
Security Analysis of Cryptographically Controlled Access
to XML Documents

Mart́in Abadi
Computer Science Department

University of California at Santa Cruz

abadi@cs.ucsc.edu

Bogdan Warinschi
∗

Computer Science Department
Stanford University

bogdan@theory.stanford.edu

ABSTRACT
Some promising recent schemes for XML access control em-
ploy encryption for implementing security policies on pub-
lished data, avoiding data duplication. In this paper we
study one such scheme, due to Miklau and Suciu. That
scheme was introduced with some intuitive explanations and
goals, but without precise definitions and guarantees for the
use of cryptography (specifically, symmetric encryption and
secret sharing). We bridge this gap in the present work. We
analyze the scheme in the context of the rigorous models
of modern cryptography. We obtain formal results in sim-
ple, symbolic terms close to the vocabulary of Miklau and
Suciu. We also obtain more detailed computational results
that establish security against probabilistic polynomial-time
adversaries. Our approach, which relates these two layers of
the analysis, continues a recent thrust in security research
and may be applicable to a broad class of systems that rely
on cryptographic data protection.

1. INTRODUCTION
A classic method for enforcing policies on access to data

is to keep all data in trusted servers and to rely on these
servers for mediating all requests by clients, authenticating
the clients and performing any necessary checks. An alter-
native method, which is sometimes more attractive, consists
in publishing the data in such a way that each client can
see only the appropriate parts. In a naive scheme, many
sanitized versions of the data would be produced, each cor-
responding to a partial view suitable for distribution to a
subset of the clients. This naive scheme is impractical in
general. Accordingly, there has been much interest in more
elaborate and useful schemes for fine-grained control on ac-
cess to published documents, particularly for XML docu-
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ments [4, 5, 7, 8, 14, 19, 23]. This line of research has led to
efficient and elegant publication techniques that avoid data
duplication by relying on cryptography. For instance, us-
ing those techniques, medical records may be published as
XML documents, with parts encrypted in such a way that
only the appropriate users (physicians, nurses, researchers,
administrators, and patients) can see their contents.

The work of Miklau and Suciu [19] is a crisp, compelling
example of this line of research. They develop a policy query
language for specifying fine-grained access policies on XML
documents and a logical model based on the concept of “pro-
tection”. They also show how to translate consistent poli-
cies into protections, and how to implement protections by
XML encryption [10]. Roughly, a protection is an XML tree
in which nodes are guarded by positive boolean formulas
over a set of symbols {K1, K2, . . . } that stand for crypto-
graphic keys. Protections have a simple and clear intended
semantics: access to the information contained in a node is
conditioned on possession of a combination of keys that sat-
isfies the formula that guards the node. For example, access
to a node guarded by (K1 ∧K2)∨K3 requires possessing ei-
ther keys K1 and K2 or key K3. (See Gifford’s work for some
of the roots of this approach [11].) Formally, a protection
describes a function that maps each possible set of keys to
the set of nodes that can be accessed using those keys, treat-
ing the keys as symbols. On the other hand, the use of keys
for deriving a partially encrypted document is not symbolic:
this process includes replacing the symbols K1, K2, . . . with
actual keys, and applying a symmetric encryption algorithm
repeatedly, bottom-up, to the XML document in question.

While Miklau and Suciu provide a thorough analysis of
the translation of policies into protections, they leave a large
gap between the abstract semantics of protections and the
use of actual keys and encryption. The existence of this gap
should not surprise us: an analogous gap existed in protocol
analysis for 20 years, until recent efforts to bridge it [1, 2, 13,
15, 18, 20]. Concretely, the gap means that the protection
semantics leaves many problematic issues unresolved. We
describe two such issues, as examples:

• Partial information: It is conceivable that even when a
node should be hidden according to a protection, the
partially encrypted document may in fact leak some
information about the data in that node.

• Encryption cycles: From the point of view of the ab-
stract semantics, encryption cycles (such as encrypting



a key with itself) are legitimate and do not contradict
security. On the other hand, there are encryption algo-
rithms that satisfy standard cryptographic definitions
of security but that leak keys when encryption cycles
are created.

More generally, there are many encryption methods and
many notions of security for them (e.g., [3, 9, 12]), and it
is not clear which one, if any, provides adequate guaran-
tees for this application—nor is it exactly clear what those
guarantees might be.

The immediate goal of this work is to bridge this gap
by reconciling the abstract semantics of protections with a
more concrete, computational treatment of security, and to
define and establish precise security guarantees. We do not
wish to replace the abstract semantics, which certainly has
its place, but rather to complement it.

From a broader perspective, our goal is to develop, apply,
and promote useful concepts and tools for security anal-
ysis in the field of database theory. These concepts and
tools do not pertain to statistical techniques, which have
long been known in database research (e.g., [6, 22]), but
rather to cryptography. While sophisticated uses of cryp-
tology in database research may have been of modest scope,
there is an obvious need for database security, and we believe
that cryptology has much to offer. In research on crypto-
graphic protocols, formal and complexity-theoretic methods
have been successful in providing detailed models and in
enabling security proofs (sometimes automated ones). The
same methods are beneficial for a broad class of systems that
require security. Each application, however, can necessitate
non-trivial, specific insights and results. In the techniques
that we study, partial and multiple encryptions occur in
(large, XML) data instances; we therefore depart from the
situations most typically considered in the cryptography lit-
erature, towards data management. It is this specificity that
motivates the present paper.

Overview of results
Our analysis is directed at the core of the framework of
Miklau and Suciu, which aims to ensure data protection by
an interesting combination of encryption schemes and secret
sharing schemes [21]. As a formal counterpart to their loose,
informal concept of data secrecy, we introduce a strong, pre-
cise cryptographic definition. The definition goes roughly as
follows. Consider a protection for an XML document. An
adversary is given an arbitrary set of keys, and the liberty
of selecting two instantiations for the data in all nodes that
occur in the XML document. The only restriction on these
instantiations is that they should coincide on the nodes to
which the adversary rightfully has access according to its
keys and the abstract semantics of protections. In other
words, the adversary selects two documents that contain
the same information in the nodes it can access but may
differ elsewhere. Then the adversary is given the partially
encrypted document that corresponds to one of its two doc-
uments, and its goal is to decide which of the two instanti-
ations was used in generating this partially encrypted doc-
ument. Security means that the adversary cannot do much
better than picking at random. It implies that the partially
encrypted document reveals no information on the data in
the nodes that should be hidden from the adversary, for
otherwise this information would be sufficient to determine
which instantiation was used.

Technically, we adapt and extend the approach of Abadi
and Rogaway [1]. The novelties of this paper include the ap-
plication to document access control, significant differences
in basic definitions motivated by this application, and the
treatment of secret sharing. First we provide an interme-
diate symbolic language for cryptographic expressions. We
then define patterns of expressions; intuitively, a pattern
represents the information that an expression reveals to an
adversary. We show how to transform protections into cryp-
tographic expressions, and use patterns to provide an equiv-
alent semantics for protections. This equivalence is captured
in Theorem 1. Going further, we relate expressions to con-
crete computations on bit-strings. The most difficult result
of this paper is Theorem 2. Informally, it states that pat-
terns faithfully represent the information that expressions
reveal, even when expressions and patterns are implemented
with actual encryption schemes (not symbolically). More
precisely, we associate probability distributions with an ex-
pression and its pattern by mapping symbols to bit-strings
and implementing encryption with a semantically secure en-
cryption scheme [12], and prove that these distributions can-
not be distinguished by any probabilistic polynomial-time
algorithm. Our main theorem, Theorem 3, reconciles the
abstract semantics of protections with the actual use of en-
cryption. We establish that if data is hidden according to
a protection, then it is secret according to our definition of
secrecy.

Contents
The next section, Section 2, is mostly a review. In Sec-
tion 3 we introduce our formal language for representing
cryptographic expressions and give an alternative semantics
to XML protections. Our main results are in Section 4: we
give concrete interpretations to expressions and relate the
formal semantics of protections to a strong definition of se-
crecy. We conclude in Section 5.

2. CONTROLLING ACCESS TO XML
DOCUMENTS WITH PROTECTIONS

In this section we briefly recall the key aspects of the work
of Miklau and Suciu. We focus on protections. We describe
the derivation of partially encrypted documents from protec-
tions in the next section. We omit the policy query language
because, for our purposes, we can discuss the protections
generated from policies rather than the policies themselves.

We model XML documents as trees labeled with elements
from a set Data = {D1, D2, . . . }, which we tacitly assume
to represent XML element names and actual data values,
though we make no syntactic distinction between these two
possibilities. We use pre-order representations for XML
trees, described by the grammar:

XML ::= (Data) | (Data, XML, XML, . . . , XML)

with terminals in Data ∪ {“(”, “)”}.
A protection consists of two components: a metadata

XML tree obtained from an XML tree by adding metadata
nodes, and a mapping that attaches to each node a positive
boolean formula over Keys = {K1, K2, . . . }. Metadata nodes
have special kinds of labels, and it is assumed that they can
be distinguished from the standard XML nodes. Their la-
bels are one of the symbols OR and AND, or hold keys in
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Figure 1: A tree protection (left) and an equivalent normalized one (right).
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Figure 2: Expression associated with the normalized protection of Figure 1.

the set Keys or key shares in the set KeyShares defined by:

KeyShares = {Kj
i | Ki ∈ Keys, j ∈ 1..n}

for a fixed parameter n. Thus, in summary, protections are
generated by the grammar:

Prot ::= [(BData), Cond] |
[(BData, Prot, Prot, . . . , Prot), Cond]

Cond ::= true | false | Keys | Cond ∧ Cond | Cond ∨ Cond

where

BData = Data ∪ Keys ∪ KeyShares ∪ {OR, AND}
is the set of node labels.

Roughly, the key shares K1
i , K2

i , . . . , Kn
i are pieces of

information that together allow the recovery of the key Ki,
but of which no proper subset suffices for computing Ki, or
even non-trivial partial information about Ki. For example,
when n = 2, the key share K1

i may be a random string of the
same length as Ki, and K2

i may be the XOR of Ki with K1
i .

We treat a framework more general than the original one,
which uses a particular way of sharing keys. We assume that
the number of shares for each key is some constant n, and
that each key is shared only once. (This assumption holds
in the original framework, where n = 2.)

In a protection, the formula that guards a node describes a
condition that a user needs to satisfy for accessing that node
(and its children). For example, accessing a node guarded
by the formula K1 ∧ (K2 ∨ K3) requires having key K1 and
at least one of the keys K2 and K3. In addition, the user
should also satisfy all formulas on the path from the root to
the node.

Using simple transformations, one can rewrite any protec-
tion into an equivalent, normalized protection where all for-
mulas that guard nodes are atomic, that is, one of true, false,
or K for some K ∈ Keys. Normalization requires adding
metadata nodes, keys, and key shares. Normalization can
also include removing parts guarded by false, so we assume
that false does not appear in normalized formulas (depart-
ing slightly from the original definition but without loss of

generality). Normalized protections are important because,
in standard encryption schemes, one can encrypt under an
atomic key but not under a boolean combination of keys.
Normalized protections serve as the basis for producing par-
tially encrypted documents by applying an encryption algo-
rithm repeatedly.

We explain the semantics of protections and the role of
key sharing using the example in Figure 1 taken from [19].
Notice that we preserved the original labels—we did not re-
place element names with symbols D1, D2, . . . . The tree
on the left is an example of a protection over some XML
medical database. A user that possesses only key K3 can-
not access any node since the root is guarded by K1. If the
user knows also K1 then it should be able to access the data
in nodes {1, 2, 3, 5}. The tree on the right is a normalized
protection, equivalent to the protection on the left. In the
normalized protection, a user with keys K1 and K3 can re-
cover the information in nodes 9 and 10, that is, the key
shares K1

5 and K2
5 , and therefore K5. (Recall that, in [19],

keys are split into only two shares.) The key K5 can then
be used to recover the information in node 11, that is, the
key K6 which together with K1 provides access to the nodes
{1, 2, 3, 5} of the original tree.

Formally, the semantics of a protection P is the func-
tion AccP : P(Keys) → P(Data) that, given a set of keys
T ⊆ Keys, returns the set of data that can be accessed using
the keys in T . Computing the function AccP (T ) is an itera-
tive process. The keys in T are used to access new keys (by
either obtaining them directly or recovering all their shares),
and the process is repeated until a maximal set of keys is
obtained. The output of AccP (T ) is the set of all data con-
tained in nodes that can be accessed using this last set of
keys.

In the description above, and in the analysis that follows,
we do not consider the use of keys derived from data (for
example, from mother’s maiden names and social security
numbers). There are at least three obstacles to obtaining
security guarantees with such keys. These obstacles are not
specific to a particular scheme, but they do arise in this con-



text. First, the potential lack of entropy in data implies that
the resulting keys may offer no security. Moreover, the key
derivations can lose some data entropy. Finally, the resulting
keys can be involved in questionable encryption cycles—for
instance, protecting a mother’s maiden name with a social
security number and vice versa.

3. FORMAL ANALYSIS
In this section we introduce a language for representing

cryptographic expressions that use symmetric encryption
and secret sharing schemes. We rely on this language for
providing a formal account of the transformation of protec-
tions into partially encrypted documents. We also define
patterns of expressions, which capture the information that
expressions reveal to an adversary, in symbolic terms. (This
definition is a variant of ones suggested in other contexts [1,
13, 17].) Finally, we establish a relation between the seman-
tics of protections and these patterns.

An intermediate cryptographic language
We consider expressions built from the set of basic data
BData (defined above), using tupling and encryption with
keys in Keys. The grammar for expressions is:

Exp ::= BData | (Exp, Exp, . . . , Exp) | {Exp}Keys

For example, an element in Exp is the expression

({(D2, K
2
1 )}K2 , {(D1, {K2}K3)}K1)

It represents the tupling of two ciphertexts. The first ci-
phertext is the encryption under key K2 of data D2 and key
share K2

1 . The second ciphertext is the encryption under
key K1 of the tuple formed from data D1 and the encryp-
tion under key K3 of key K2.

Associating cryptographic expressions to protections
We use our language of expressions for giving a precise defi-
nition of how to map a normalized protection to (a symbolic
representation for) a partially encrypted document. This
definition is recursive. It relies on the intuition that each
node of the XML tree under consideration is (recursively)
mapped to a part of the final, partially encrypted document.
If the node is guarded by a key, then the corresponding part
of the final document is encrypted under that key, otherwise
it is left in clear.

Formally, if Pi (for i = 1, 2, . . . , l) are normalized pro-
tections, B is an arbitrary basic data symbol, and K is an
arbitrary key in Keys, we define the function E : Prot → Exp
by:

• E([(B), true]) = (B)

• E([(B, P1, P2, . . . , Pl), true]) =
(B, E(P1), E(P2), . . . , E(Pl))

• E([(B), K]) = {(B)}K

• E([(B, P1, P2, . . . , Pl), K]) =
{(B, E(P1), E(P2), . . . , E(Pl))}K

For example, the expression of Figure 2 corresponds to the
second protection in Figure 1, with the element name con-
tained in node i replaced with data symbol Di.

Cycles
The definition of expressions allows encryption cycles of the
kind discussed in the introduction. For some of our results,
it is useful to focus on a class of acyclic expressions:

Definition 1 (Acyclic expressions). A plain occur-
rence of a key Kj in an expression E1 is one where Kj is
not the subscript in a subexpression {. . . }Kj . Key Ki en-
crypts key Kj in expression E if there exists a subexpression
{E1}Ki in E such that Kj occurs plainly in E1 or Kk

j (for
some k ∈ 1..n) occurs in E1. The expression E is acyclic if
the graph associated with its “encrypts” relation is acyclic.

For example, {K1}K2 and {{K1}K2}K2 are both acyclic,
while {K1}K1 and ({K1

1}K2 , {K2}K1) are not.
As long as data values are not used as keys, a protection

P that results from the translation of a policy never contains
keys in its nodes. In turn, if normalizing P yields P ′, then
E(P ′) is an acyclic expression. (This point follows from the
definition of normalization [19].)

Recoverable keys
Given an expression E, we write keys(E) for the set of key
symbols that occur in E or key symbols whose shares oc-
cur in E. We call a key recoverable if the key occurs in
clear (that is, not encrypted), if the key occurs encrypted
under recoverable keys, or if all its shares occur in clear or
encrypted under recoverable keys. Thus, the set of recover-
able keys is defined inductively. We write recoverable(E) for
the set of all recoverable keys in expression E. For example,
with n = 2, for the expression

E = ({K1, K
1
2 , K1

6 , K4}K3 , {K2
2}K2 , K3, {K5}K4)

we have

keys(E) = {K1, K2, K3, K4, K5, K6}
and

recoverable(E) = {K1, K3, K4, K5}
while for the expression

E′ = ({K1, K
1
2 , K1

6 , K4}K3 , {K5}K2 , K3, {K2
2}K4)

we have

keys(E′) = {K1, K2, K3, K4, K5, K6}
and

recoverable(E′) = {K1, K2, K3, K4, K5}
Expression patterns
For each expression E, we define its structure struct(E). Es-
sentially, the structure of an expression is given by its parse
tree in which the labels are replaced with fresh symbols. We
therefore introduce D, K0, and Kj

0 (for j ∈ 1..n), all disjoint
from BData, and define the structure of expressions by:

• struct(Ki) = K0 for all Ki ∈ Keys;

• struct(Kj
i ) = Kj

0 for all Ki ∈ Keys, j ∈ 1..n;

• struct(Di) = D for all Di ∈ Data;

• struct(OR) = OR;

• struct(AND) = AND;



• struct((E1, E2, . . . , Em)) =
(struct(E1), struct(E2), . . . , struct(Em));

• struct({E}Ki) = {struct(E)}K0 for all Ki ∈ Keys.

Thus, data symbols are replaced with D, key symbols are
replaced with K0, and key shares are replaced with corre-
sponding shares of K0. For example, the structure of the
expression

{({K1, D2}K3 , K1
3 )}K2

is

{({K0, D}K0 , K1
0 )}K0

The encryption cycle in this structure is unimportant for
our purposes. Alternative definitions of expression structure
can avoid such cycles without affecting our results. (For
example, one such definition lets the structure of {E}Ki be
{struct(E)}K′

0
, where K′

0 is a fresh symbol distinct from K0.)

We write p(E, T ) for the pattern that can be observed in
expression E using for decryption the keys in T ⊆ keys(E).
The set of patterns is defined like the set of expressions but
over extended sets of atomic symbols that include D, K0,
and Kj

0 (for j ∈ 1..n). The pattern p(E, T ) is defined by:

• p(B, T ) = B for all B ∈ BData;

• p((E1, E2, . . . , Em), T ) =
(p(E1, T ), p(E2, T ), . . . , p(Em, T ));

• p({E}Ki , T ) = {struct(E)}Ki if Ki 6∈ T ;

• p({E}Ki , T ) = {p(E, T )}Ki if Ki ∈ T .

The idea that motivates this definition is that ciphertexts
encrypted under unknown keys reveal at most the structure
of the underlying plaintext, but not the encrypted values.

We write pattern(E) for the pattern obtained from E by
using for decryption the keys recoverable from E itself. We
let:

pattern(E) = p(E, recoverable(E))

For example, the pattern of the expression

({D1}K1 , {D2}K2 , K1)

is

({D1}K1 , {D}K2 , K1)

Similarly, the pattern of the expression

({{D1}K2}K1 , {D2}K2 , K1)

is

({{D}K2}K1 , {D}K2 , K1)

Finally, when n = 2, the pattern of the expression

({D1}K1 , {{K1}K2}K3 , K1
3 , K2

3 , {({K1, D2}K3 , K1
3 )}K2)

is

({D}K1 , {{K0}K2}K3 , K1
3 , K2

3 , {({K0, D}K0 , K1
0 )}K2)

The abstract semantics of a protection P and the pattern
of the document E(P ) derived from P are related by the
following theorem. This theorem states that if, according
to protection P , data Di can be rightfully accessed using a
set of keys {K1, K2, . . . , Kl}, then Di occurs in the pattern

observed in (E(P ), K1, K2, . . . , Kl); and, conversely, if Di

occurs in the pattern observed in (E(P ), K1, K2, . . . , Kl),
then Di can be rightfully accessed using that set of keys
according to P .

Theorem 1. Let P be a normalized protection. For any
set of keys T = {K1, K2, . . . , Kl} ⊆ keys(E(P )) and any
Di ∈ Data, it holds that Di ∈ AccP (T ) if and only if Di

occurs in pattern((E(P ), K1, K2, . . . , Kl)).

Again, alternative sets of definitions are certainly possi-
ble, and perhaps attractive. Those definitions may capture
stronger security properties. With them, we may require
that a ciphertext encrypted under an unknown key reveal
nothing about the underlying plaintext (not even its struc-
ture or its length) [1]. For instance, we may let:

• p′(B, T ) = B for all B ∈ BData;

• p′((E1, E2, . . . , Em), T ) =
(p′(E1, T ), p(E2, T ), . . . , p′(Em, T ));

• p′({E}Ki , T ) = {2}Ki if Ki 6∈ T ;

• p′({E}Ki , T ) = {p′(E, T )}Ki if Ki ∈ T .

where 2 is a special symbol that represents undecryptable
material, and

pattern′(E) = p′(E, recoverable(E))

In another variant, we may let p′({E}Ki , T ) = 2 if Ki 6∈ T ,
hiding the occurrence of the key Ki in the resulting pattern.

Theorem 1 holds with these and other variants of the defi-
nitions. However, the other theorems of this paper are more
problematic in this respect. We return to this point in Sec-
tion 4.

4. COMPUTATIONAL ANALYSIS
In this section we give a concrete interpretation for expres-

sions and patterns as probability distributions on bit-strings.
This interpretation is computational in the sense that it re-
lies on computations on bit-strings rather than on symbolic
expressions. In particular, encryption is an actual computa-
tion on bit-strings, rather than a formal operation. In this
computational world, we give a cryptographic definition for
data secrecy, then prove our main results.

We first recall the definition of computational indistin-
guishability (a central ingredient for defining cryptographic
secrecy) and those of encryption and secret sharing schemes.

Indistinguishability of distribution ensembles
Let {D0

η}η and {D1
η}η be two distribution ensembles (se-

quences of probability distributions, indexed by a security

parameter η) and A an algorithm. We write x
R←Di

η to indi-

cate that x is sampled according to Di
η. The advantage of A

in distinguishing between the two ensembles is the quantity:

Advdist
D0,D1(A, η) = Pr

[
x

R←D0
η : A(x, η) = 1

]
−

Pr
[
x

R←D1
η : A(x, η) = 1

]

We say that D0 and D1 are computationally indistin-
guishable, and we write D0 ≈ D1, if for any probabilistic
polynomial-time algorithm A the quantity Advdist

D0,D1(A, η)
is negligible as a function of η. (A function f(η) is negligi-
ble if it is smaller than the inverse of any polynomial for all
sufficiently large inputs η [3].)



Encryption schemes
An encryption scheme Π consists of algorithms (K, E ,D)
for key generation, encryption, and decryption, respectively.
The key generation algorithm is randomized; it takes as in-
put a security parameter η and returns a key k to be used

for both encryption and decryption. We write k
R←K(η) for

the process of generating encryption keys. The encryption
algorithm is also randomized. It takes as input a key k
and a plaintext m, and outputs a ciphertext c. We write

c
R←E(k, m) for the process of encrypting message m with

key k, producing c. Finally, the decryption algorithm takes

as input a key k and a ciphertext c. If c
R←E(k, m) for a key

k and a plaintext m, then D(k, c) = m. Decryption returns
⊥ if it does not succeed.

We use a standard notion of security for encryption: indis-
tinguishability against chosen plaintext attacks (IND-CPA),
a.k.a. semantic security [12]. We define it next. For a given
encryption scheme Π = (K, E ,D) and a bit b, we consider
a “left-right” oracle LRΠ,b(η). This oracle is a program

that generates a key k (via k
R←K(η)), and then answers

queries of the form (m0, m1), where m0 and m1 are bit-
strings of equal length. The oracle always returns the answer
E(k, mb), that is, the encryption of the message selected by b.
Scheme Π is said to be IND-CPA secure if for any probabilis-
tic polynomial-time adversary A with access to the oracle
described above, the quantity:

Advind−cpa
Π (A, η) = Pr[ALRΠ,0(η) = 1] −

Pr[ALRΠ,1(η) = 1]

is negligible as a function of η. Intuitively, the adversary
A does not know b a priori, and it aims to discover b. The
advantage Advind−cpa

Π (A, η) will not be negligible if A can
determine b by interacting with the oracle. A fortiori, the
advantage Advind−cpa

Π (A, η) will not be negligible if A can
break encryptions, and therefore determine b by decrypting
the oracle’s response to a query (m0, m1) where m0 6= m1.

According to this definition of security, encryption need
not hide the length of plaintexts (because m0 and m1 are re-
quired to be of equal length). Furthermore, encryption need
not hide the identity of keys: an adversary may be able to
distinguish two encryptions under the same unknown key
from two encryptions under different unknown keys. Alter-
native notions of security can yield stronger guarantees, but
correspondingly they are harder to satisfy.

Secret sharing schemes
An n-out-of-n secret sharing scheme SS = (S, C) for sharing
keys of Π consists of algorithms for share creation and share
combination. The randomized share creation algorithm S
takes as input a key k and the security parameter η used
to generate it, and outputs n shares of k: k1, k2, . . . , kn.
The share combination algorithm C takes as input n shares
k1, k2, . . . , kn, and attempts to reconstitute the original key.
The scheme is correct if C(S(k, η)) = k for any key k and
any η.

Security of secret sharing requires that proper subsets of
shares for any two keys are indistinguishable. Let sh(k) be a
sample from the distribution S(k, η) of the n shares output
by the sharing algorithm for the key k, and sh(k)|S be the
restriction of sh(k) to the indexes in some set of indexes
S ⊆ {1, 2, . . . , n}. We require that for any pair of keys

k0 and k1 output by K(η), for any proper subset of indexes
S ⊂ {1, 2, . . . , n}, and for any probabilistic polynomial-time
adversary A, the quantity:

Advss
SS(A, η) =

Pr[sh(k0)
R←S(k0, η) : A(sh(k0)|S) = 1)] −

Pr[sh(k1)
R←S(k1, η) : A(sh(k1)|S) = 1)]

is negligible as a function of η.

Computational interpretation of expressions
Expressions and patterns induce distributions on bit-strings.
These distributions are obtained by replacing data symbols
with bit-strings and implementing encryption and key shar-
ing with actual encryption and secret sharing schemes.

Formally, for any expression or pattern E, given a func-
tion f : Data → {0, 1}∗ that maps data symbols to bit-
string representations of XML element names and values,
an encryption scheme Π = (K, E ,D), a secret sharing key
SS = (S, C), and a security parameter η, we define the distri-

bution [[E ]]Π,SS,η
f (and thus a distribution ensemble [[E ]]Π,SS

f )
using a two-step procedure:

1. In the first step, we map each key symbol to a bit-
string. Specifically, we assume that keys(E) = {K1,
. . . , Km}, and we generate a vector τ from the distri-
bution Km+1(η). This is a vector of m + 1 keys, each
obtained by running the key generation algorithm on
the security parameter. We map Ki to τ [i], and in
particular map K0 to τ [0].

We then obtain shares of the keys in τ by running the
secret sharing scheme SS. These shares are maintained
in an (m + 1)-by-n matrix φ whose rows are obtained

by φ[i]
R←S(τ [i]).

2. In the second step, we map each expression (or pat-

tern) E to an interpretation [[E ]]Π,SS,η
f that we define

inductively in Figure 3. This step assumes constant
bit-strings “or”, “and”, and “data”, as well as a tu-
pling operation on bit-strings.

The computational interpretation [[E(P )]]Π,SS,η
f associated

with the expression E(P ) is the distribution of the partially
encrypted document derived from protection P , generated
with encryption scheme Π, secret sharing scheme SS, and η
as security parameter.

Because encryption may not hide the length of plaintexts,
we typically need hypotheses on the lengths of bit-string rep-
resentations. For simplicity, we assume that those lengths
depend only on structure. More precisely, we assume that
the lengths of all samples from the distributions [[E ]]Π,SS,η

f

and [[struct(E)]]Π,SS,η
f are equal.

In the case where E is a data symbol, this assumption
means that we focus on functions f : Data → {0, 1}∗ that
map data symbols and “data” to bit-strings of a fixed length:

Definition 2. A valuation is a function f : Data →
{0, 1}∗ that maps every data symbol to a bit-string of the
same length as data.

In the case where E is a key symbol, the assumption
means that the key generator yields keys of a fixed length for
each given security parameter. A similar condition applies
to key shares. In the case where E is a tuple, it suffices that



[[D]]Π,SS,η
f = data

[[Di ]]
Π,SS,η
f = f(Di)

[[OR]]Π,SS,η
f = or

[[AND]]Π,SS,η
f = and

[[Ki ]]
Π,SS,η
f = τ [i]

[[Kj
i ]]

Π,SS,η

f = φ[i][j]

[[(E1, E2, . . . , El)]]
Π,SS,η
f = ([[E1 ]]Π,SS,η

f , [[E2 ]]Π,SS,η
f , . . . , [[El ]]

Π,SS,η
f )

[[{E}Ki ]]
Π,SS,η
f = E(τ [i], [[E ]]Π,SS,η

f )

Figure 3: Mapping expressions to bit-strings.

the length of a tuple is a function of the lengths of its com-
ponents. Similarly, in the case where E is an encryption, it
suffices that the length of a ciphertext is a function of the
length of the underlying plaintext and of the security pa-
rameter. These conditions on keys, key shares, tuples, and
encryptions hold in most usual implementations.

Secrecy, computationally
We use the computational interpretation of expressions for
giving a computational characterization of the secrecy of
data that occurs in expressions:

Definition 3. Let E be an expression, Π an encryption
scheme, SS a secret sharing scheme, and S ⊆ Data. The
set S is computationally hidden in E (with Π and SS) if for
any two valuations f0 and f1 such that

f0(Di) = f1(Di) for all Di ∈ Data − S

it holds that [[E ]]Π,SS
f0

≈ [[E ]]Π,SS
f1

.

As explained in the introduction, this definition supposes
that an adversary is allowed to choose two interpretations
f0 and f1 for the data symbols in the expression E. These
interpretations must map data symbols that are not secret
to the same bit-strings, but may map other data symbols
to different bit-strings of the same length. The adversary
is then given a bit-string selected from the distribution in-
duced by one of the two interpretations, and its goal is to
determine which interpretation was used. Secrecy means
that the adversary cannot do much better than guessing.

Main results
The technical core of our results is the next theorem. It
states that patterns faithfully represent the information that
expressions reveal, even when expressions and patterns are
mapped to bit-strings. Specifically, we prove that the dis-
tribution ensembles associated with E and pattern(E) are
indistinguishable.

Theorem 2. Let E be an acyclic expression. If Π is an
IND-CPA secure encryption scheme and SS is a secure secret
sharing scheme, then for any valuation f it holds that

[[E ]]Π,SS
f ≈ [[pattern(E)]]Π,SS

f

The proof of this theorem relies on a so-called hybrid argu-
ment. It is presented in the Appendix.

Building on this theorem, Theorem 3 relates the abstract
semantics of a normalized protection P , as defined by the
function AccP (·), to the secrecy of data in the partially en-
crypted document associated with P . It requires that E(P )
be acyclic, as we would expect for protections derived from
policies (see Section 3). It states that if some data is secret
according to the abstract semantics of protections, then that
data is in fact computationally hidden. Therefore, we regard
Theorem 3 as the main theorem of this paper.

Theorem 3. Let P be a normalized protection such that
E(P ) is an acyclic expression. Let T = {K1, K2, . . . , Kl} ⊆
keys(E(P )) be an arbitrary set of keys. If Π is an IND-CPA
secure encryption and SS is a secure secret sharing scheme,
then Data−AccP (T ) is computationally hidden in (E(P ), K1,
K2, . . . , Kl) with Π and SS.

This theorem follows from Theorem 1 and Theorem 2. If
Di 6∈ AccP (T ), Theorem 1 implies that Di does not occur
in pattern(E(P ), K1, K2, . . . , Kl), so:

[[pattern((E(P ), K1, K2, . . . , Kl))]]
Π,SS
f0

=

[[pattern((E(P ), K1, K2, . . . , Kl))]]
Π,SS
f1

for any valuations f0 and f1 that coincide on AccP (T ). We
conclude by Theorem 2 and transitivity.

Theorems 2 and 3 allow for the possibility that an attacker
may be able to learn a great deal about the length and even
the structure of encrypted material. Under the standard def-
inition of security that we adopt for encryption, one cannot
expect to do much better [16]. As explained above, encryp-
tion need not hide the length of plaintexts. Moreover, if E
and E′ are expressions with different structures, the con-

crete bit-string implementations [[E ]]Π,SS,η
f and [[E′ ]]Π,SS,η

f

may well have different lengths, so it is possible that their
encryptions could be distinguished.

In particular, analogues of Theorem 2 would not hold
for the alternative functions pattern′ defined in Section 3.
Stronger assumptions on encryption would yield those ana-
logues, and corresponding strengthenings of Theorem 3.

5. CONCLUSION
The main contribution of this paper is a precise justifica-

tion of the encryption-based techniques for enforcing access
policies for XML documents, as developed by Miklau and
Suciu. More specifically, we provide a proof that XML data



that is secret according to an abstract, symbolic semantics is
indeed secret with respect to a strong, computational notion
of security.

In defining the subject of our analysis, we have attempted
to be faithful to the work of Miklau and Suciu. In further
research, one might wish to depart from their framework. In
particular, like them, we have focused on protection against
off-line attacks. In such attacks, the adversary obtains infor-
mation about a document only by observing it. In further
work, it may be interesting to consider active attacks, in
which the adversary may interactively influence the docu-
ment structure and contents. It may also be interesting to
consider richer access control policies, as well as richer data
models with key constraints, functional dependencies, and
other refinements. The value of rigorous analysis may be
even larger with these enrichments, but our basic approach
should remain applicable and helpful in bridging the gap
between high-level designs and precise guarantees.
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APPENDIX

Proof of Theorem 2
In this appendix we provide a proof of Theorem 2. Some
aspects of the proof are by now standard; the reader may
wish to consult the proof of the main theorem in the work of
Abadi and Rogaway [1]. We start with some notation and
a couple of useful lemmas.

A permutation σ : Keys ∪ KeyShares → Keys ∪ KeyShares
is consistent if

• σ(Ki) ∈ Keys for all Ki ∈ Keys, and

• if Ki = σ(Kj), then Kl
i = σ(Kl

j) for all l ∈ {1, 2, . . . , n}.
For any consistent permutation σ, we write Eσ for the ex-
pression obtained from E by renaming its keys and key
shares according to σ. Consistent renamings do not change
the distribution ensembles associated with expressions:

Lemma 4. For any expression E, if σ is a consistent per-
mutation then [[E ]]Π,SS

f ≈ [[Eσ]]Π,SS
f .

This lemma holds because the output of the algorithm that
associates a distribution with an expression does not depend
on the actual atomic symbols used in the expression, but
only on their meaning.

For each expression and pattern E, we write hidden(E)
for the set of keys that are not recoverable from E:

hidden(E) = keys(E) − recoverable(E)

The following lemma states that the keys in any acyclic
expression E can be reordered so that the first l keys are
the keys hidden in E and the remaining keys are the keys
that can be recovered from E. Moreover, it is possible to
reorder the keys so that, in the resulting expression, for any
two hidden keys Ki and Kj , if Ki encrypts Kj then i < j.

Lemma 5. If E is an acyclic expression, m = |keys(E)|,
and l = |hidden(E)|, then there exists a consistent permuta-
tion σ such that:

• keys(Eσ) = {K1, K2, . . . , Kl, Kl+1, . . . , Km},
• hidden(Eσ) = {K1, K2, . . . , Kl},
• for any 1 ≤ i, j ≤ l, if Ki encrypts Kj in Eσ then

i < j.

By Lemmas 4 and 5, it is sufficient to prove the theorem
under the following additional assumptions:

• keys(E) = {K1, K2, . . . , Kl, Kl+1, . . . , Km},
• hidden(E) = {K1, K2, . . . , Kl},
• for any 1 ≤ i, j ≤ l, if Ki encrypts Kj then i < j.

Proof of the theorem
We prove the theorem by a hybrid argument: given an ex-
pression E as above, we exhibit a series of distribution en-
sembles D0, D1, . . . , Dl, such that:

1. D0 = [[E ]]Π,SS
f ,

2. Dl = [[pattern(E)]]Π,SS
f , and

3. Di−1 ≈ Di, for all 1 ≤ i ≤ l.

Since l is a fixed constant (independent of the security pa-
rameter), the conclusion of the theorem immediately follows.

Consider the sequence of patterns E0, E1, . . . , El induc-
tively defined by:

• E0 = E,

• Ei is obtained by replacing each subexpression of Ei−1

that is of the form {E}Ki with {struct(E)}Ki .

For each 0 ≤ i ≤ l we let Di be the distribution ensem-
ble associated with pattern Ei and prove that the resulting
sequence of distribution ensembles satisfies conditions 1–3.
It is immediate that D0 = [[E ]]Π,SS

f . Also, since pattern
El is obtained by replacing all subexpressions of E of the
form {E}Ki for some Ki ∈ hidden(E) with {struct(E)}Ki ,
we have that El = pattern(E) and, therefore, that Dl =

[[pattern(E)]]Π,SS
f . It only remains to be shown that for each

1 ≤ i ≤ l, the distribution ensembles Di−1 and Di are in-
distinguishable (condition 3). For each 0 ≤ i ≤ l − 1 we
introduce two intermediate distribution ensembles Di,0 and
Di,1 and we prove that:

Di ≈ Di,0 ≈ Di,1 ≈ Di+1

It follows that Di ≈ Di+1 for all 0 ≤ i ≤ l − 1, and we can
conclude that

[[E ]]Π,SS
f = D0 ≈ Dl = [[pattern(E)]]Π,SS

f

Consider the patterns Ei,0 and Ei,1 defined as follows:

• Ei,0 is obtained from Ei by replacing each occurrence of
a key share symbol Kj

i+1 with a fresh key share symbol

Kj , different from those in KeyShares∪{Kj
0 | j ∈ 1..n};

• Ei,1 is obtained from Ei,0 by replacing each occurrence
of a subexpression {E}Ki+1 with {struct(E)}Ki+1 .

It follows from the description above that Ei+1 can be ob-
tained from Ei,1 by replacing each occurrence of a key share
Kj with Kj

i+1.
Next we associate distributions (and therefore distribu-

tion ensembles) with the patterns Ei,0 and Ei,1 via a slight
modification of the algorithm of Section 4. Specifically, we
introduce computational interpretations for the newly intro-
duced symbols K1, K2, . . . , Kn: we add one new position
to the array τ and one extra row to the matrix φ and set:

τ [m + 1]
R←K(η)

and

φ[m + 1]
R←S(τ [m + 1])

We use the bit-strings contained in φ[m + 1] as interpreta-
tions of the symbols K1, K2, . . . , Kn, so we add to the
algorithm in Figure 3 the line:

[[Kj ]]
Π,SS,η

f = φ[m + 1][j]

For each 0 ≤ i ≤ l − 1, we let Di,0 and Di,1 be the distribu-
tion ensembles associated with Ei,0 and Ei,1.

The remainder of the proof consists of three steps. They
respective establish that Di ≈ Di,0, that Di,0 ≈ Di,1, and
that Di,1 ≈ Di+1.

Step 1 (Di ≈ Di,0)
The proof is by reduction: given an index 0 ≤ h ≤ l − 1
and an algorithm A such that Advdist

Dh,Dh,0
(A, η) is non-

negligible, we construct an adversary B against SS such that
Advss

SS(B, η) is also non-negligible. Therefore, the scheme
SS is not a secure secret sharing scheme.

In the construction of B we use the set

Sh = {j | Kj
h+1 occurs in Eh}



of indexes j for which the key share Kj
h+1 occurs in Eh.

The occurrences of Kj
h+1 in question cannot be under hid-

den keys, because of the acyclicity hypothesis. Therefore,
crucially, Sh is a proper subset of {1, 2, . . . , n}, for other-
wise the key Kh+1 would not be in hidden(E).

Let k0 and k1 be two arbitrary encryption keys generated

via k0, k1
R←K(η). The adversary B that we construct re-

ceives as input a set of shares (s1, s2, . . . , st) sampled from
one of the two distributions S(k0)|Sh or S(k1)|Sh . It con-
structs a string s so that: if the input of B is sampled accord-
ing to the distribution S(k0)|Sh then s is sampled according
to Dh, and if the input of B is sampled according to the
distribution S(k1)|Sh then s is sampled according to Dh,0.
Adversary B then invokes the algorithm A on input s and
outputs whatever A outputs. We therefore obtain that:

Advss
SS(B, η)

= Pr[sh(k0)
R←S(k0, η) : B(sh(k0)|Sh) = 1)] −

Pr[sh(k1)
R←S(k1, η) : B(sh(k1)|Sh) = 1)]

= Pr
[
s

R← [[Eh ]]Π,SS,η
f : A(s, η) = 1

]
−

Pr
[
s

R← [[Eh,0 ]]Π,SS,η
f : A(s, η) = 1

]

= Advdist
Dh,Dh,0(A, η)

It follows that if the advantage of A is non-negligible then
so is that of B.

Adversary B computes s by applying to Eh a variant of
the algorithm given in Section 4 for mapping expressions to
bit-strings. Specifically, B starts by generating the vector τ
of keys in which the entries τ [h + 1] and τ [m + 1] are set
to k0 and k1. Next, B computes the entries in the matrix φ
(used for defining the semantics of the key shares that occur
in Eh). Both τ and φ have the appropriate distributions
since k0 and k1 are randomly generated keys.

Then B computes the string s by recursively associating
bit-strings with the subexpressions of Eh. The only depar-
ture from the algorithm of Section 4 is as follows. The bit-
strings associated with the shares of Kh+1 are interpreted
using the input to B. (In the original algorithm, the bit-
string interpretation of these shares are the entries in φ[h +
1], that is, shares of τ [h + 1].) So, if Sh = {j1, j2, . . . , jt},
then the modified algorithm maps Kp

h+1 to sp, for each
0 ≤ p ≤ t. Crucially, if the input to B is sampled accord-
ing to sh(k0)|Sh , then the key Kh+1 is mapped to k0 and

all shares K
jp

h+1 are mapped to appropriate shares of k0.
Therefore, the string s is selected according to the distri-
bution [[Eh ]]Π,SS,η

f . On the other hand, if the input to B
is sampled according to sh(k1)|Sh , then although Kh+1 is
mapped to k0, all its shares are mapped to shares of k1—
that is, to shares of a different key. Therefore, in this case,
s is selected according to the distribution [[Eh,0 ]]Π,SS,η

f , as
desired.

Step 2 (Di,0 ≈ Di,1)
The proof is again by reduction: given an index 0 ≤ h ≤ l−1
and an algorithm A that distinguishes between Dh,0 and
Dh,1 with non-negligible probability, we construct an adver-

sary B against Π such that Advind−cpa
Π (B, η) is also non-

negligible. The adversary B has access to the oracle LRΠ,b

and constructs a bit-string s that is sampled according to
the distribution Dh,b. Then B invokes adversary A on s and

outputs whatever A outputs. We thus obtain:

Advind−cpa
Π (B, η)

= Pr[BLRΠ,0(η) = 1] −
Pr[BLRΠ,1(η) = 1]

= Pr[s
R←Dh,0 : A(s) = 1] −

Pr[s
R←Dh,1 : A(s) = 1]

= Advdist
Dh,0,Dh,1(A, η)

It follows that if the advantage of A is non-negligible then
so is that of B. Therefore, the scheme Π is not an IND-CPA
secure encryption scheme.

Adversary B computes s by applying to Eh,0 a variant
of the algorithm given in Section 4. Specifically, B gener-
ates the vector of keys τ and the matrix of key shares φ
and then recursively maps each subexpression F of Eh,0 to
a bit-string. The interpretations of all basic symbols with
the exception of the key Kh+1 are as in Section 4. The in-
terpretation of Kh+1 is set to k, the key of the oracle. Since
B does not actually have k, it is crucial that no share of
Kh+1 occurs in Eh,0. By acyclicity, there are no plain oc-
currences of Kh+1 in Eh,0 either. There may however be
uses of Kh+1 as an encryption key. In order to deal with
those occurrences, B makes uses of the oracle for producing
encryptions under k, as follows.

Suppose that Eh,0 has a subexpression F of the form
{E′}Kh+1 . First, B samples strings m0 and m1 from the
distributions associated with E′ and struct(E′), respectively.
This task is mostly straightforward since B knows the inter-
pretations of all symbols that occur in E′ and struct(E′)
with the exception of the interpretation of Kh+1. Whenever
B needs to compute an encryption of a plaintext m under the
key k (which is the interpretation of Kh+1), B submits to the
oracle the pair (m, m) and obtains in return one such encryp-
tion. After producing m0 and m1 as described above, B sub-
mits to the oracle the pair (m0, m1) and sets c to be the an-
swer returned by the oracle. Therefore, if the selection bit of
the oracle is 0, then c is an encryption of m0 under k, so c is

distributed according to [[{E′}Kh+1 ]]
Π,SS,η

f
. If the selection

bit of the oracle is 1, then c is an encryption of m1 under k,

so c is distributed according to [[{struct(E′)}Kh+1 ]]
Π,SS,η

f
.

Since Ei,1 is obtained by replacing in Ei,0 each subex-
pression F of the form {E′}Ki+1 with {struct(E′)}Ki+1 , the
overall result of B’s computation is distributed like the in-
terpretation of Ei,b.

Importantly, B is a valid IND-CPA adversary: each query
(m0, m1) that B makes to its right-left oracle is valid since
strings m0 and m1 are sampled according to distributions

[[E′ ]]Π,SS,η
and [[struct(E′)]]Π,SS,η

, respectively, and there-
fore have equal lengths (by the assumption on the imple-
mentation discussed in Section 4).

Step 3 (Di,1 ≈ Di+1)
This step is similar to the proof that Di ≈ Di,0: one can
think of Ei,1 as obtained from Ei+1 by replacing the key
share symbols Kj

i+1 with fresh key share symbols Kj , that
is, in precisely the same manner in which Ei,0 is obtained
from Ei. The same proof method applies.


