € Var
e,febErp =V
| ef
| refe|le|e:=f
| asynce
| yield
\

blockUntil e

Fig. 1. Syntax of the AME calculus (without unprotected sections).

when conflicts occur. If a transaction initiates other asynchronous method calls,
their execution is deferred until the initiating transaction commits, and they are
discarded if the initiating transaction aborts.

An asynchronous method call may also invoke yield. A yield call breaks a
method into multiple atomic fragments, implemented by committing one trans-
action and starting a new one. These atomic fragments are delimited dynami-
cally by the calls to yield, not statically scoped like explicit atomic blocks [7,9].
AME thus avoids some of the pitfalls of pure event-based programming models
(in particular, “stack ripping” [2].). With this addition, the overall execution of
a program is guaranteed to be a serialization of its atomic fragments.

An atomic fragment may include any number of guards, each of the form
blockUntil (<predicate>). An atomic fragment executes to completion only
if all the guards encountered in the course of the execution have predicates
that evaluate to true. The implementation of blockUntil does nothing if the
predicate holds, but otherwise it aborts the current atomic fragment and re-
executes it later (at a time when it is likely to succeed).

As indicated above, AME provides block-structured unprotected sections.
We omit them here, for simplicity. It is straightforward to extend the results
of this paper to them, although the semantics of unprotected sections can be
delicate.

3 The AME Calculus

In our formal study of AME, we focus on a small but expressive language that we
call the AME calculus. This calculus includes constructs for AME, higher-order
functions, and imperative features.

In Figure 1 we define the syntax of the AME calculus, omitting unprotected
sections. This syntax is untyped; we define a type system in Section 6. The syntax
introduces syntactic categories of values, constants, variables, and expressions.
The values are constants, variables, and lambda abstractions (Az. e). In addition
to values and to expressions of the forms async e, blockUntil e, and yield, the

expressions include notations for function application (ef), allocation (ref e,
which allocates a new reference location and returns it after initializing it to the
value of e), dereferencing (le, which returns the contents in the reference location
that is the value of €), and assignment (e := f, which sets the reference location
that is the value of e to the value of f).

We write let 2 = e in ¢’ for (Ax. ¢’) e, and also write e; ¢’ for let x = e in €’
when x does not occur free in €’. Including standard control structures and other
common constructs (directly or by encodings) is routine.

As a small example, let us consider the following code fragment:

blockUntil !rg;
ry = e

Tg 1= €2;

async (rs := e3);
yield

in which rq, r1, 72, and 73 are variables that represent reference locations, and
e1, €2, and eg are arbitrary expressions. This code fragment blocks until 7o holds
true, then it performs assignments to r; and ro, forks an expression that will
perform an assignment to r3, and finally yields.

Intuitively, a programmer may expect that the assignments to r; and 7o
(but not r3) happen within the same transaction, and this property will in-
deed hold if e; and ey are simple values. However, in general, the evaluations
of e; and es may trigger calls to yield, so the assignments may happen in dif-
ferent transactions. For instance, e might be a call to a function with body
yield; (blockUntil !ry);!rs, which yields, waits until the value in ry4 is true,
and then returns the value in r5. In that case, some other thread may execute
between the assignments, may observe inconsistent values in r; and r5, and may
misbehave as a result. Therefore, it is useful to have dynamic or static means of
guaranteeing that expressions such as e; and ey do not yield. Sections 5 and 6
address this goal.

4 High-Level Semantics

This section presents a semantics for the AME calculus. This semantics is in-
tended to provide a clear, high-level model, rather than a description of possi-
ble underlying implementation techniques. Accordingly, the semantics does not
model optimistic concurrency, conflict detection, roll-back, and other important
low-level features. In [1] we consider richer and weaker semantics that add these
features. Those weaker semantics implement the high-level semantics—though
under non-trivial assumptions that restrict the sharing of data between transac-
tions and unprotected code.

4.1 States

As described in Figure 2, a state (o, T, e) consists of the following components:

S e State = RefStore x FxpSeq X Exp
o € RefStore = RefLoc — Value

r € RefLoc C Var

T € EzpSeq = Exp”

Fig. 2. State space.

— a reference store o,
— a collection of expressions T', which we call the pool,
— a distinguished active expression e.

A reference store o is a finite mapping of reference locations to values. Formally,
reference locations are special kinds of variables that can be bound only by a
reference store. We write RefLoc for the set of reference locations. We assume
that RefLoc is infinite, so RefLoc — dom(o) is never empty. For every state
(0, T, e), we require that if r € RefLoc occurs free in o(r’), in T, or in e, then r €
dom(o). This condition will be assumed for initial states and will be preserved
by computation steps.

4.2 Steps

A transition relation takes an execution from one state to the next. According
to this transition relation, when the active expression is unit, an expression
from the pool becomes the active expression. It is then evaluated as such until
it produces unit or until it yields. No other computation is interleaved with this
evaluation. Each evaluation step produces a new state. Unless the active expres-
sion is unit, this new state is obtained by decomposing the active expression
into an evaluation context and a subexpression that describes an operation (for
instance, a function application or an allocation).

As usual, a context is an expression with a hole [], and an evaluation context
is a context of a particular kind. Given a context C and an expression e, we write
C[e] for the result of placing e in the hole in C. We use the evaluation contexts
defined by the grammar:

P=[]|Pe|VP|reftP|!P|P:=e|r:=P|blockUntil P

Figure 3 gives rules that specify the transition relation. The string “Trans”
in the names of the rules refers to “transition” rules, not to “transaction”. In
these rules, we write e[V/x] for the result of the capture-free substitution of V'
for x in e, and write o[r — V] for the store that agrees with o except at r, which
is mapped to V.

(Trans Activate) applies when the active expression is unit and the pool is
not empty; it takes an expression from the pool as the new active expression.
In all other rules, a subexpression in an evaluation context in the active expres-
sion determines a possible next operation. For instance, in (Trans Appl), the

(o, T,P[(Az.e) V']) — (o, T,P[e[V/x]]) (Trans Appl)

(0, T, P ref V]) — {o[r— V], T,P[r]) (Trans Ref)
if r € RefLoc — dom(o)
(o, T,P[!r]) — (o, T,P[V]) (Trans Deref)
ifo(r)=V
(o, T,P[r:=V]) — {(o[r— V],T,P[unit |} (Trans Set)
(0,T,P[async e]) — (o0, T.e, P unit |) (Trans Async)
(o, T, P| blockUntil true |) — (o, T, P[unit]) (Trans Block)
(0, T, P yield]) — (o, T/P[unit],unit) (Trans Yield)
(o, T.e.T',unit) — (o, T.T', €) (Trans Activate)

Fig. 3. Transition rules of the abstract machine.

subexpression is a function application (Az. e) V, so the next operation is beta
reduction, and the result e[V/z] of this beta reduction replaces (Az. e) V in the
evaluation context. Similarly, in (Trans Yield), the subexpression is yield, so
unit replaces yield, the active expression is moved to the pool, and the new
active expression is unit. No rule applies in some cases, for instance when the
active expression is blockUntil false. Lower-level semantics may abort and
roll-back in such cases [1].

These rules are more compact than previous ones, simply because of the omis-
sion of unprotected computations. Further variants are possible. In particular,
we may consider adding the rule:

(0,T,P| yield]) — (o, T,P| unit)

This rule represents a short-cut: it can be derived by composing (Trans Yield)
and (Trans Activate).

5 Dynamic Atomicity Checks

We extend the calculus with a construct that asserts the absence of yielding in a
computation. We focus on the high-level semantics of Section 4, though similar
extensions and corresponding results can be obtained for other semantics.

The extension goes as follows:

— We extend the syntax of the language with terms of the form <e>. Informally,
<e> means that there should be no yield in the course of the evaluation of e.

(This notation is inspired by Lamport’s angle brackets, which also indicate
atomicity.)

— We also extend the evaluation contexts, so that evaluation can proceed un-
der < : > Their grammar becomes:

7D:H|7)€|V77|ref73|!73|73:=e\7"::73|blockUnti173|<73>

— We extend all the rules of the operational semantics to these terms and these
evaluation contexts, and also add a rule to the operational semantics:

(0, T,P[(V)])— (o,T,P[V']) (Trans Assert)

Given that <e> asserts that there is no yield in the course of the evaluation
of e, this rule says that the assertion can be dismissed when e is a value V
(not subject to further evaluation).

These extensions are conservative, in the sense that they affect neither the oper-
ational semantics nor the typing (in the type system of Section 6) of expressions
without assertions. Therefore, some of the main results below (Theorems 1 and 3)
apply also without the extensions.

Consider a transition that is an instance of (Trans Yield), so this transition
is of the form:

(0,T,P| yield |) — (o, T.P[unit], unit)

for some o, T, and P. We say that this transition is an atomicity violation if P
is of the form P’[(P")], for instance if P[yield] is (yield) or !(ref yield).

What should we do with an atomicity violation? There are at least three
distinct possibilities:

1. Continue the computation despite the atomicity violation; in this case, the
main use of < . > is as a marker that allows us to explain what went wrong.
The present definition of the operational semantics embodies this possibility.
Accordingly, the results below concern this possibility as well.

2. Stop the computation, allowing for recovery.

Formally, it would suffice to remove the transitions that constitute atomicity
violations, with the understanding that any computation that has not com-
mitted may be rolled back, and perhaps retried later. Specifically, we would
restrict (Trans Yield) to:

(0,T, P[] yield]) — (o, T.P| unit |,unit)
if P is not of the form P'[(P")]

Thus, (P"[yield]) would be analogous to blockUntil false.
3. Stop the computation with a fatal error.
Formally, we could add a special state wrong that would represent errors,
and change the operational semantics for producing errors instead of allowing
atomicity violations. Specifically, we would restrict (Trans Yield), as above,
and add:
(0,T,P'[(P"[yield])]) — wrong

s,t € Type = Unit
| Bool
| s =Pt
| Reft
p,q € {Yields, NoYields}

Fig. 4. Types for yielding.

With all these options, it is attractive to prove that, for some class of good
programs, atomicity violations are not possible. The next section provides a
type system for this purpose.

6 Static Atomicity Checks

This section defines a simple type system for atomicity checking. This type
system can be seen as an alternative to the dynamic approach described above
in Section 5. However, the two approaches may be combined; moreover, the
dynamic approach is useful for formulating the correctness of the static approach
(in Section 7).

The type system is based on the syntax of types of Figure 4, and is defined
in terms of formal judgments:

EFo E is a well-formed typing environment
E;pke:t e is a well-typed expression of type ¢ in E with p

The typing rules of Figure 5 operate on these judgments.

The type of an expression depends on a typing environment E, which maps
variables to types. The typing environment is organized as a sequence of bindings,
and we use @) to denote the empty environment:

E:=0|Ez:t

The core of the type system is the set of rules for the judgment E;pte:t
(read “e is a well-typed expression of type ¢ in typing environment E with
effect p”). The intent is that, if this judgment holds, then e yields values of type
t with effect p, and the free variables of e are given bindings consistent with the
typing environment E. When p is Yields, this means that the evaluation of e
may yield; when p is NoYields, this means that the evaluation of e definitely
does not yield. We require that (-) appears only around expressions with effect
NoYields. We write ¢ <: p for p = q or p = Yields. We say that e is well-typed
when there exist E, p, and t such that E;pFe:t.

As a design choice, we arrange that every expression that can be typed with
effect NoYields can also be typed with effect Yields. For instance, we allow giv-
ing the effect Yields to the constant true, although the evaluation of true will

Do (Env 0)

EFo z¢&dom(E)
E,x:tkFo

(Env z)

EFo
FE;ptF unit : Unit

(Exp Unit)

EtFo

Exp Bool fal
E;pl false : Bool (Exp Bool false)

ErFo
FE;pt true:Bool

(Exp Bool true)

Ex:t,EFo
Ex:t,Eptax:t e)
o
Eipte:t (Exp Ref)

FE;pkrefe:Reft

E;pke:Reft

EpFle (Exp Deref)

E;pkei:Reft E;pkeax:t
E;plke; :=e2:Unit

(Exp Set)

E;plke:Unit
E;qF async e : Unit

(Exp Async)

E;plke:Bool
E ;ptF blockUntil e : Unit

(Exp Block)

Ero
F;Yields I yield : Unit

(Exp Yield)

FE;NoYieldske:t
E;p|—<e>:t

(Exp Assert)

Fig. 5. Rules of the first-order type system for yielding.

obviously never yield. This property ensures that effects are not invalidated by
computation. For example, consider the expression yield; true, which has effect
Yields and produces the result true. Because true has effects NoYields and
also Yields, the effect of yield;true continues to be derivable after reduction
to true.

There are alternative methods for achieving the same effect. These include
the use of a system with subtyping, which would also provide more flexibility at
function types. The present method is simpler and enables us to focus on the
core system. Undoubtedly richer type disciplines are possible.

7 Soundness

Intuitively, the correctness of the type system is the property that says that if
an expression has effect NoYields statically then it does not yield at run-time.
However, in the course of evaluation, the expression may change, and that should
not be an excuse for yielding. So it is convenient to tag the expression, and to
keep the tag on the expression even if the expression changes until its evaluation
completes. The angle brackets of Section 5 serve as such a tag.

As a first step in the soundness proof, we generalize the type system to states
(0,T,e). We write

E;pi.-+ pn,pt{o,e1.-++ ey, €)

if

dom(o) = dom(E) N RefLoc,
— for all r € dom(0o), there exists t such that E(r) = Ref ¢ and F ;NoYields I

o(r) :t,
— E;p;Fe; : Unit for all i = 1..n,
— E;pke:Unit.

The first condition relates the domains of ¢ and FE. The second one says that
FE assigns types of the appropriate form to reference locations, and that o
maps these reference locations to expressions of appropriate types, with effect
NoYields (because these expressions must be values). The remaining conditions
require typing the expressions ey, ..., e,, and e.

We say that (o,e1.--- .en,e) is well-typed if there exist E and p1, ..., pp, D
such that E;p1. -« .pn,pF {(0,e1.-++ ., €).

We obtain that typability is preserved by computation:

Theorem 1 (Preservation of Typability). If (o,T,e) —* (¢/,T",€') and
(0,T,e) is well-typed, then so is (o', T’ €.

Partly as a corollary, we also obtain a result that expresses the correctness
of NoYields:

Theorem 2 (Atomicity Soundness). If (o, T,e) —* (¢/, T, €') and (o,T,e)
is well-typed, then none of the transitions in (o, T, e)—* (o', T', €'} is an atom-
icity violation.

Moreover, we obtain a progress result, which characterizes when a compu-
tation may stop and implies that computations do not get stuck in unexpected
ways:

Theorem 3 (Progress). If (0,T,e) is well-typed, the only free variables in
(0,T,e) are reference locations, and (o, T, e) —* (o', T’ €'}, then:

1. there exists (a”,T",e") such that {c',T' e’y — (a” . T" e"); or
2. €' is of the form P| blockUntil false |; or
3. € isunit and T' is empty.

The proofs of these three theorems are in an appendix.

8 Further Work

This paper provides an introduction to the AME programming model and ad-
vances one aspect of its development and formal study. We conclude with a brief
description of other recent and ongoing work on this model.

To date, we have only limited experience in programming in the AME model.
While this experience is rather encouraging, further experience may conceivably
lead to refinements in the constructs for AME. For instance, we have briefly
considered expressive generalizations of yield. In any case, it seems likely that
the need for atomicity checking will persist.

The semantics presented in this paper is a high-level description of the in-
tended meanings of the AME constructs. Lower-level semantics embody various
strategies for the implementation of these constructs. For instance, those lower-
level semantics can include optimistic concurrent execution of transactions, with
in-place updates to memory, conflict detection, and roll-backs [11]. In particu-
lar, the implementation of AME for C# on Bartok-STM relies on these features.
Such strategies may have great advantages in performance and responsiveness,
but they can lead to surprising results. We have therefore worked on describing
those strategies precisely and on analyzing their properties in detail [1]. The cor-
rectness of these strategies require substantial assumptions which say, roughly
that transactional and non-transactional computations do not share data di-
rectly. Several versions of these assumptions lead to correctness results, though
with different specifics. Some of these versions, and the corresponding trade-offs,
are the subject of ongoing work.

Acknowledgements

This paper is based on the original work on AME by Michael Isard and Andrew
Birrell, and on further, ongoing joint work with Tim Harris and Johnson Hsieh.
Dan Grossman made useful comments on the type system of Section 6. I am
grateful to all of them.

References

10.

11.

12.

13.

14.

15.

Martin Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics of trans-
actional memory and automatic mutual exclusion. In Proc. 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 63-74, 2008.
Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R. Douceur.
Cooperative task management without manual stack management. In Proc. 2002
USENIX Annual Technical Conference, pages 289-302, 2002.

Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen,
Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt. The Fortress lan-
guage specification, v1.08. Technical report, Sun Microsystems, March 2007.
Gérard Boudol. Fair cooperative multithreading. In Luis Caires and Vasco Thu-
dichum Vasconcelos, editors, CONCUR 2007 - Concurrency Theory, 18th Inter-
national Conference, volume 4703 of Lecture Notes in Computer Science, pages
272-286. Springer, 2007.

Roberto Bruni, Herndan C. Melgratti, and Ugo Montanari. Theoretical foundations
for compensations in flow composition languages. In Proc. 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 209-220,
2005.

Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung, Chi Cao
Minh, Christos Kozyrakis, and Kunle Olukotun. The Atomos transactional pro-
gramming language. In PLDI ’06: Proc. 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 1-13, 2006.

Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In
Proc. 2008 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 338-349, 2003.

Hector Garcia-Molina and Kenneth Salem. Sagas. In Proc. ACM SIGMOD 1987
Annual Conference, pages 249-259, 1987.

Tim Harris and Keir Fraser. Language support for lightweight transactions. In
Proc. 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 388-402, 2003.

Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Compos-
able memory transactions. In PPoPP ’05: Proc. 10th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 4860, 2005.

Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing mem-
ory transactions. In Proc. 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 14—25, 2006.

Michael Isard and Andrew Birrell. Automatic mutual exclusion. In Proc. 11th
Workshop on Hot Topics in Operating Systems, 2007.

Paul Roe and Clemens A. Szyperski. Mianjin: A parallel language with a type
system that governs global system behaviour. In Jiirg Gutknecht and Wolfgang
Weck, editors, Modular Programming Languages, Joint Modular Languages Con-
ference, JMLC 2000, volume 1897 of Lecture Notes in Computer Science, pages
38-50. Springer, 2000.

Nir Shavit and Dan Touitou. Software transactional memory. In Proc. 14th Annual
ACM Symposium on Principles of Distributed Computing, pages 204—213, 1995.
Yannis Smaragdakis, Anthony Kay, Reimer Behrends, and Michal Young. Trans-
actions with isolation and cooperation. In Proc. 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pages 191-210, 2007.

16. Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38-94, 1994.

Appendix: Proofs

Auziliary Results. We rely on a few auxiliary results. Several of them are routine,
and we omit the corresponding proofs. These include a replacement lemma (in
the style of Wright and Felleisen [16]), a substitution lemma, and a lemma that
deals with updates to the state.

Lemma 1 (Replacement). Consider a derivation D of E;p F Pl eo | : t.
Assume that this derivation includes, as a subderivation, a proof Dy of the judg-
ment E;po b eq : to for the occurrence of eg in P[- |. Assume that we also
have a derivation D} of E;pg F ef : to for some ej. Let D' be obtained from
D by replacing Dy with DYy, and ey with e in P. Then D' is a derivation of
E;pEPley]:t.

Lemma 2 (Substitution). If E,z : s, EF';pt e :t and F;NoYields F ¢ : s
then E,E';ptele’/z] : t.

Lemma 3 (Update). Assume that r € dom(o) and E(r) = Ref to. If E;p;.
<o pn,p F (0,€1.-++ .en,€) and E;NoYields - V : tg, then E;py. - .pp,p F
(o[r—V],e1.--- .en,e).

The remaining lemmas are more specific to our study, so we outline their
proofs. They say that values can be typed as not yielding, if they can be typed
at all; that expressions that do not yield may be seen as yielding; and that
yield can never appear in an evaluation context when the type system does
not indicate yielding. They also provide an analysis of the possible forms of
well-typed expressions.

Lemma 4. If E;ptV :t then E;NoYields -V : ¢.

This lemma holds simply because, in all the rules that can be used as the last
one for typing a value ((Exp unit), (Exp false), (Exp true), (Exp z), and (Exp
Fun)), the type system leaves the choice of effect completely unconstrained.

Lemma 5. If F;NoYieldsF e:t then F;Yieldst e:t.

The proof of Lemma 5 is by induction on the derivation of E ;NoYields ke : t,
with a case analysis on which rule is applied last. No rule forces a conclusion with
NoYields: some rules where the conclusion may have effect NoYields (like (Exp
Async) and (Exp Assert)) leave the choice of effect unconstrained, while others
(like (Exp Appl) and (Exp Ref)) propagate the effect used in the hypotheses of
the rule application. In the latter case, Yields can be used instead of NoYields
also in the hypotheses of the rule application, by induction hypothesis and, in
the case of (Exp Appl), because g <: Yields always holds.

Lemma 6. It is never the case that E ;NoYields F P[yield | : t.

The proof of Lemma 6 is by induction on typing derivations, with a case analysis
on which rule is applied last.

— The cases of (Exp Unit), (Exp Bool false), (Exp Bool true), (Exp z), and
(Exp Fun) are trivial, since the expressions typed there are values and cannot
be the one in question.

— The case for (Exp Yield) is trivial because it gives an effect Yields.

— The cases of (Exp Appl), (Exp Ref), (Exp Deref), (Exp Set), and (Exp
Block) are all by applications of the induction hypothesis, which are possible
because the effects in the hypotheses of the rules are the same as the effects
in their conclusions.

— The case for (Exp Async) is excluded because a context P cannot be of the
form async P’, so in this case P must be [], and async - cannot match
yield.

— The case for (Exp Assert) is by application of the induction hypothesis, since
the effects in the hypothesis of the rule is NoYields.

Lemma 7. Suppose that e is a well-typed expression in which the only free vari-
ables are reference locations (with types of the form Ref t). Then e is a value or
an expression of the form P[f], where f has one of the forms (Ax.e') V, ref V,
Ir, r:=V, async €/, blockUntil true, blockUntil false, yield, and <V>

The proof of Lemma 7 is by induction on the typing of e, with a case analysis
on the last rule in the typing derivation.

— In the cases of (Exp Unit), (Exp Bool false), (Exp Bool true), (Exp z),
and (Exp Fun), e is a value.

— In the case of (Exp Appl), e cannot be a value. If e; es is well-typed, then e;
and es must be well-typed, and we apply the induction hypothesis to them.
Suppose first that e; is a value. Because the type of e; must be a function
type, e; must be of the form Ax. ¢’. (It cannot be a variable because reference
locations do not have function types.) If e is also a value V| we obtain that
e is of the required form, with [] for P. If e is not a value, then it is of the
form P'[f], for an appropriate f, and we let P be e; P’. If e is not a value,
then it is of the form P’[f], for an appropriate f, and we let P be P’ es.

— In the case of (Exp Ref), e cannot be a value. If ref e; is well-typed, then
e; must be well-typed, and we apply the induction hypothesis to it. Suppose
first that e; is a value. We obtain that e is of the required form, with []
for P. If e; is not a value, then it is of the form P’[f |, for an appropriate f,
and we let P be ref P’.

— In the case of (Exp Deref), e cannot be a value. If le; is well-typed, then e;
must be well-typed, and we apply the induction hypothesis to it. Suppose
first that e; is a value. Because the type of e; must be a reference type, ey
must be a reference location r. We obtain that e is of the required form,
with [] for P. If e; is not a value, then it is of the form P’[f], for an
appropriate f, and we let P be !P’.

— In the case of (Exp Set), e cannot be a value. If e; := e5 is well-typed, then e;
and ey must be well-typed, and we apply the induction hypothesis to them.
Suppose first that e; is a value. Because the type of e; must be a reference
type, e; must be a reference location r. If es is also a value V', we obtain
that e is of the required form, with [] for P. If es is not a value, then it is
of the form P’[f], for an appropriate f, and we let P be r := P'. If e is
not a value, then it is of the form P’[f], for an appropriate f, and we let
P be P’ := es.

— The cases of (Exp Async) and (Exp Yield) are immediate, using the con-
text []

— In the case of (Exp Block), e cannot be a value. If blockUntil e; is well-
typed, then e; must be well-typed, and we apply the induction hypothesis
to it. Suppose first that e; is a value; according to the typing rules, it can be
only false and true. (It cannot be a variable because reference locations
do not have type Bool.) We obtain that e is of the required form, with [] for
P. If ey is not a value, then it is of the form P’[f], for an appropriate f,
and we let P be blockUntil P’

— In the case of (Exp Assert), e cannot be a value. If <61> is well-typed, then
e1 must be well-typed, and we apply the induction hypothesis to it. Suppose
first that e; is a value. We obtain that e is of the required form, with []
for P. If e; is not a value, then it is of the form P’[f], for an appropriate f,
and we let P be (P’).

Proof of Theorem 1. We prove that if (o,e1.--- .e,, e)— (o', €}.--- .el,,€¢) and
(o,€1.+++ .en,e) is well-typed then so is (o', €].--- .e/,,e'). The theorem follows
immediately by induction.

The proof is by cases on the operational-semantics rule being applied. In each

case, we show that if
Eipi.- .pn,pt(o,€1.-- .en,€)
then
e')
where, unless indicated otherwise, E' = E, n’ = n, and p; = p; for i = l..n.
In several cases, we consider the typings of certain subexpressions that occur in

evaluation contexts; those typings are with respect to F, since the holes in the
contexts are never under binders.

Eph-plpEd e el

n’s

— (Trans Appl): The typing of (o, T,P[(Az.e) V' |) must rely on (Exp Appl)
and (Exp Fun). Specifically, we must have E;pg - (Ax. e) V : ¢, for some t
and pg, and therefore E ;pg F Az. e : t; —9 ty for some qo <: pg and E ;pg b
V : t; for some t1, and therefore E,x : t1;q90 F e : tg. By Lemma 5, F,x :
t1;q90F e :tgand qp <: po imply E,x : t1;po - e : tg. By Lemma 2, we obtain
E;po b e[V/x] : to. By Lemma 1, we obtain a typing of (o, T, P[e[V/z]).

— (Trans Ref): The typing of (o, T, P[ref V]) must rely on (Exp Ref). Specif-
ically, we must have E ;pg - ref V : Ref t; for some ¢y and pg, and therefore

E;pgFV :ty. By Lemma 4, we obtain F;NoYields - V : t3. We extend
E with r : Ref to. We can do this extension because r € RefLoc — dom(o),
hence r ¢ dom(FE). By a weakening (adding r : Ref ¢y to F for typing
(0,T,P[ref V'])) and Lemma 1, we obtain a typing of (o, T,P[r]).

— (Trans Deref): The typing of (o, T, P[Ir |) must rely on (Exp Deref). Specif-
ically, we must have E;py + !r : tg for some ¢y and pg, and therefore
E;pg b r : Ref tyg. Since r is a variable, its type must come from the
environment E, so by hypothesis E;NoYields - V : ¢ty where V = o(r).
By Lemma 5, we also have F;Yields | V : ¢y, which is useful in case pq is
Yields. By Lemma 1, we obtain a typing for (o, T,P[V]).

— (Trans Set): The typing of (o, T, P[r := V]) must rely on (Exp Set). Specif-
ically, we must have F ;pg b r := V : Unit for some pg, and therefore F ; pg -
V :tgand E;pg F 7 : Ref tg for some pg. By Lemma 4, E';py -V : ¢ implies
FE ;NoYields F V : ty. Since r is a variable, its type must come from the en-
vironment F. By Lemma 1, we can transform a typing of (o, T, P[r:=V])
into a typing of (o, T, P[unit]), and since E ;NoYields + V : tg and E(r) =
Ref ¢(, we also obtain a typing of (o[r — V],T,P[unit]) by Lemma 3.

— (Trans Async): The typing of (o, T, P[async e]) must rely on (Exp Async).
Specifically, we must have F ; pg - async e : Unit for some pg, and therefore
that E';qp F e : Unit for some ¢p. By Lemma 1, we can transform a typing
of (o,T,P| async e]) into a typing of P[unit], and then into a typing of
(0,T.e,P[unit |) by letting n’ = n + 1 and adding ¢o to the sequence of
effects.

— (Trans Block): The typing of (o, T, P[blockUntil true |) must rely on (Exp
Block), specifically on a derivation of F ;py - blockUntil true : Unit for
some pg. By Lemma 1, we obtain a typing of (¢, T, P[unit |).

— (Trans Yield): This case requires a trivial rearrangement in the effects: n’ =
n+1,p), ., =p, and p’ = NoYields.

— (Trans Activate): This case requires a trivial rearrangement in the effects:
n’ = n — 1, and the effect p; that corresponds to the expression e is skipped
in pj.---.pl,, and becomes p'.

— (Trans Assert): The typing of (o, T,P[(V')]) must rely on (Exp Assert).
Specifically, we must have E;py + <V> : to for some ty and pg, and E;
NoYields -V :tp, 80 E;po F V : tg by Lemma 5. By Lemma 1, we obtain
a typing of P[V'] and then of (o, T,P[V |).

Proof of Theorem 2. By Theorem 1, if (0, T, e) is well-typed then so are all the
states reached in the computation (o, T, e)—"*(c’,T", €’). Therefore, it suffices to
prove that if (o, T, e) is well-typed and (o, T, e)—— (o', T", €'}, then this transition
is not an atomicity violation. The claim in the theorem then follows by induction.

So suppose that (0,7, e) is well-typed and (o, T, e) — (o', T",€’). This tran-
sition could be an atomicity violation only if e is of the form P’[(P”[yield])]
for some P’ and P”. If (0,T,e) is well-typed, then so is e, and therefore also
<73”[yield]>, because a state can be well-typed only if all its components and
their subexpressions are well-typed. By the typing rule for assertions, the fact

that (P”[yield]) is well-typed implies that E’;NoYields - P”[yield]: ¢’ for
some F’ and t'. We conclude by Lemma 6.

Proof of Theorem 3. According to Theorem 1, the state (o/, T, €’} is well-typed.
Since the rules of the operational semantics do not introduce free variables other
than reference locations, the only free variables in e’ are reference locations. The
desired conclusion follows from Lemma 8, given next.

Lemma 8. If (0, T,e) is well-typed, and the only free variables in e are reference
locations, then:

1. there exists (o', T, €') such that (o, T, e) — {(¢’, T’ ¢'}; or
2. e is of the form P| blockUntil false |; or
3. e isunit and T is empty.

In order to prove Lemma 8, we apply Lemma 7 to e.

— If e is a value, then it must be unit because {0,T,e) is well-typed and
reference locations do not have type Unit. If T' is empty, then we are in the
third case. Otherwise, rule (Trans Activate) applies, and we are in the first
case.

— If e is of the form P[blockUntil false |, then we are immediately in the
second case.

— If e is of the form P[f | where f is one of (Az.€e') V, ref V, Ir, r =V,
async €/, blockUntil true, yield, and <V>, then (Trans Appl), (Trans Ref),
(Trans Deref), (Trans Set), (Trans Async), (Trans Block), (Trans Yield), or
(Trans Assert) apply, respectively, and we are in the first case again. In the
case of (Trans Ref), we use that RefLoc — dom(o) is never empty. In the case
of (Trans Deref), we rely on the condition that if r € RefLoc occurs free in e
then r € dom(o), and on the fact that o maps reference locations to values.

