
A Model of Dynamic Separation for

Transactional Memory

Mart́ın Abadi a,b Tim Harris a Katherine F. Moore a,c

aMicrosoft Research
bUniversity of California, Santa Cruz

cUniversity of Washington

Abstract

Dynamic separation is a new programming discipline for systems with transactional
memory. We study it formally in the setting of a small calculus with transactions. We
provide a precise formulation of dynamic separation and compare it with other pro-
gramming disciplines. Furthermore, exploiting dynamic separation, we investigate
some possible implementations of the calculus and we establish their correctness.

1 Introduction

Several designs and systems based on transactions aim to facilitate the writing
of concurrent programs. In particular, software transactional memory (STM)
appears as an intriguing alternative to locks and the related machinery for
shared-memory concurrency [17]. STM implementations often allow transac-
tions to execute in parallel, optimistically, detecting and resolving conflicts
between transactions when they occur. Such implementations guarantee that
transactions appear atomic with respect to other transactions, but not with
respected to direct, non-transactional accesses to memory. This property has
been termed “weak atomicity” [8], in contrast with the “strong atomicity” that
programmers seem to expect, but which can be more challenging to provide.

Therefore, it is attractive to investigate programming disciplines under which
the problematic discrepancy between “weak” implementations and “strong”
semantics does not arise. In these disciplines, basically, transactional and non-
transactional memory accesses should not be allowed to conflict. Much as in
work on memory models (e.g., [5]), these disciplines can be seen as contracts
between the language implementation and the programmer: if a program con-
forms to certain restrictions, then the language implementation must run it

Preprint submitted to Elsevier 8 July 2009

with strong semantics. Such contracts should be “programmer-centric” [6]—
formulated in terms of programs and their high-level semantics, not of imple-
mentation details. The selection of particular restrictions represents a tradeoff.

• Stronger restrictions give more flexibility to the implementation by requir-
ing it to run fewer programs with strong semantics An example of such a
restriction is the imposition of a static type system that strictly segregates
transacted and non-transacted memory (e.g., [12,3,15]). This segregation
often implies the need to copy data across these two parts of memory.

• Conversely, weaker restrictions give more flexibility to the programmer but
may enable fewer implementation strategies. For example, violation-freedom
prohibits only programs whose executions cause conflicts at run-time, ac-
cording to a high-level, strong, small-step operational semantics [3] (see
also [11,4,7]). Violation-freedom does not consider lower-level conflicts that
may arise in implementations with optimistic concurrency; so these imple-
mentations may not run all violation-free programs with strong semantics,
and may therefore be disallowed.

We are exploring a new programming discipline that we call dynamic sepa-
ration. Its basic idea is to distinguish memory locations that should be ac-
cessed transactionally from those that should be accessed directly, allowing
this distinction to evolve dynamically in the course of program execution. The
programmer (perhaps with the assistance of tools) indicates transitions be-
tween these modes. Dynamic separation restricts only where data is actually
accessed by a program, not how the data is reachable through references.

Dynamic separation is intermediate between violation-freedom and static sep-
aration. Like violation-freedom, it does not require copying between two mem-
ory regions; like static separation, on the other hand, it enables implementa-
tions with weak atomicity, optimistic concurrency, lazy conflict detection, and
in-place updates. Indeed, dynamic separation is compatible with a range of
transactional-memory implementations. Moreover, dynamic separation does
not necessitate changes in how non-transactional code is compiled. This prop-
erty makes transactions “pay-to-use” and lets non-transactional code rely on
features not available for re-compilation (cf., e.g., [18]).

A companion paper [2] and a longer technical report [1] study dynamic sep-
aration informally. They provide a more detailed design rationale, an instan-
tiation for C#, and some conceptually easy but useful refinements, in par-
ticular for read-only data. They also discuss implementations, describing our
working implementation (done in the context of Bartok-STM [13]) and a vari-
ant that serves as a debugging tool for testing whether a program obeys the
dynamic-separation discipline. As a case study, they examine the use of dy-
namic separation in the context of a concurrent web-proxy application built
over an asynchronous IO library. Finally, they contain additional descriptions

2

of related informal work.

The present paper focuses on the formal definition and study of dynamic
separation. It introduces constructs for dynamic separation, in the setting
of a small calculus with transactions (Sections 2–4). It defines a dynamic-
separation discipline and establishes precise comparisons with static separa-
tion and with violation-freedom (Section 5). Furthermore, it considers two
possible lower-level implementations of the calculus (Sections 6 and 7). One of
the implementations relies on two heaps, with marshaling between them. The
other includes optimistic concurrency and some other challenging features; it
models important aspects of our Bartok-STM implementation. We establish
the correctness of both implementations: we prove that, if a program conforms
to the dynamic-separation discipline, then the two implementations will run
it with strong semantics. The Appendix contains proofs.

We present our results focusing on the Automatic Mutual Exclusion (AME)
model [14,3] (Section 2). However, as we explain elsewhere [2,1], our approach
applies also to other models for programming with transactions, for instance
to TIC [19].

2 AME and the AME Calculus

In this section we describe the AME programming model and the AME cal-
culus, a small language with AME constructs that serves as the setting of
our formal study. This section is mostly an informal review; in addition it in-
troduces the new constructs for indicating transitions between modes, named
protect and unprotect, into the AME calculus. We postpone a formal se-
mantics of the calculus to Section 4.

2.1 AME

AME distinguishes “protected” code, which executes within transactions, from
ordinary “unprotected” code. Importantly, the default is protected code. Pro-
grammers are thus encouraged to use protected code as much as possible,
leaving unprotected code primarily for interactions with legacy components.
The intent is that this style of programming will lead to programs that are
easier to understand and to maintain.

Running an AME program consists in executing a set of asynchronous method
calls. The AME system guarantees that the program execution is equiva-
lent to executing each of these calls (or their atomic fragments, discussed

3

below) in some serialized order. The invocation async MethodName(<method

arguments>) creates an asynchronous call. The caller continues immediately
after this invocation. In the conceptual serialization of the program, the asyn-
chronous callee will be executed after the caller has completed. AME achieves
concurrency by executing asynchronous calls in transactions, overlapping the
execution of multiple calls, with roll-backs when conflicts occur. If a trans-
action initiates other asynchronous calls, their execution is deferred until the
initiating transaction commits, and they are discarded if the initiating trans-
action aborts.

Methods may contain invocations of yield(), which break an asynchronous
call into multiple atomic fragments, implemented by committing one trans-
action and starting a new one. With this addition, the overall execution of a
program is guaranteed to be a serialization of its atomic fragments.

Methods may also contain statements of the form blockUntil(<p>), where p

is a predicate. From the programmer’s perspective, an atomic fragment exe-
cutes to completion only if all the predicates thus encountered in its execution
evaluate to true. The implementation of blockUntil(<p>) does nothing if p
holds; otherwise it aborts the current atomic fragment and retries it later.

In order to allow the use of legacy non-transactional code, AME provides
block-structured unprotected sections. These must use existing mechanisms
for synchronization. Before the execution of an unprotected section, the cur-
rent atomic fragment is committed, and a new atomic fragment is started after
the execution of the unprotected section.

AME allows memory locations to be accessed both transactionally and directly
(that is, in unprotected sections). Dynamic separation amounts to requiring
that, although each memory location may be accessed in both ways, the two
kinds of accesses cannot occur simultaneously. In this paper we study the con-
structs protect and unprotect for supporting dynamic separation. Applying
protect to a memory location indicates that it may be accessed only trans-
actionally, and similarly applying unprotect to a memory location indicates
that it may be accessed only directly.

2.2 The AME Calculus (with protect and unprotect)

The AME calculus is a small but expressive language that includes constructs
for AME, higher-order functions, and imperative features. The following gram-
mar defines the abstract syntax of the calculus, with the extensions required

4

for dynamic separation.

V ∈ Value = c | x | λx. e

c ∈ Const = unit | false | true

x, y ∈ Var

e, f ∈ Exp = V | e f

| ref e | !e | e := f

| async e | blockUntil e

| unprotected e

| protect e | unprotect e

This syntax introduces syntactic categories of values, constants, variables,
and expressions. The values are constants, variables, and lambda abstrac-
tions (λx. e). In addition to values and to expressions of the forms async e,
blockUntil e, and unprotected e, expressions include notations for function
application (e f), allocation (ref e, which allocates a new reference location
and returns it after initializing it to the value of e), dereferencing (!e, which
returns the contents in the reference location that is the value of e), and as-
signment (e := f , which sets the reference location that is the value of e
to the value of f). Expressions also include the new forms protect e and
unprotect e, which evaluate e to a reference location, then make its value us-
able in transactions and outside transactions, respectively. We treat yield as
syntactic sugar for unprotected unit. We write let x = e in e′ for (λx. e′) e,
and write e; e′ for let x = e in e′ when x does not occur free in e′.

The grammar allows arbitrary nestings of async, blockUntil, unprotected,
protect, unprotect, and the other constructs. Practical embodiments of
AME need not be as liberal in these respects. In particular, async e may
be limited to the case where e is a function call or method call, as in the
informal review of Section 2.2. In addition, protect and unprotect may be
required to occur only in unprotected code, in order to avoid the possibil-
ity of inconsistent updates to the protection modes, as explained further in
Section 4. Although the grammar does not make this requirement, the seman-
tics of Section 4 is designed so that protect and unprotect do not work in
protected code.

We make a small technical restriction: in any expression of the form async e,
any occurrences of unprotected are under a λ. Thus, with our syntactic sugar,
we can write async (unit; unprotected e′), but not async (unprotected e′).
More generally, we can write async (unit; e′), for any e′. This technical re-
striction roughly ensures that an unprotected computation is not the first
thing that happens in an asynchronous computation. It is needed only for

5

Theorem 5.4, below.

3 An Example

This section presents an example, informally. Although this example is small
and artificial, it serves to explain several aspects of our work. The example
concerns the following code fragment:

let x = ref false in

let y = ref false in

let z = ref false in

async (x := true);

async (x := false; (blockUntil (!x)); y := true);

unprotected ((blockUntil (!y)); z := true)

This code first creates three reference locations, initialized to false, and binds
x, y, and z to them, respectively. Then it forks two asynchronous executions. In
one, it sets x to true. In the other, it sets x to false, checks that x holds true,
then sets y to true. In addition, the code contains an unprotected section that
checks that y holds true, then sets z to true.

In reasoning about such code, programmers (and tools) should be entitled to
rely on the high-level semantics of the AME constructs, without considering
their possible implementation details. According to this high-level semantics,
the two asynchronous executions are serialized. Therefore, the predicate !x in
the second asynchronous execution can never hold, so y := true is unreach-
able. Hence the predicate !y in the unprotected section can never hold either,
so z will never be set to true. The formal semantics of Section 4 justifies this
reasoning.

On the other hand, lower-level implementations, such as that modeled in Sec-
tion 7, may exhibit different, surprising behavior. With optimistic concurrency,
the two asynchronous executions may be attempted simultaneously. For effi-
ciency, updates to reference locations may be done in place, not buffered. So,
if the assignment x := true immediately follows the assignment x := false,
then the predicate !x in the second asynchronous execution will hold, and
y := true will execute. After the assignment x := true, the execution of
(blockUntil (!x)); y := true is a “zombie” [9], doomed to roll back. With
lazy conflict detection, a conflict may not yet be apparent. With weak atom-
icity, moreover, the unprotected section has an opportunity to execute, and

6

the predicate !y holds, so z will be set to true. When the two asynchronous
executions attempt to commit, conflict detection will cause a roll-back of their
effects on x and y, but not of the indirect effect on z. Therefore, the code may
terminate with z holding true.

Despite the surprising behavior, we may want to allow such lower-level imple-
mentations because of their potential efficiency and compatibility with legacy
code. So we may want to find criteria to exclude problematic programs. As
indicated in the introduction, static separation is such a criterion; it statically
segregates transacted and non-transacted memory. The code in our example
does not obey static separation because (without dead-code elimination) y
seems to be accessed both in a transaction and in the unprotected section.
Unfortunately, static separation also forbids many reasonable code fragments,
implying the need to marshal data back and forth between the two parts of
memory.

Another possible criterion is violation-freedom. However, the code in our ex-
ample is violation-free. In particular, according to the high-level semantics,
there are no conflicting accesses to y at run-time, since y := true should
never execute. Therefore, violation-freedom does not seem to be quite strin-
gent enough to enable the use of some attractive implementation strategies.

Nevertheless, violation-free programs can often be instrumented with calls
to protect and unprotect in order to conform to the dynamic-separation
discipline. In this example, our particular formulation of dynamic separation
requires adding two calls to unprotect in the last line of the code:

unprotected (unprotect y; unprotect z; (blockUntil (!y)); z := true)

Assuming that x, y, and z are initially in the mode where they are usable in
transactions, we can reason that the placement of unprotect implies that x,
y, and z are always used in the appropriate mode, so the code does conform
to the dynamic-separation discipline. In this reasoning, we need to consider
only the behavior of the code in the high-level semantics. Although the high-
level semantics of unprotect is quite straightforward—and resembles that of
no-op—an implementation of unprotect may do non-trivial work. Sections 6
and 7 provide two illustrations of this point, in the latter case modeling im-
portant aspects of our actual implementation in Bartok-STM. In particular,
unprotect y may block while y is being written in a transaction, even if the
transaction is a zombie. Moreover, updating y in a transaction may check that
y is protected. Crucially, neither of these implementation refinements require
any changes to non-transactional access to y. In combination, these refine-
ments can prevent the problematic behavior of this code, guaranteeing that it
runs correctly.

7

Zombies constitute only one of several problems in this area. Others include
the so-called privatization and publication problems [10,9,21,3,20]. Although
we do not discuss those in detail, our approach and our results address them
as well. In particular, the correctness theorems below imply that publication
and privatization idioms can execute correctly.

4 Semantics

The strong semantics of the AME calculus is a small-step operational seman-
tics in which at most one transaction may take steps at any one time, and
non-transactional code may take steps only when there is no current transac-
tion taking steps [3]. We extend this strong semantics to the new constructs.

4.1 States

A state 〈σ, τ, T, e〉 consists of a reference store σ, a protection state τ , a col-
lection of expressions T (which we call “the pool”), and a distinguished active
expression e. A reference store σ is a finite mapping of reference locations to
values. Similarly, a protection state τ is a finite mapping of reference loca-
tions to protection modes, which we represent by the symbols P and U. It is a
“history variable”, in the sense that it is determined by the history of execu-
tion and does not influence this history. Reference locations are simply special
kinds of variables that can be bound only by the respective store and protec-
tion state. We say that a reference location occurs in a partial function (such
as a store or a protection state) if it is in the domain of the partial function.
We write RefLoc for the set of reference locations; we assume that RefLoc is
infinite. For every state 〈σ, τ, T, e〉, we require that dom(σ) = dom(τ) and, if
r ∈ RefLoc occurs in 〈σ, τ, T, e〉, then r ∈ dom(σ). We set:

S ∈ State ⊂ RefStore × ProtState × ExpSeq × Exp

σ ∈ RefStore = RefLoc ⇀ Value

τ ∈ ProtState = RefLoc ⇀ {P, U}

r ∈ RefLoc ⊂ Var

T ∈ ExpSeq = Exp∗

8

4.2 Steps

As usual, a context is an expression with a hole [], and an evaluation context
is a context of a particular kind. Given a context C and an expression e, we
write C[e] for the result of placing e in the hole in C. We use several kinds of
evaluation contexts, defined by:

P = [] | P e | V P | ref P | !P | P := e | r := P

| blockUntil P | protect P | unprotect P

U = unprotected E | U e | V U | ref U | !U | U := e | r := U

| blockUntil U | protect U | unprotect U

E = [] | E e | V E | ref E | !E | E := e | r := E

| blockUntil E | unprotected E | protect E | unprotect E

A context E is a general evaluation context; a context U is one where the hole
is under unprotected; a context P is one where it is not. Note that neither
λx. [] nor async [] are evaluation contexts: both abstraction and forking delay
evaluation.

Figure 1 gives rules that specify the transition relation that takes execution
from one state to the next. In these rules, we write e[V/x] for the result of
the capture-free substitution of V for x in e, and write σ[r 7→ V] for the
store that agrees with σ except at r, which is mapped to V . The subscript
s in 7−→s indicates that this is a strong semantics. The rules whose names
have a “P” suffix (like (Trans Ref P)s) correspond to “protected” execution
of the active expression in a P context. The rules whose names have a “U”
suffix (like (Trans Ref U)s) correspond to “unprotected” execution in a U
context in the pool; in all these, the active expression must be unit. Some
rules (such as (Trans Activate)s) apply only in the “protected world” or only
in the “unprotected world”, and do not have a counterpart in the other world,
so we do not include a “P” or a “U” suffix in their names.

In rules (Trans Ref P)s and (Trans Ref U)s, the reference-allocation construct
ref e initializes the new location’s mode to P (when allocating inside a trans-
action) or to U (otherwise). In rules (Trans DynPr)s and (Trans DynUn)s, the
new constructs protect and unprotect set the mode to P and to U respec-
tively. It is not an error to call protect on a reference location already in
mode P. Similarly, it is not an error to call unprotect on a reference location
already in mode U. This design choice enables a broader range of implemen-
tations, as discussed in our companion paper.

According to the rules, protect and unprotect work only outside transac-

9

〈σ, τ, T,P[(λx. e) V]〉 7−→s 〈σ, τ, T,P[e[V/x]]〉 (Trans Appl P)s

〈σ, τ, T.U [(λx. e) V].T ′, unit〉 7−→s 〈σ, τ, T.U [e[V/x]].T ′, unit〉 (Trans Appl U)s

〈σ, τ, T,P[ref V]〉 7−→s 〈σ[r 7→ V], τ [r 7→ P], T,P[r]〉 (Trans Ref P)s

if r ∈ RefLoc − dom(σ)

〈σ, τ, T.U [ref V].T ′, unit〉 7−→s 〈σ[r 7→ V], τ [r 7→ U], T.U [r].T ′, unit〉 (Trans Ref U)s

if r ∈ RefLoc − dom(σ)

〈σ, τ, T,P[!r]〉 7−→s 〈σ, τ, T,P[V]〉 (Trans Deref P)s

if σ(r) = V

〈σ, τ, T.U [!r].T ′, unit〉 7−→s 〈σ, τ, T.U [V].T ′, unit〉 (Trans Deref U)s

if σ(r) = V

〈σ, τ, T,P[r := V]〉 7−→s 〈σ[r 7→ V], τ, T,P[unit]〉 (Trans Set P)s

〈σ, τ, T.U [r := V].T ′, unit〉 7−→s 〈σ[r 7→ V], τ, T.U [unit].T ′, unit〉 (Trans Set U)s

〈σ, τ, T,P[async e]〉 7−→s 〈σ, τ, e.T,P[unit]〉 (Trans Async P)s

〈σ, τ, T.U [async e].T ′, unit〉 7−→s 〈σ, τ, e.T.U [unit].T ′, unit〉 (Trans Async U)s

〈σ, τ, T,P[blockUntil true]〉 7−→s 〈σ, τ, T,P[unit]〉 (Trans Block P)s

〈σ, τ, T.U [blockUntil true].T ′, unit〉 7−→s 〈σ, τ, T.U [unit].T ′, unit〉 (Trans Block U)s

〈σ, τ, T,P[unprotected e]〉 7−→s 〈σ, τ, T.P[unprotected e], unit〉 (Trans Unprotect)s

〈σ, τ, T.E[unprotected V].T ′, unit〉 7−→s 〈σ, τ, T.E[V].T ′, unit〉 (Trans Close)s

〈σ, τ, T.e.T ′, unit〉 7−→s 〈σ, τ, T.T ′, e〉 (Trans Activate)s

〈σ, τ, T.U [protect r].T ′, unit〉 7−→s 〈σ, τ [r 7→ P], T.U [r].T ′, unit〉 (Trans DynPr)s

〈σ, τ, T.U [unprotect r].T ′, unit〉 7−→s 〈σ, τ [r 7→ U], T.U [r].T ′, unit〉 (Trans DynUn)s

Fig. 1. Transition rules with dynamic separation.

tions. They get stuck otherwise. Fundamentally, we do not want to rely on
protect and unprotect in transactions because of questionable interactions,
such as the possibility of zombie updates to the protection state.

10

5 The Dynamic-Separation Discipline

We give a precise definition of dynamic separation. We also establish results
that relate dynamic separation to static separation and to violation-freedom.

5.1 Definition

The definition of dynamic separation says that, in the course of an execution,
reads and writes to a reference location should happen only if the protection
state of the reference location is consistent with the context of the opera-
tion. The definition is intended to constrain expressions, but more generally
it applies to initial states of executions.

Given a state 〈σ, τ, T, e〉, a read or a write may occur in two cases:

• e is of the form P [!r] or P [r := V]; or
• e = unit and T contains an expression of the form U [!r] or U [r := V].

Accordingly, we say that a state 〈σ, τ, T, e〉 is locally good when:

• if e is of the form P [!r] or P [r := V], then τ(r) = P;
• if e = unit and T contains an expression of the form U [!r] or U [r := V],

then τ(r) = U.

Further, we say that a state S obeys the dynamic-separation discipline, and
write DS(S), if whenever S 7−→∗

s S ′, the state S ′ is locally good.

In sum, a state S obeys the dynamic-separation discipline if, in S, reads or
writes to a reference location r can happen only if r’s protection state (P or
U) is consistent with the context (transactional or not, respectively) of the
operation, and if the same is true for any state reachable from S.

5.2 A Variant

A stronger notion of dynamic separation is also worth considering, because
it is closer to violation-freedom (as discussed below). This stronger notion is
defined much like dynamic separation. First, we say that a state 〈σ, τ, T, e〉 is
locally good’ when:

• if e is of the form P [!r] or P [r := V], then τ(r) = P;
• if T contains an expression of the form U [!r] or U [r := V] then τ(r) = U.

11

We say that a state S obeys the dynamic-separation’ discipline, and write
DS ′(S), if whenever S 7−→∗

s S ′, the state S ′ is locally good’. Obviously, DS ′(S)
always implies DS(S), but the converse implication need not hold. Crucially,
the definition of locally good’ does not assume e = unit in its second clause;
when e 6= unit, the memory access indicated in T cannot actually proceed
according to the strong semantics.

Although dynamic separation does not imply dynamic separation’, this impli-
cation holds when the active expression is unit:

Lemma 5.1 If DS(〈σ, τ, T, unit〉) then DS ′(〈σ, τ, T, unit〉).

In other words, DS(S) and DS ′(S) are equivalent when S is of the form
〈σ, τ, T, unit〉. Despite its apparent simplicity, this lemma is not an immediate
consequence of the definitions of locally good and locally good’. The lemma
would be trivial if computation preserved that the active expression is unit,
but it does not.

5.3 Comparison with Static Separation

Static separation can be defined as a type system; its details are straightfor-
ward, and for AME they are given in [3, Section 6.2]. There, the judgment
E ` 〈σ, T, e〉 says that the state 〈σ, T, e〉 obeys the static-separation discipline
in a typing environment E, which gives types of the form RefP t or RefU t for
the free reference locations of the state. The state does not include a protec-
tion state τ , since separation is static. Given E, however, we write τE for the
protection state that maps each reference location to P or U according to its
type in E.

Our first theorem about static separation says that the transition relation of
the strong semantics (7−→s) preserves typability. The theorem also character-
izes the corresponding typing environments. It can be seen as an extension of
Theorem 6.1 of [3], which concerns preservation of typability for a language
without protect and unprotect, and for an operational semantics without
protection states.

Theorem 5.2 If E ` 〈σ, T, e〉, and

〈σ, τE, T, e〉 7−→∗
s 〈σ′, τ ′, T ′, e′〉

then there is some E ′ such that:

• E ′ ` 〈σ′, T ′, e′〉, and
• τ ′ = τE′

12

We obtain that static separation implies dynamic separation:

Theorem 5.3 If E ` 〈σ, T, e〉 then DS(〈σ, τE, T, e〉).

The converse of this theorem is false, not only because of possible occurrences
of protect and unprotect but also because of examples like that of Section 3.

5.4 Comparison with Violation-Freedom

As discussed above, violation-freedom is a condition that prohibits programs
whose executions cause certain conflicts at run-time. More precisely, we say
that a state 〈σ, τ, T, e〉 has a violation on r when:

• e is of the form P [e′],
• T contains an expression of the form U [e′′],
• e′ and e′′ are of the form !r or r := V for some V , and at least one is of the

latter form.

(Note that the second of these clauses does not require e = unit, unlike the
corresponding part of the definition of local goodness, but like the correspond-
ing part of the definition of local goodness’.) We say that a state S obeys the
violation-freedom discipline, and write VF(S), if whenever S 7−→∗

s S ′, the state
S ′ does not have violations on any r.

In general, dynamic separation is not sufficient for violation-freedom. For in-
stance, the state

〈∅[r 7→ false], ∅[r 7→ P], unprotected (r := true), blockUntil !r〉

obeys the dynamic-separation discipline, but has an obvious violation on r
(and it is not locally good’). This violation never leads to an actual concurrent
access under the strong semantics.

Dynamic separation does however imply violation-freedom for initial states
of the form 〈σ, τ, T, unit〉, in which there is no active transaction—but of
course a transaction may be activated. We regard this result, together with
Theorem 5.3, as proof of our informal statement that dynamic separation is
intermediate between violation-freedom and static separation.

Theorem 5.4 If DS(〈σ, τ, T, unit〉) then VF(〈σ, τ, T, unit〉).

This theorem is an immediate consequence of Lemma 5.1 and of the following
Lemma, which applies even when the active expression is not unit:

Lemma 5.5 If DS ′(〈σ, τ, T, e〉) then VF(〈σ, τ, T, e〉).

13

Conversely, violation-freedom is not a sufficient condition for dynamic sepa-
ration, for at least two reasons:

• Most obviously, violation-freedom does not require the use of explicit calls
to protect and unprotect.

• In addition, violation-freedom does not constrain read-read concurrency,
while dynamic separation does.

One may try to address the first reason by adding calls to protect and
unprotect, and the second by strengthening violation-freedom so that it also
constrains read-read concurrency. With this strengthening, we have explored a
method for taking a violation-free expression and adding calls to protect and
unprotect so as to make it obey dynamic separation. Basically, we bracket
each non-transactional memory access between a call to unprotect and a call
to protect. We omit the details of our method, but briefly note its two main
assumptions:

• The method requires the absence of race conditions in unprotected compu-
tations, because race conditions could cause instrumentation (the calls to
protect and unprotect) to work incorrectly.

• It also assumes that we can distinguish transactional and non-transactional
code at instrumentation time. Code duplication can make this task trivial.

6 An Implementation with Two Heaps

In this section, we consider an abstract machine with two separate heaps
accessed by transactional and non-transactional code, respectively. The con-
structs protect and unprotect marshal between these heaps. Although this
two-heap scheme is not particularly efficient, it is reminiscent of some practical
systems that use different data formats in transactional and non-transactional
code. It is also an interesting approximation of a static-separation regime, and
illustrates that protect and unprotect may do more than in the high-level
semantics of Figure 1. Still, for expressions that obey the dynamic-separation
discipline, we prove that this two-heap implementation respects the high-level
semantics.

6.1 Operational Semantics

We define the two-heap implementation as a lower-level semantics, in the style
of that of Section 4 though with some additional intricacies.

14

〈σ1, σ2, τ, T,P[(λx. e) V]〉 7−→t 〈σ1, σ2, τ, T,P[e[V/x]]〉 (Trans Appl P)t

〈σ1, σ2, τ, T.U [(λx. e) V].T ′, unit〉 7−→t 〈σ1, σ2, τ, T.U [e[V/x]].T ′, unit〉 (Trans Appl U)t

〈σ1, σ2, τ, T,P[ref V]〉 7−→t 〈σ1[r 7→ V], σ2[r 7→ V], τ [r 7→ P], T,P[r]〉 (Trans Ref P)t

if r ∈ RefLoc − dom(σ1)

〈σ1, σ2, τ, T.U [ref V].T ′, unit〉 7−→t 〈σ1[r 7→ V], σ2[r 7→ V], τ [r 7→ U], T.U [r].T ′, unit〉 (Trans Ref U)t

if r ∈ RefLoc − dom(σ1)

〈σ1, σ2, τ, T,P[!r]〉 7−→t 〈σ1, σ2, τ, T,P[V]〉 (Trans Deref P)t

if σ1(r) = V

〈σ1, σ2, τ, T.U [!r].T ′, unit〉 7−→t 〈σ1, σ2, τ, T.U [V].T ′, unit〉 (Trans Deref U)t

if σ2(r) = V

〈σ1, σ2, τ, T,P[r := V]〉 7−→t 〈σ1[r 7→ V], σ2, τ, T,P[unit]〉 (Trans Set P)t

〈σ1, σ2, τ, T.U [r := V].T ′, unit〉 7−→t 〈σ1, σ2[r 7→ V], τ, T.U [unit].T ′, unit〉 (Trans Set U)t

〈σ1, σ2, τ, T,P[async e]〉 7−→t 〈σ1, σ2, τ, e.T,P[unit]〉 (Trans Async P)t

〈σ1, σ2, τ, T.U [async e].T ′, unit〉 7−→t 〈σ1, σ2, τ, e.T.U [unit].T ′, unit〉 (Trans Async U)t

〈σ1, σ2, τ, T,P[blockUntil true]〉 7−→t 〈σ1, σ2, τ, T,P[unit]〉 (Trans Block P)t

〈σ1, σ2, τ, T.U [blockUntil true].T ′, unit〉 7−→t 〈σ1, σ2, τ, T.U [unit].T ′, unit〉 (Trans Block U)t

〈σ1, σ2, τ, T,P[unprotected e]〉 7−→t 〈σ1, σ2, τ, T.P[unprotected e], unit〉 (Trans Unprotect)t

〈σ1, σ2, τ, T.E[unprotected V].T ′, unit〉 7−→t 〈σ1, σ2, τ, T.E[V].T ′, unit〉 (Trans Close)t

〈σ1, σ2, τ, T.e.T ′, unit〉 7−→t 〈σ1, σ2, τ, T.T ′, e〉 (Trans Activate)t

〈σ1, σ2, τ, T.U [protect r].T ′, unit〉 7−→t 〈σ1, σ2, τ, T.U [r].T ′, unit〉 (Trans DynPr (1))t

if τ(r) = P

〈σ1, σ2, τ, T.U [protect r].T ′, unit〉 7−→t 〈σ1[r 7→ σ2(r)], σ2, τ [r 7→ P], T.U [r].T ′, unit〉 (Trans DynPr (2))t

if τ(r) = U

〈σ1, σ2, τ, T.U [unprotect r].T ′, unit〉 7−→t 〈σ1, σ2[r 7→ σ1(r)], τ [r 7→ U], T.U [r].T ′, unit〉 (Trans DynUn (1))t

if τ(r) = P

〈σ1, σ2, τ, T.U [unprotect r].T ′, unit〉 7−→t 〈σ1, σ2, τ, T.U [r].T ′, unit〉 (Trans DynUn (2))t

if τ(r) = U

Fig. 2. Transition rules with two heaps.

15

6.1.1 States.

The components of a state are much like those in Section 4, except that there
are two reference stores rather than one. A state 〈σ1, σ2, τ, T, e〉 consists of
two reference stores σ1 and σ2, a protection state τ , a collection of expressions
T , and a distinguished active expression e. Intuitively, σ1 and σ2 are for the
use of transactional and non-transactional code, respectively. We require that
dom(σ1) = dom(σ2) = dom(τ) and that, if r ∈ RefLoc occurs in the state,
then r ∈ dom(σ1). So we set:

S ∈ State ⊂ RefStore × RefStore × ProtState × ExpSeq × Exp

6.1.2 Steps.

Figure 2 gives rules that specify the transition relation of this semantics. Ac-
cording to these rules, ref e sets the protection state of a new reference loca-
tion r and initializes the contents of r in each of the reference stores. Initializ-
ing the contents in the appropriate reference store would suffice, provided r is
added to the domain of both reference stores. While reading or writing a loca-
tion, the context in which an expression executes determines which reference
store it accesses. Finally, protect r and unprotect r perform marshaling,
as follows. If r already has the desired protection state, then no copying is
required. (In fact, copying could overwrite fresh contents with stale ones.)
Otherwise, r’s contents are copied from one reference store to the other.

6.2 Correctness

The two-heap implementation is correct under the dynamic-separation disci-
pline, in the following sense:

Theorem 6.1 Assume that DS(〈σ, τ, T, e〉), that dom(σ) = dom(σ1) = dom(σ2),
and that σ1(r) = σ(r) if τ(r) = P and σ2(r) = σ(r) if τ(r) = U. Consider a
computation with two heaps:

〈σ1, σ2, τ, T, e〉 7−→∗
t 〈σ′

1, σ
′
2, τ

′, T ′, e′〉

Then there is a computation:

〈σ, τ, T, e〉 7−→∗
s 〈σ′, τ ′, T ′, e′〉

for some σ′ such that dom(σ′) = dom(σ′
1) = dom(σ′

2) and, for every r ∈
dom(σ′), if τ ′(r) = P, then σ′

1(r) = σ′(r), and if τ ′(r) = U, then σ′
2(r) = σ′(r).

16

This simulation result implies that the contents of a reference location r is al-
ways correct in the reference store that corresponds to r’s current protection
state. The dynamic-separation hypothesis is essential: it is required for ex-
tending the simulation in the cases of (Trans Deref . . .)t and (Trans Set . . .)t.
Without it, the execution with two heaps may produce incorrect results.

7 An Implementation with Optimistic Concurrency

Going further, we treat a lower-level implementation in which multiple trans-
actions execute simultaneously, with roll-backs in case of conflict. This imple-
mentation is based on one studied in our previous work [3], with the addition
of dynamic separation. As explained there, various refinements are possible,
but they are not necessary for our present purposes. Our goal is to show how
dynamic separation works (correctly) in a setting with realistic, challenging
features such as in-place updates (e.g., [16]). The model developed in this
section is an abstract version of our actual implementation in Bartok-STM.

7.1 Operational Semantics

Again, we define the implementation as a lower-level semantics.

7.1.1 States.

States become more complex for this semantics. In addition to the components
σ, τ , and T that appear in the earlier semantics, we add constructs for roll-back
and optimistic concurrency. In order to support roll-back, we maintain a log
l of the reference locations that have been modified, with their corresponding
original values. In the case of roll-back, we use the log to restore these values in
the reference store. For optimistic concurrency, we have a list of tuples instead
of a single active expression. Each of the tuples is called a try, and consists of
the following components:

• an active expression e,
• another expression f from which e was obtained (its “origin”),
• a description of the accesses that e has performed, which are used for conflict

detection and which here is simply a list of reference locations,
• a list P of threads to be forked upon commit.

17

For every state 〈σ, τ, T, O, l〉, we require that dom(σ) = dom(τ) and that, if
r ∈ RefLoc occurs in the state, then r ∈ dom(σ). We set:

S ∈ State ⊂ RefStore × ProtState × ExpSeq × TrySeq × Log

σ ∈ RefStore = RefLoc ⇀ Value

τ ∈ ProtState = RefLoc ⇀ {P, U}

l ∈ Log = RefLoc ⇀ Value

r ∈ RefLoc ⊂ Var

T, P ∈ ExpSeq = Exp∗

O ∈ TrySeq = Try∗

d ∈ Try = Exp × Exp × Accesses × ExpSeq

a ∈ Accesses = RefLoc∗

7.1.2 Steps.

Figure 3 gives the rules of this semantics, relying on these definitions:

• (ei, fi, ai, Pi) and (ej, fj, aj, Pj) conflict if ai and aj have at least one element
in common.

• (e, f, a, P) conflicts with O if (e, f, a, P) conflicts with some try in O.
• Given a log l and a list of reference locations a, l − a is the log obtained

from l by restricting to reference locations not in a.
• If O is (e1, f1, a1, P1). · · · .(en, fn, an, Pn) then origin(O) is the list f1. · · · .fn.
• σl is the store that agrees with l on dom(l), and with σ elsewhere.

These rules allow for conflicts to be detected as soon as they occur, but they
do not require it. In other words, conflict detection may be eager or lazy: the
rules do not impose a particular strategy in this respect. The rules simply allow
undo to happen at any point (whether or not there is a conflict). For simplic-
ity, undos are atomic and affect all current transactions. Moreover, conflict
detection does not distinguish reads and writes, and the log used for undos
does not contain timestamps or other information that might support selective
undos. In contrast, actual STM implementations typically resolve conflicts by
aborting some transactions and committing others. Thus, many refinements
of our rules are possible. These aspects of the semantics are explained at more
length in our previous work. Here we focus on the new ones, namely those
related to dynamic separation.

Rule (Trans DynUn)o requires that, when a reference location is unprotected,
it is not being written by any try. This restriction is a formalization of one

18

present in our Bartok-STM implementation (where “being written” means,
more specifically, “open for update”). The restriction on (Trans DynUn)o

can be satisfied by performing an undo. However, an undo is never forced
to happen. Indeed, as explained above, the rules allow undo to happen at any
point—possibly but not necessarily when there is a conflict.

There is no corresponding subtlety in rule (Trans DynPr)o. Bartok-STM em-
ploys a more elaborate version of this rule in order to allow compiler optimiza-
tions that reorder accesses.

When writing to a reference location from within a transaction (rule (Trans
Set P)o), the protection state of that reference location is verified. Even with
dynamic separation, this check is essential for correctness because of the pos-
sibility of zombie transactions (which could otherwise modify all of memory
arbitrarily). On the other hand, a check is not needed for reads (rule (Trans
Deref P)o), nor for accesses in unprotected code (rules (Trans Deref U)o and
(Trans Set U)o). These features of the rules correspond to important aspects
of our Bartok-STM implementation, which aims to allow the re-use of legacy
code without instrumentation.

7.2 Correctness

The implementation with optimistic concurrency is correct with respect to the
strong semantics of Section 4, in the following sense:

Theorem 7.1 Assume that DS(〈σ, τ, T, unit〉). Consider a computation:

〈σ, τ, T, ∅, ∅〉 7−→∗
o 〈σ′, τ ′, T ′, ∅, ∅〉

Then there is a computation:

〈σ, τ, T, unit〉 7−→∗
s 〈σ′′, τ ′′, T ′′, unit〉

for some σ′′, τ ′′, and T ′′ such that σ′ is an extension of σ′′, τ ′ is an extension
of τ ′′, and T ′′ = T ′ up to reordering.

Much as for Theorem 6.1, the dynamic-separation assumption is essential for
Theorem 7.1. However, Theorem 7.1 is much harder than Theorem 6.1. We
establish Theorem 7.1 by considering an arbitrary computation

〈σ0, τ0, T0, ∅, ∅〉 7−→∗
o 〈σ′, τ ′, T ′, O′, l′〉

where, unlike in the claim of Theorem 7.1, O′ and l′ may not be empty. For such
a computation, we prove that there is a corresponding strong computation

〈σ0, τ0, T0, unit〉 7−→∗
s 〈σ′′, τ ′′, T ′′, unit〉

19

〈σ, τ, T, O.(P[(λx. e) V], f, a, P).O′, l〉 7−→o 〈σ, τ, T, O.(P[e[V/x]], f, a, P).O′, l〉 (Trans Appl P)o

〈σ, τ, T.U [(λx. e) V].T ′, O, l〉 7−→o 〈σ, τ, T.U [e[V/x]].T ′, O, l〉 (Trans Appl U)o

〈σ, τ, T, O.(P[ref V], f, a, P).O′, l〉 7−→o 〈σ[r 7→ V], τ [r 7→ P], T, O.(P[r], f, a, P).O′, l〉 (Trans Ref P)o

if r ∈ RefLoc − dom(σ)

〈σ, τ, T.U [ref V].T ′, O, l〉 7−→o 〈σ[r 7→ V], τ [r 7→ U], T.U [r].T ′, O, l〉 (Trans Ref U)o

if r ∈ RefLoc − dom(σ)

〈σ, τ, T, O.(P[!r], f, a, P).O′, l〉 7−→o 〈σ, τ, T, O.(P[V], f, r.a, P).O′, l〉 (Trans Deref P)o

if σ(r) = V

〈σ, τ, T.U [!r].T ′, O, l〉 7−→o 〈σ, τ, T.U [V].T ′, O, l〉 (Trans Deref U)o

if σ(r) = V

〈σ, τ, T, O.(P[r := V], f, a, P).O′, l〉 7−→o 〈σ[r 7→ V], τ, T, O.(P[unit], f, r.a, P).O′, l′〉 (Trans Set P)o

where l′ = if r ∈ dom(l) then l else l.[r 7→ σ(r)]

and τ(r) = P

〈σ, τ, T.U [r := V].T ′, O, l〉 7−→o 〈σ[r 7→ V], τ, T.U [unit].T ′, O, l〉 (Trans Set U)o

〈σ, τ, T, O.(P[async e], f, a, P).O′, l〉 7−→o 〈σ, τ, T, O.(P[unit], f, a, e.P).O′, l〉 (Trans Async P)o

〈σ, τ, T.U [async e].T ′, O, l〉 7−→o 〈σ, τ, e.T.U [unit].T ′, O, l〉 (Trans Async U)o

〈σ, τ, T, O.(P[blockUntil true], f, a, P).O′, l〉 7−→o 〈σ, τ, T, O.(P[unit], f, a, P).O′, l〉 (Trans Block P)o

〈σ, τ, T.U [blockUntil true].T ′, O, l〉 7−→o 〈σ, τ, T.U [unit].T ′, O, l〉 (Trans Block U)o

〈σ, τ, T, O, l〉 7−→o 〈σl, τ, origin(O).T, ∅, ∅〉 (Trans Undo)o

〈σ, τ, T, O.(P[unprotected e], f, a, P).O′, l〉 7−→o 〈σ, τ, T.P[unprotected e].P, O.O′, l − a〉 (Trans Unprotect)o

if (P[unprotected e], f, a, P) does not conflict with O.O′

〈σ, τ, T, O.(unit, f, a, P).O′, l〉 7−→o 〈σ, τ, T.P, O.O′, l − a〉 (Trans Done)o

if (unit, f, a, P) does not conflict with O.O′

〈σ, τ, T.E[unprotected V].T ′, O, l〉 7−→o 〈σ, τ, T.E[V].T ′, O, l〉 (Trans Close)o

〈σ, τ, T.e.T ′, O, l〉 7−→o 〈σ, τ, T.T ′, (e, e, ∅, ∅).O, l〉 (Trans Activate)o

〈σ, τ, T.U [protect r].T ′, O, l〉 7−→o 〈σ, τ [r 7→ P], T.U [r].T ′, O, l〉 (Trans DynPr)o

〈σ, τ, T.U [unprotect r].T ′, O, l〉 7−→o 〈σ, τ [r 7→ U], T.U [r].T ′, O, l〉 (Trans DynUn)o

if r 6∈ dom(l)

Fig. 3. Transition rules with optimistic concurrency and dynamic separation.

20

where σ′l′ is an extension of σ′′, τ ′ is an extension of τ ′′, and T ′′ = T ′.origin(O′)
up to reordering. Intuitively, this strong computation does not reflect the
writes of the tries in O′; these writes are undone in σ′l′. (On the other hand,
allocations are not undone.) In addition, in order to permit an inductive argu-
ment, we prove that τ ′(r) = P for every r ∈ dom(l′). We also prove that if O′

has the form O†.(e, f, a, P).O†† and (e, f, a, P) does not conflict with O†.O††,
then τ ′(r) = P for every r ∈ a. Note that τ ′(r) = P for r ∈ dom(l′) does not
require an assumption about the absence of conflict but, in contrast, τ ′(r) = P

for r ∈ a does depend on such an assumption. Intuitively, this difference
arises because we guarantee that transactions write only to protected refer-
ence locations whether or not there is a conflict, while zombies may read from
unprotected reference locations after a conflict. Assuming the same absence
of conflict, we also construct a further strong computation

〈σ′′, τ ′′, T ′′, unit〉 7−→s 〈σ′′, τ ′′, T ′′′, f〉 7−→∗
s 〈σ′′′, τ ′′′, T ′′′.P, e〉

where the first transition is an instance of (Trans Activate)s and

• σ′(l′ − a) is an extension of σ′′′,
• τ ′′′ is an extension of τ ′′, and τ ′ is an extension of τ ′′′,
• T ′′′ = T ′.origin(O†.O††) up to reordering,
• 〈σ′′, τ ′′, T ′′′, f〉 7−→∗

s 〈σ′′′, τ ′′′, T ′′′.P, e〉 accesses the reference locations in a.

Intuitively, this further strong computation represents an execution that ini-
tially activates f and leads to e, corresponding to the try (e, f, a, P).

8 Conclusion

A notable aspect of our research on AME is that we have developed formal
semantics alongside our software artifacts. The formal semantics have helped
guide the practical implementation work and vice versa. As in the present
study of dynamic separation, formal semantics shed light on the behavior of
constructs and the properties of programming disciplines, even in the face of
diverse implementation techniques.

Our objective is to enable the creation of programs by programmers with nor-
mal (not exceptional) skills, such that the programs will be satisfactory on cur-
rent and future hardware, especially multi-processor and multi-core hardware.
The programs must be semantically correct and must actually run correctly—
at least the semantics and the implementations should be well-defined and
simple enough that they are not an obstacle to correctness. The programs
should also be efficient, so they should utilize concurrency where appropri-
ate. Transactional memory with dynamic separation appears as a promising
element in reconciling these goals.

21

Acknowledgements

This work was done at Microsoft Research. We are grateful to Katie Coons,
Rebecca Isaacs, Yossi Levanoni, and Jean-Philippe Martin for helpful discus-
sions and comments, and to Andrew Birrell, Johnson Hsieh, and Michael Isard
for our joint work, which gave rise to the present paper.

References

[1] Mart́ın Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, and Michael Isard.
Dynamic separation for transactional memory. Technical Report MSR-TR-
2008-43, Microsoft Research, March 2008.

[2] Mart́ın Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, and Michael Isard.
Implementation and use of transactional memory with dynamic separation. In
Oege de Moor and Michael I. Schwartzbach, editors, CC 2009: International
Conference on Compiler Construction, volume 5501 of Lecture Notes in
Computer Science, pages 63–77. Springer-Verlag, March 2009.

[3] Mart́ın Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics
of transactional memory and automatic mutual exclusion. In POPL ’08:
Proc. 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 63–74, January 2008.

[4] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin
Saha, and Tatiana Shpeisman. Compiler and runtime support for efficient
software transactional memory. In PLDI ’06: Proc. 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 26–
37, June 2006.

[5] Sarita V. Adve. Designing memory consistency models for shared-memory
multiprocessors. PhD thesis, U. Wisconsin–Madison, 1993.

[6] Sarita V. Adve and Mark D. Hill. Weak ordering – a new definition. ACM
SIGARCH Comput. Archit. News, 18(3a):2–14, 1990.

[7] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen,
Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt. The Fortress
language specification, v1.0β. Technical report, Sun Microsystems, March 2007.

[8] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Deconstructing
transactional semantics: The subtleties of atomicity. In WDDD ’05: Proc. 4th
Workshop on Duplicating, Deconstructing and Debunking, pages 48–55, June
2005.

[9] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Proc. of the
20th International Symposium on Distributed Computing (DISC 2006), pages
194–208, September 2006.

22

[10] Dave Dice and Nir Shavit. What really makes transactions faster? In
TRANSACT ’06, 1st ACM SIGPLAN Workshop on Languages, Compilers,
and Hardware Support for Transactional Computing, June 2006.

[11] Tim Harris and Keir Fraser. Language support for lightweight transactions.
In Proc. 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 388–402, October
2003.

[12] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy.
Composable memory transactions. In PPoPP ’05: Proc. 10th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 48–60,
June 2005.

[13] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing
memory transactions. In PLDI ’06: Proc. 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 14–25, June 2006.

[14] Michael Isard and Andrew Birrell. Automatic mutual exclusion. In Proc. 11th
Workshop on Hot Topics in Operating Systems, May 2007.

[15] Katherine F. Moore and Dan Grossman. High-level small-step operational
semantics for transactions. In POPL ’08: Proc. 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 51–62, January
2008.

[16] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and
Benjamin Hertzberg. McRT-STM: a high performance software transactional
memory system for a multi-core runtime. In PPoPP ’06: Proc. Eleventh ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 187–197, March 2006.

[17] Nir Shavit and Dan Touitou. Software transactional memory. In Proc. 14th
Annual ACM Symposium on Principles of Distributed Computing, pages 204–
213, August 1995.

[18] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven Balensiefer,
Dan Grossman, Richard L. Hudson, Katherine F. Moore, and Bratin Saha.
Enforcing isolation and ordering in STM. In PLDI ’07: Proc. 2007 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 78–88, June 2007.

[19] Yannis Smaragdakis, Anthony Kay, Reimer Behrends, and Michal Young.
Transactions with isolation and cooperation. In Proc. 22nd Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 191–210, October 2007.

[20] Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L. Scott.
Privatization techniques for software transactional memory. Technical Report
915, CS Dept, U. Rochester, February 2007.

23

[21] Cheng Wang, Wei-Yu Chen, Youfeng Wu, Bratin Saha, and Ali-Reza Adl-
Tabatabai. Code generation and optimization for transactional memory
constructs in an unmanaged language. In CGO ’07, International Symposium
on Code Generation and Optimization, pages 34–48, March 2007.

A Appendix: Proofs

Some Background Lemmas

In our proofs about static separation, we rely on results on AME, presented in
http://research.microsoft.com/en-us/projects/ame/ame-semantics-mar08.

pdf. Specifically, we rely on the following lemmas, which are numbered 4.1–4.5
in that document and which we restate here without proof.

Lemma A.1 (Replacement) Consider a derivation D of E ; p ` E [e0] : t.
Assume that this derivation includes, as a subderivation, a proof D0 of the
judgment E ; p0 ` e0 : t0 for the occurrence of e0 in E [·]. Assume that we
also have a derivation D′

0 of E ; p0 ` e′0 : t0 for some e′0. Let D′ be obtained
from D by replacing D0 with D′

0, and e0 with e′0 in E. Then D′ is a derivation
of E ; p ` E [e′0] : t.

Lemma A.2 If E ; p ` V : t then E ; q ` V : t.

Lemma A.3 (Value substitution) If E, x : s, E ′ ; p ` e : t and E ; q ` V : s
then E, E ′ ; p ` e[V/x] : t.

Lemma A.4 If r ∈ dom(σ), E(r) = Refp0 t0, E ` 〈σ, e1. · · · .en, e〉, and
E ; p0 ` V : t0, then E ` 〈σ[r 7→ V], e1. · · · .en, e〉.

Lemma A.5 If E ` 〈σ, T,P [e]〉 then there exists t such that E ; P ` e : t. If
E ` 〈σ, T.U [e′].T ′, e〉 then there exists t such that E ; U ` e′ : t.

Proof of Lemma 5.1

Proof: We assume DS(〈σ, τ, T, unit〉) and prove, by induction on the compu-
tation 〈σ, τ, T, unit〉 7−→∗

s 〈σ′, τ ′, T ′, e′〉, that 〈σ′, τ ′, T ′, e′〉 is locally good’. The
assumption DS(〈σ, τ, T, unit〉) implies that every state of the computation,
including 〈σ′, τ ′, T ′, e′〉, is locally good.

Base Case: If 〈σ, τ, T, unit〉 takes zero steps, then we show that the state
〈σ, τ, T, unit〉 is locally good’. Since 〈σ, τ, T, unit〉 is locally good and its active
expression is unit, it is also locally good’.

24

Induction Step: We assume that 〈σ′, τ ′, T ′, e′〉 is not locally good’, in order to
obtain a contradiction. If 〈σ′, τ ′, T ′, e′〉 is not locally good’, then by definition
one of the following statements must be true:

• e′ = P [r := V] or e′ = P [!r], and τ ′(r) = U, or
• T ′ contains U [r := V] or U [!r], and τ ′(r) = P.

We analyze these cases, focusing on writes; the treatment of reads is exactly
analogous.

• If e′ = P [r := V] and τ ′(r) = U, then 〈σ′, τ ′, T ′, e′〉 is not locally good—a
contradiction.

• If T ′ contains U [r := V] and τ ′(r) = P, then e′ 6= unit because 〈σ′, τ ′, T ′, e′〉
is locally good. Since the initial state of the computation is 〈σ, τ, T, unit〉
and e′ 6= unit, the computation must contain one or more applications of
(Trans Activate)s. We focus on the last transition that uses this rule. This
transition activates some e′′ that leads to e′ in the following manner:

〈σ′′, τ ′′, T †.e′′.T ††, unit〉 7−→s 〈σ′′, τ ′′, T †.T ††, e′′〉 7−→∗
s 〈σ′, τ ′, T ′, e′〉

Because of the syntactic restriction that in any expression of the form
async (. . .) all occurrences of unprotected are under a λ, the computa-
tion from e′′ cannot spawn U [r := V] via (Trans Async P)s. Since T ′

contains U [r := V], it must therefore be the case that T †.T †† contains
U [r := V]. Moreover, τ ′ is an extension of τ ′′ (since the semantics allows
only additions to the protection state when evaluating in a protected con-
text), so τ ′′(r) = τ ′(r) = P. Therefore, 〈σ′′, τ ′′, T †.e′′.T ††, unit〉 is not locally
good—a contradiction again.

Proof of Theorem 5.2

Proof: This proof extends that of Theorem 6.1 of [3]. We prove that if E `
〈σ, e1. · · · .en, e〉 and 〈σ, τE, e1. · · · .en, e〉 7−→s 〈σ′, τ ′, e′1. · · · .e′n′ , e′〉 then there
is some E ′ such that E ′ ` 〈σ′, e′1. · · · .e′n′ , e′〉 with τ ′ = τE′ . The claim follows
immediately by induction.

The proof is by cases on the operational-semantics rule being applied. In each
case, we show that if E ` 〈σ, e1. · · · .en, e〉 then E ′ ` 〈σ′, e′1. · · · .e′n′ , e′〉, where,
unless indicated otherwise, E ′ = E, τE = τE′ , and n′ = n. In several cases,
we consider the typings of certain subexpressions that occur in evaluation
contexts; those typings are with respect to E, since the holes in the contexts
are never under binders.

25

• (Trans Appl . . .)s:
The typing of 〈σ, T,P [(λx. e) V]〉 (or 〈σ, T.U [(λx. e) V].T ′, unit〉) must
rely on (Exp Appl) and (Exp Fun). Specifically, we must have E ; p0 `
(λx. e) V : t0 for some t0 and p0, and therefore E ; p0 ` λx. e : t1 →p0 t0 and
E ; p0 ` V : t1 for some t1, and therefore E, x : t1 ; p0 ` e : t0. Lemma A.3
implies that E ; p0 ` e[V/x] : t0. Moreover, Lemma A.1 yields a typing of
〈σ, T,P [e[V/x]]〉 (or 〈σ, T.U [e[V/x]].T ′, unit〉).

• (Trans Ref . . .)s:
The typing of 〈σ, T,P [ref V]〉 (or 〈σ, T.U [ref V].T ′, unit〉) must rely
on (Exp Ref). Specifically, we must have E ; p0 ` ref V : Refp0 t0 for some
t0 and p0, and therefore E ; p0 ` V : t0. We extend E with r : Refp0 t0. We
can do this extension because r ∈ RefLoc − dom(σ), hence r 6∈ dom(E).
After a weakening (adding r : Refp0 t0 to E for typing 〈σ, T,P [ref V]〉)
(or 〈σ, T.U [ref V].T ′, unit〉)), Lemma A.1 yields a typing of 〈σ, T,P [r]〉
(or 〈σ, T.U [r].T ′, unit〉). Because r ∈ dom(E ′), and E ′(r) = Refp0 t0, we
have that τ ′(r) = τE′(r), where τ ′ = τE[r 7→ p0]. For all other reference
locations in τ ′, the desired result follows from the induction hypothesis.

• (Trans Deref . . .)s:
The typing of 〈σ, T,P [!r]〉 (or 〈σ, T.U [!r].T ′, unit〉) must rely on (Exp
Deref). Specifically, we must have E ; p0 ` !r : t0 for some t0 and p0, and
therefore E ; p0 ` r : Refp0 t0. Since r is a variable, its type must come
from the environment E, so by hypothesis E ; p0 ` V : t0 where V = σ(r).
Lemma A.1 yields a typing of 〈σ, T,P [V]〉 (or 〈σ, T.U [V].T ′, unit〉).

• (Trans Set . . .)s:
The typing of 〈σ, T,P [r := V]〉 (or 〈σ, T.U [r := V].T ′, unit〉) must rely
on (Exp Set). Specifically, we must have E ; p0 ` r := V : Unit for some p0,
and therefore E ; p0 ` V : t0 and E ; p0 ` r : Refp0 t0 for some p0.
Lemma A.1 allows us to transform a typing of 〈σ, T,P [r := V]〉 into a
typing of 〈σ, T,P [unit]〉 (or a typing of 〈σ, T.U [r := V].T ′, unit〉 into
a typing of 〈σ, T.U [unit].T ′, unit〉). Since E ; p0 ` V : t0 and E(r) =
Refp0 t0, Lemma A.4 yields a typing of 〈σ[r 7→ V], T,P [unit]〉 (or 〈σ[r 7→
V], T.U [unit].T ′, unit〉).

• (Trans Async . . .)s:
The typing of 〈σ, T,P [async e]〉 (or 〈σ, T.U [async e].T ′, unit〉) must rely
on (Exp Async). Specifically, we must have E ; p0 ` async e : Unit for
some p0, and therefore that E ; P ` e : Unit. Lemma A.1 allows us to trans-
form a typing of 〈σ, T,P [async e]〉 (or 〈σ, T.U [async e].T ′, unit〉) into a
typing of P [unit] (or U [unit]), and then into a typing of 〈σ, e.T,P [unit]〉
(or 〈σ, e.T.U [unit].T ′, unit〉) letting n′ = n + 1.

• (Trans Block . . .)s:
The typing of 〈σ, T,P [blockUntil true]〉 (or 〈σ, T.U [blockUntil true]
.T ′, unit〉) must rely on (Exp Block), specifically on a derivation of E ; p0 `
blockUntil true : Unit for some p0. Lemma A.1 yields a typing of 〈σ, T,
P [unit]〉 (or 〈σ, T.U [unit].T ′, unit〉).

• (Trans Unprotect)s:

26

This case requires a trivial rearrangement in the typing, with n′ = n + 1.
• (Trans Close)s: The typing of 〈σ, T.E [unprotected V].T ′, e′〉 must rely on

(Exp Unprotect). Specifically, we must have E ; p0 ` unprotected V : t0
for some t0 and p0, and E ; U ` V : t0, so E ; p0 ` V : t0 by Lemma A.2.
Lemma A.1 yields a typing of E [V] and then of 〈σ, T.E [V].T ′, e′〉.

• (Trans Activate)s:
This case requires a trivial rearrangement in the typing, with n′ = n− 1.

• (Trans DynUn)s:
By assumption, 〈σ, T, e〉 is well-typed. There are no typing rules for calls to
unprotect, so this transition is not possible. This case is vacuous.

• (Trans DynPr)s:
By assumption, 〈σ, T, e〉 is well-typed. There are no typing rules for calls to
protect, so this transition is not possible. This case is vacuous.

Proof of Theorem 5.3

Proof: We consider the computation:

〈σ, τE, T, e〉 7−→∗
s 〈σ′, τ ′, T ′, e′〉

Theorem 5.2 gives that there is some E ′ such that E ′ ` 〈σ′, T ′, e′〉, and τ ′ = τE′ .
It suffices to show that the state 〈σ′, τE′ , T ′, e′〉 is locally good. There are four
cases:

• If e′ = P [!r], we need to show that τE′(r) = P. We have some E ′ where
E ′ ` 〈σ′, T ′, e′〉. Lemma A.5 gives some t such that E ′ ; P ` !r : t. Inversion
on the typing rule (Exp Deref) gives that E ′ ; P ` r : RefP t, and thus
E ′(r) = RefP t. Therefore τE′(r) = P.

• If T ′ = T ∗.U [!r].T ∗∗, we need to show that τE′(r) = U. We have some E ′

where E ′ ` 〈σ′, T ′, e′〉. Lemma A.5 gives some t such that E ′ ; U ` !r : t.
Inversion on the typing rule (Exp Deref) gives that E ′ ; U ` r : RefU t, and
thus E ′(r) = RefU t. Therefore τE′(r) = U.

• If e′ = P [r := V], we need to show that τE′(r) = P. We have some E ′

where E ′ ` 〈σ′, T ′, e′〉. Lemma A.5 gives some t such that E ′ ; P ` r := V : t.
Inversion on the typing rule (Exp Set) gives that E ′ ; P ` r : RefP t, and
thus E ′(r) = RefP t. Therefore τE′(r) = P.

• If T ′ = T ∗.U [r := V].T ∗∗, we need to show that τE′(r) = U. We have some
E ′ where E ′ ` 〈σ′, T ′, e′〉. Lemma A.5 gives some t such that E ′ ; U ` !r : t.
Inversion on the typing rule (Exp Set) gives that E ′ ; U ` r : RefU t, and
thus E ′(r) = RefU t. Therefore τE′(r) = U.

27

Proof of Lemma 5.5

Proof: We argue by contradiction. We assume that DS ′(〈σ, τ, T, e〉), that
〈σ, τ, T, e〉 7−→∗

s 〈σ′, τ ′, T ′, e′〉, and that 〈σ′, τ ′, T ′, e′〉 has a violation on a ref-
erence location r. We focus on the case where 〈σ′, τ ′, T ′, e′〉 has a write/write
violation; the read/write case is analogous. Both of the following must be true:

• e′ = P [r := V1], and
• T ′ = T ∗.U [r := V2].T ∗∗.

Since e′ = P [r := V1], τ ′(r) = P by the definition of locally good’. Since
T ′ = T ′′.U [r := V2].T ′′′, τ ′(r) = U by the definition of locally good’. Thus, we
have that τ ′(r) = P and τ ′(r) = U, simultaneously. This is a contradiction.

Proof of Theorem 6.1

Proof: The proof is by induction on the computation:

〈σ1, σ2, τ, T, e〉 7−→∗
t 〈σ′

1, σ
′
2, τ

′, T ′, e′〉

Base Case: If the two-heap computation took zero steps, then by assump-
tion we have that 〈σ, τ, T, e〉 corresponds to 〈σ1, σ2, τ, T, e〉, with dom(σ) =
dom(σ1) = dom(σ2), and if τ(r) = P, then σ1(r) = σ(r), and if τ(r) = U, then
σ2(r) = σ(r).

Induction Step: The induction step is an immediate consequence of Lemma
A.6, below.

Lemma A.6 Assume that DS(〈σ, τ, T, e〉), that dom(σ) = dom(σ1) = dom(σ2),
and that σ1(r) = σ(r) if τ(r) = P and σ2(r) = σ(r) if τ(r) = U. Consider a
transition with two heaps:

〈σ1, σ2, τ, T, e〉 7−→t 〈σ′
1, σ

′
2, τ

′, T ′, e′〉

Then there is a transition:

〈σ, τ, T, e〉 7−→s 〈σ′, τ ′, T ′, e′〉

for some σ′ such that dom(σ′) = dom(σ′
1) = dom(σ′

2) and, for every r ∈
dom(σ′), if τ ′(r) = P, then σ′

1(r) = σ′(r), and if τ ′(r) = U, then σ′
2(r) = σ′(r).

Proof: We consider a transition

〈σ1, σ2, τ, T, e〉 7−→t 〈σ′
1, σ

′
2, τ

′, T ′, e′〉

and a state 〈σ, τ, T, e〉 such that:

28

• dom(σ) = dom(σ1) = dom(σ2), and
• for every r ∈ dom(σ),
· if τ(r) = P, then σ1(r) = σ(r), and
· if τ(r) = U, then σ2(r) = σ(r),

in order to construct a state 〈σ′, τ ′, T ′, e′〉 and to establish a similar correspon-
dence between this state and 〈σ′

1, σ
′
2, τ

′, T ′, e′〉.

The argument is by cases on the rule applied in the transition

〈σ1, σ2, τ, T, e〉 7−→t 〈σ′
1, σ

′
2, τ

′, T ′, e′〉

• (Trans Appl . . .)t, (Trans Async . . .)t, (Trans Block . . .)t, (Trans Unprotect)t,
(Trans Close)t, and (Trans Activate)t:
When 〈σ1, σ2, τ, T, e〉 7−→t 〈σ′

1, σ
′
2, τ

′, T ′, e′〉 by one of these rules, we have:
· σ′

1 = σ1,
· σ′

2 = σ2

· τ ′ = τ .
We simulate this transition with an application of (Trans Appl . . .)s, (Trans
Async . . .)s, (Trans Block . . .)s, (Trans Unprotect)t, (Trans Close)t, and
(Trans Activate)s, respectively. This application gives the desired results
for e′ and T ′, where σ′ = σ and τ ′ = τ . By combining the new expressions
for σ′, τ ′, σ′

1, and σ′
2 with the hypothesis, we obtain the desired results.

• (Trans Ref P)t:
When 〈σ1, σ2, τ, T, e〉 7−→t 〈σ′

1, σ
′
2, τ

′, T ′, e′〉 with (Trans Ref P)t, we have:
· T ′ = T ,
· e = P [ref V] yields e′ = P [r],
· σ′

1 = σ1[r 7→ V],
· σ′

2 = σ2[r 7→ V],
· τ ′ = τ [r 7→ P].
We simulate this transition with a corresponding application of (Trans Ref
P)s, to obtain:
· T ′ = T ,
· e′ = P [r],
· σ′ = σ[r 7→ V],
· τ ′ = τ [r 7→ P].
In this case, it is sufficient to note that dom(σ′) = dom(σ′

1) = dom(σ′
2), and

that σ′(r) = σ′
1(r) = σ′

2(r).
• (Trans Deref P)t:

When 〈σ1, σ2, τ, T, e〉 7−→t 〈σ′
1, σ

′
2, τ

′, T ′, e′〉 with (Trans Deref P)t, we have:
· T ′ = T ,
· e = P [!r] yields e′ = P [σ1(r)],
· σ′

1 = σ1,
· σ′

2 = σ2,
· τ ′ = τ .

29

By assumption, the strong computation obeys dynamic separation, thus
τ(r) = P and (by the hypothesis) σ1(r) = σ(r). We simulate the transition
with a corresponding application of (Trans Deref P)s, to obtain:
· T ′ = T ,
· e′ = P [σ(r)],
· σ′ = σ,
· τ ′ = τ .
By combining these expressions with the hypothesis, we get dom(σ′) =
dom(σ′

1) = dom(σ′
2); since τ ′(r) = P, it is sufficient to note that σ′

1(r) =
σ′(r).

• (Trans Set P)t:
When 〈σ1, σ2, τ, T, e〉 7−→t 〈σ′

1, σ
′
2, τ

′, T ′, e′〉 with (Trans Set P)t, we have:
· T ′ = T ,
· e = P [r := V] yields e′ = P [unit],
· σ′

1 = σ1[r 7→ V],
· σ′

2 = σ2,
· τ ′ = τ .
By assumption, the strong computation obeys dynamic separation, so τ(r) =
P. We simulate this transition with a corresponding application of (Trans
Set P)s, to obtain:
· T ′ = T ,
· e′ = P [unit],
· σ′ = σ[r 7→ V], and
· τ ′ = τ .
By combining these expressions with the hypothesis, we get dom(σ′) =
dom(σ′

1) = dom(σ′
2); since τ ′(r) = P, it is sufficient to note that σ′

1(r) =
σ′(r).

• (Trans Ref U)t:
When 〈σ1, σ2, τ, T, e〉 7−→t 〈σ′

1, σ
′
2, τ

′, T ′, e′〉 with (Trans Ref U)t, we have:
· T = T ∗.U [ref V].T ∗∗ yields T ′ = T ∗.U [r].T ∗∗,
· e = e′ = unit,
· σ′

1 = σ1[r 7→ V],
· σ′

2 = σ2[r 7→ V],
· τ ′ = τ [r 7→ U].
We simulate this transition with a corresponding application of (Trans Ref
U)s, to obtain:
· T ′ = T ∗.U [r].T ∗∗,
· e′ = unit,
· σ′ = σ[r 7→ V],
· τ ′ = τ [r 7→ U].
In this case, it is sufficient to note that dom(σ′) = dom(σ′

1) = dom(σ′
2), and

that σ′(r) = σ′
1(r) = σ′

2(r).
• (Trans Deref U)t:

When 〈σ1, σ2, τ, T, e〉 7−→t 〈σ′
1, σ

′
2, τ

′, T ′, e′〉 with (Trans Deref U)t, we have:
· T = T ∗.U [!r].T ∗∗ yields T ′ = T ∗.U [σ2(r)].T ∗∗,

30

· e = e′ = unit,
· σ′

1 = σ1,
· σ′

2 = σ2,
· τ ′ = τ .
By assumption, the strong computation obeys dynamic separation, thus
τ(r) = U and (by the hypothesis) σ2(r) = σ(r). We simulate the transition
with a corresponding application of (Trans Deref U)s, to obtain:
· T ′ = T ∗.U [σ(r)].T ∗∗,
· e′ = unit,
· σ′ = σ,
· τ ′ = τ .
By combining these expressions with the hypothesis, we get dom(σ′) =
dom(σ′

1) = dom(σ′
2); since τ ′(r) = U, it is sufficient to note that σ′

2(r) =
σ′(r).

• (Trans Set U)t:
When 〈σ1, σ2, τ, T, e〉 7−→t 〈σ′

1, σ
′
2, τ

′, T ′, e′〉 with (Trans Set U)t, we have:
· T = T ∗.U [r := V].T ∗∗ yields T ′ = T ∗.U [unit].T ∗∗,
· e = e′ = unit,
· σ′

1 = σ1,
· σ′

2 = σ2[r 7→ V],
· τ ′ = τ .
By assumption, the strong computation obeys dynamic separation so τ(r) =
U. We simulate the transition with a corresponding application of (Trans Set
U)s, to obtain:
· T ′ = T ∗.U [unit].T ∗∗,
· e′ = unit,
· σ′ = σ[r 7→ V],
· τ ′ = τ .
By combining these expressions with the hypothesis, we get dom(σ′) =
dom(σ′

1) = dom(σ′
2); since τ ′(r) = U, it is sufficient to note that σ′

2(r) =
σ′(r).

• (Trans DynPr)t:
When 〈σ1, σ2, τ, T, e〉 7−→t 〈σ′

1, σ
′
2, τ

′, T ′, e′〉 with (Trans DynPr)t, we have:
· T = T ∗.U [protect r].T ∗∗ yields T ′ = T ∗.U [r].T ∗∗,
· e = e′ = unit.
There are two subcases.

(1) If τ(r) = P, then
· σ′

1 = σ1,
· σ′

2 = σ2,
· τ ′ = τ ,
· the hypothesis gives σ1(r) = σ(r).

(2) If τ(r) = U, then
· σ′

1 = σ1[r 7→ σ2(r)],
· σ′

2 = σ2,
· τ ′ = τ [r 7→ P],

31

· the hypothesis gives σ2(r) = σ(r).
We simulate the transition with a corresponding application of (Trans DynPr)s,
to obtain:
· T ′ = T ∗.U [r].T ∗∗,
· e = e′ = unit,
· σ′ = σ,
· τ ′ = τ [r 7→ P].
By combining these expressions with the hypothesis, we get dom(σ′) =
dom(σ′

1) = dom(σ′
2); since τ ′(r) = P, it is sufficient to note that σ′

1(r) =
σ′(r).

• (Trans DynUn)t:
When 〈σ1, σ2, τ, T, e〉 7−→t 〈σ′

1, σ
′
2, τ

′, T ′, e′〉 with (Trans DynUn)t, we have:
· T = T ∗.U [unprotect r].T ∗∗ yields T ′ = T ∗.U [r].T ∗∗,
· e = e′ = unit.
There are two subcases.

(1) If τ(r) = U, then
· σ′

1 = σ1,
· σ′

2 = σ2,
· τ ′ = τ ,
· the hypothesis gives σ2(r) = σ(r).

(2) If τ(r) = P, then
· σ′

1 = σ1,
· σ′

2 = σ2[r 7→ σ1(r)],
· τ ′ = τ [r 7→ U],
· the hypothesis gives σ1(r) = σ(r).

We simulate the transition with a corresponding application of (Trans DynUn)s,
to obtain:
· T ′ = T ∗.U [r].T ∗∗,
· e = e′ = unit,
· σ′ = σ,
· τ ′ = τ [r 7→ U].
By combining these expressions with the hypothesis, we get dom(σ′) =
dom(σ′

1) = dom(σ′
2); since τ ′(r) = U, it is sufficient to note that σ′

2(r) =
σ′(r).

Proof of Theorem 7.1

Proof: More generally, we consider a computation

〈σ0, τ0, T0, ∅, ∅〉 7−→∗
o 〈σ′, τ ′, T ′, O′, l′〉

and prove the following four facts:

32

(1) There is a strong computation 〈σ0, τ0, T0, unit〉 7−→∗
s 〈σ′′, τ ′′, T ′′, unit〉

where:
• σ′l′ is an extension of σ′′,
• τ ′ is an extension of τ ′′,
• T ′′ = T ′.origin(O′) up to reordering.

(2) Moreover, if O′ = O†.(e, f, a, P).O†† and (e, f, a, P) does not conflict with
O†.O††, then there is a further strong computation 〈σ′′, τ ′′, T ′′, unit〉 7−→s

〈σ′′, τ ′′, T ′′′, f〉 7−→∗
s 〈σ′′′, τ ′′′, T ′′′.P, e〉 where the first transition is an in-

stance of (Trans Activate)s and
• σ′(l′ − a) is an extension of σ′′′,
• τ ′′′ is an extension of τ ′′, and τ ′ is an extension of τ ′′′,
• T ′′′ = T ′.origin(O†.O††) up to reordering,
• 〈σ′′, τ ′′, T ′′′, f〉 7−→∗

s 〈σ′′′, τ ′′′, T ′′′.P, e〉 accesses (reads or writes) the ref-
erence locations in a.

(3) In addition, if O′ = O†.(e, f, a, P).O†† and (e, f, a, P) does not conflict
with O†.O††, then for every r ∈ a then τ ′(r) = P.

(4) For every r ∈ dom(l′), τ ′(r) = P.

The proof is by induction on the computation

〈σ0, τ0, T0, ∅, ∅〉 7−→∗
o 〈σ′, τ ′, T ′, O′, l′〉

Throughout, we work up to reorderings in the pool.

Base Case: Assume the low-level computation took zero steps:

〈σ0, τ0, T0, ∅, ∅〉 7−→∗
o 〈σ0, τ0, T0, ∅, ∅〉

Then the strong computation also takes zero steps:

〈σ0, τ0, T0, unit〉 7−→∗
s 〈σ0, τ0, T0, unit〉

The desired results are immediate.

Induction Step: The argument considers the last transition 〈σ, τ, T, O, l〉7−→o

〈σ′, τ ′, T ′, O′, l′〉 in the low-level semantics, with a case analysis on the rule
applied in this transition.

• (Trans Appl P)o, (Trans Async P)o, (Trans Block P)o:
(1) When 〈σ, τ, T, O, l〉 7−→o 〈σ′, τ ′, T ′, O′, l′〉 by one of these rules, we have:

· σ′ = σ,
· τ ′ = τ ,
· T ′ = T ,
· origin(O′) = origin(O),
· l′ = l.

The induction hypothesis gives a strong computation ending in 〈σs, τs, Ts, unit〉
such that:

33

· σl is an extension of σs,
· τ is an extension of τs,
· Ts = T.origin(O) up to reordering.

The desired result is obtained by combining the new expressions with the
induction hypothesis.

(2) There are two subcases:
(a) If the further strong computation is of a try that did not transition

in the low-level semantics, then the desired result follows from the
induction hypothesis.

(b) If the further strong computation is of the try that did transition in
the low-level semantics using one of these rules, then we extend the
strong computation with a corresponding application of (Trans Appl
P)s, (Trans Async P)s, or (Trans Block P)s, respectively.

(3) This transition does not modify a or τ . The desired result follows from
the induction hypothesis.

(4) This transition does not modify l or τ . The desired result follows from the
induction hypothesis.

• (Trans Ref P)o:
(1) When 〈σ, τ, T, O, l〉 7−→o 〈σ′, τ ′, T ′, O′, l′〉 by this rule, we have:

· σ′ = σ[r 7→ V],
· τ ′ = τ [r 7→ P],
· T ′ = T ,
· O = O∗.(P [ref V], f, a, P).O∗∗,
· O′ = O∗.(P [r], f, a, P).O∗∗,
· origin(O′) = origin(O),
· l′ = l.

The induction hypothesis gives a strong computation ending in 〈σs, τs, Ts, unit〉
where:

· σl is an extension of σs,
· τ is an extension of τs,
· Ts = T.origin(O) up to reordering.

The desired result is obtained by combining the new expressions with the
induction hypothesis.

(2) There are two subcases:
(a) If the further strong computation is of a try that did not transition

with (Trans Ref P)o, then the desired result follows from the induction
hypothesis.

(b) If the further strong computation is of the try where (Trans Ref P)o

operates, then we extend the strong computation with a correspond-
ing application of (Trans Ref P)s.

(3) This transition does not modify a, and τ ′ extends τ with r. The desired
result follows from the induction hypothesis.

(4) In this case, l′ = l and τ ′ extends τ with r. The desired result follows from
the induction hypothesis.

• (Trans Deref P)o:

34

(1) When 〈σ, τ, T, O, l〉 7−→o 〈σ′, τ ′, T ′, O′, l′〉 by this rule, we have:
· σ′ = σ,
· τ ′ = τ ,
· T ′ = T ,
· O = O∗.(P [!r], f, a, P).O∗∗,
· O′ = O∗.(P [σ(r)], f, r.a, P).O∗∗,
· origin(O′) = origin(O),
· l′ = l.

The induction hypothesis gives a strong computation ending in 〈σs, τs, Ts, unit〉
such that:

· σl is an extension of σs,
· τ is an extension of τs

· Ts = T.origin(O) up to reordering.
The desired result is obtained by combining the new expressions with the
induction hypothesis.

(2) There are two subcases:
(a) If the further strong computation is of a try that did not transi-

tion with (Trans Deref P)o, then the desired result follows from the
induction hypothesis.

(b) If the further strong computation is of the try where (Trans Deref
P)o operates, then we extend the strong computation with a corre-
sponding application of (Trans Deref P)s.

(3) For the try that transitions in the low-level semantics, we have two sub-
cases:
(a) (e, f, a, P) conflicts as a result of this transition. In this case, the

claim is vacuous.
(b) (e, f, a, P) does not conflict. Claim (2) gives the further strong com-

putation:

〈σ′′, τ ′′, T ′′.f, unit〉 7−→s 〈σ′′, τ ′′, T ′′′, f〉 7−→∗
s 〈σ′′′, τ ′′′, T ′′′.P, e〉

Since this computation ends with an application of (Trans Deref P)s,
it must be the case that the next-to-last active expression is of the
form P [!r]. By the assumption that this computation obeys dynamic
separation, it must be the case that τ ′′′(r) = P, and because τ ′ extends
τ ′′′, it must also be the case that τ ′(r) = P. The induction hypothesis
gives the desired result for all other locations in a.

For other tries, Claim (3) follows by the induction hypothesis.
(4) In this case, l′ = l and τ ′ = τ . The desired result follows from the induction

hypothesis.
• (Trans Set P)o:
(1) When 〈σ, τ, T, O, l〉 7−→o 〈σ′, τ ′, T ′, O′, l′〉 by this rule, we have:

· σ′ = σ[r 7→ V],
· τ ′ = τ ,
· T ′ = T ,

35

· O = O∗.(P [r := V], f, a, P).O∗∗, and
O′ = O∗.(P [unit], f, r.a, P).O∗∗,

· origin(O′) = origin(O),
· r ∈ dom(l′).

The induction hypothesis gives that there is a strong computation ending
in 〈σs, τs, Ts, unit〉 such that:

· σl is an extension of σs,
· τ is an extension of τs,
· Ts = T.origin(O) up to reordering.

The desired result is obtained by combining the new expressions with the
induction hypothesis.

(2) There are two subcases:
(a) If the further strong computation is of a try that did not transition

with (Trans Set P)o, then the desired result follows from the induction
hypothesis.

(b) If the further strong computation is of the try where (Trans Set P)o

operates, then we extend the strong computation with a correspond-
ing application of (Trans Set P)s.

(3) Examination of the low-level computation yields r ∈ a. To apply this
transition, we require that τ(r) = P. In this case, τ ′ = τ , so τ ′(r) = P. The
induction hypothesis gives the desired result for all other locations in a.

(4) In this case, r ∈ dom(l′). By assumption, τ(r) = P. Since τ ′ = τ , we know
τ ′(r) = P. The induction hypothesis gives the desired result for all other
locations in dom(l′).

• (Trans Appl U)o, (Trans Block U)o, (Trans Close)o:
(1) When 〈σ, τ, T, O, l〉 7−→o 〈σ′, τ ′, T ′, O′, l′〉 by one of these rules, we have:

· σ′ = σ,
· τ ′ = τ ,
· T = T ∗.U [e].T ∗∗,
· T ′ = T ∗.U [e′].T ∗∗,
· O′ = O,
· l′ = l.

The induction hypothesis gives a strong computation ending in 〈σs, τs, Ts, unit〉
such that:

· σl is an extension of σs,
· τ is an extension of τs,
· Ts = T ∗.U [e].T ∗∗.origin(O) up to reordering.

We extend the strong computation with a corresponding application of
(Trans Appl U)s, (Trans Block U)s, and (Trans Close)s, respectively, to
obtain:

· σ′′ = σs,
· τ ′′ = τs,
· T ′′ = T ∗.U [e′].T ∗∗.origin(O) up to reordering.

The desired result is obtained by combining the new expressions with the
induction hypothesis.

36

(2) The further strong computation follows from the induction hypothesis,
with straightforward changes in the pool given by a corresponding appli-
cation of (Trans Appl U)s, (Trans Block U)s, and (Trans Close)s, respec-
tively.

(3) The desired result follows from the induction hypothesis.
(4) The desired result follows from the induction hypothesis.
• (Trans Async U)o:
(1) When 〈σ, τ, T, O, l〉 7−→o 〈σ′, τ ′, T ′, O′, l′〉 by this rule, we have:

· σ′ = σ,
· τ ′ = τ ,
· T = T ∗.U [async e].T ∗∗,
· T ′ = e.T ∗.U [unit].T ∗∗,
· O′ = O,
· l′ = l.

The induction hypothesis gives a strong computation ending in 〈σs, τs, Ts, unit〉
such that:

· σl is an extension of σs,
· τ is an extension of τs,
· Ts = T ∗.U [async e].T ∗∗.origin(O) up to reordering.

We extend the strong computation with a corresponding application of
(Trans Async U)s to obtain:

· σ′′ = σs,
· τ ′′ = τs,
· T ′′ = e.T ∗.U [unit].T ∗∗.origin(O) up to reordering.

The desired result is obtained by combining the new expressions with the
induction hypothesis.

(2) The further strong computation is given by the induction hypothesis, with
straightforward changes in the pool given by a corresponding application
of (Trans Async U)s.

(3) The desired result follows from the induction hypothesis.
(4) The desired result follows from the induction hypothesis.
• (Trans Ref U)o:
(1) When 〈σ, τ, T, O, l〉 7−→o 〈σ′, τ ′, T ′, O′, l′〉 by this rule, we have:

· σ′ = σ[r 7→ V],
· τ ′ = τ [r 7→ U],
· T = T ∗.U [ref V].T ∗∗,
· T ′ = T ∗.U [r].T ∗∗,
· O′ = O,
· l′ = l.

The induction hypothesis gives a strong computation ending in 〈σs, τs, Ts, unit〉
where:

· σl is an extension of σs,
· τ is an extension of τs,
· Ts = T ∗.U [ref V].T ∗∗.origin(O) up to reordering.

We extend the strong computation with a corresponding application of

37

(Trans Ref U)s to obtain:
· σ′′ = σs[r 7→ V],
· τ ′′ = τs[r 7→ U],
· T ′′ = T ∗.U [r].T ∗∗.origin(O) up to reordering.

This application gives the desired result for T ′′. We combine the new
expressions for σ′, l′, τ ′, σ′′, and τ ′′ with the induction hypothesis. Hence,
σ′l′ extends σ′′ and τ ′ extends τ ′′.

(2) The further strong computation is given by the induction hypothesis with
the addition of some location, r, to σ and τ , and straightforward changes
to the pool.

(3) Examination of the low-level computation yields that r 6∈ a and τ ′ is an
extension of τ with r. Thus, the desired result follows from the induction
hypothesis.

(4) Examination of the low-level computation yields that r 6∈ dom(l′) and τ ′

is an extension of τ with r. The desired result follows from the induction
hypothesis.

• (Trans Deref U)o:
(1) When 〈σ, τ, T, O, l〉 7−→o 〈σ′, τ ′, T ′, O′, l′〉 by this rule, we have:

· σ′ = σ,
· τ ′ = τ ,
· T = T ∗.U [!r].T ∗∗,
· T ′ = T ∗.U [σ(r)].T ∗∗,
· O′ = O,
· l′ = l.

The induction hypothesis gives a strong computation ending in 〈σs, τs, Ts, unit〉
such that:

· σl is an extension of σs,
· τ is an extension of τs,
· Ts = T ∗.U [!r].T ∗∗.origin(O) up to reordering.

We extend the strong computation with a corresponding application of
(Trans Deref U)s to obtain:

· σ′′ = σs,
· τ ′′ = τs,
· T ′′ = T ∗.U [σs(r)].T ∗∗.origin(O) up to reordering.

By assumption, the strong computation obeys dynamic separation, and
thus τs(r) = U. Since τ extends τs, it must be that τ(r) = U. Claim
(4) gives that τ(r′) = P for every r′ ∈ dom(l). Thus, it must be that
r 6∈ dom(l), so σl(r) = σ(r). Because σl extends σs, it must be the case
that σ(r) = σs(r).

(2) In this case, we must show that the location being read is not also read or
written by the further strong computation. Thus, it suffices to know that
r 6∈ a. By assumption, the strong computation that ends in 〈σ′′, τ ′′, T ′′, unit〉
obeys dynamic separation, and the prior claim gives that τ ′′(r) = U. Also,
the induction hypothesis gives that τ ′ extends τ ′′′, and that τ ′′′ extends
τ ′′. Thus, τ ′(r) = U. Claim (3) gives that for every r′ ∈ a then τ ′(r′) = P.

38

Thus, it must be that r 6∈ a, and therefore the further strong computation
does not access r. Because the further strong computation neither reads
nor writes to the reference location r, its execution commutes with the
read operation.

(3) The desired result follows from the induction hypothesis.
(4) The desired result follows from the induction hypothesis.
• (Trans Set U)o:
(1) When 〈σ, τ, T, O, l〉 7−→o 〈σ′, τ ′, T ′, O′, l′〉 by this rule, we have:

· σ′ = σ[r 7→ V],
· τ ′ = τ ,
· T = T ∗.U [r := V].T ∗∗,
· T ′ = T ∗.U [unit].T ∗∗,
· O′ = O,
· l′ = l.

The induction hypothesis gives a strong computation ending in 〈σs, τs, Ts, unit〉
such that:

· σl is an extension of σs,
· τ is an extension of τs,
· Ts = T ∗.U [r := V].T ∗∗.origin(O) up to reordering.

We extend the strong computation with a corresponding application of
(Trans Set U)s to obtain:

· σ′′ = σs[r 7→ V],
· τ ′′ = τs,
· T ′′ = T ∗.U [unit].T ∗∗.origin(O) up to reordering.

By assumption, the strong computation obeys dynamic separation, and
thus τs(r) = U. Since τ ′′ = τs, and τ ′ extends τ ′′, it must be that τ ′(r) =
U. Claim (4) gives that for every r′ ∈ dom(l), then τ ′(r′) = P. Thus,
r 6∈ dom(l). In this case, l′ = l, and therefore r 6∈ dom(l′). We combine
the new expressions for σ′, l′, τ ′, σ′′, and τ ′′ with the induction hypothesis.
Hence, σ′l′ extends σ′′ and τ ′ extends τ ′′.

(2) In this case, we must show that the location being modified is not also
read or written by the further strong computation. Thus, it suffices to
know that r 6∈ a. By assumption, the strong computation that ends in
〈σ′′, τ ′′, T ′′, unit〉 obeys dynamic separation, and the prior claim gives that
τ ′′(r) = U. Also, the induction hypothesis gives that τ ′ extends τ ′′′, and
that τ ′′′ extends τ ′′. Thus, τ ′(r) = U. Claim (3) gives that for every r′ ∈ a
then τ ′(r′) = P. Thus, it must be that r 6∈ a and because the further
strong computation neither reads nor writes to the reference location r,
its execution commutes with the write operation.

(3) This transition does not modify the access list of any try, and τ ′ = τ . The
desired result follows from the induction hypothesis.

(4) Examination of the low-level computation yields that l′ = l, and τ ′ = τ .
The desired result follows from the induction hypothesis.

• (Trans Activate)o:
(1) When 〈σ, τ, T, O, l〉 7−→o 〈σ′, τ ′, T ′, O′, l′〉 by this rule, we have:

39

· σ′ = σ,
· τ ′ = τ ,
· T = T ∗.e.T ∗∗,
· T ′ = T ∗.T ∗∗,
· O′ = O.(e, e, ∅, ∅),
· origin(O′) = origin(O).e,
· l′ = l.

The induction hypothesis gives a strong computation ending in 〈σs, τs, Ts, unit〉
such that:

· σl is an extension of σs,
· τ is an extension of τs,
· Ts = T ∗.e.T ∗∗.origin(O) up to reordering.

We extend the strong computation with a corresponding application of
(Trans Activate)s to obtain:

· σ′′ = σs,
· τ ′′ = τs,
· T ′′ = T ∗.T ∗∗.e.origin(O) up to reordering.

This application gives the desired result for T ′′. We combine the new
expressions for σ′, l′, τ ′, σ′′, and τ ′′ with the induction hypothesis. Hence,
σ′l′ extends σ′′ and τ ′ extends τ ′′.

(2) The further strong computation is either given by the induction hypothesis
or is an instance of (Trans Activate)s (for the try that the transition
generates).

(3) This transition does not add a location to the access list of any try, so
for all tries in O, the desired result follows from the induction hypothesis.
(Trans Activate)o creates a try where a = ∅, for which the desired result
holds vacuously.

(4) This transition yields l′ = l and τ ′ = τ . The desired result follows from
the induction hypothesis.

• (Trans DynPr)o:
(1) When 〈σ, τ, T, O, l〉 7−→o 〈σ′, τ ′, T ′, O′, l′〉 with this rule, we have:

· σ′ = σ,
· τ ′ = τ [r 7→ P],
· T = T ∗.U [protect r].T ∗∗,
· T ′ = T ∗.T ∗∗,
· O′ = O,
· l′ = l.

The induction hypothesis gives a strong computation ending in 〈σs, τs, Ts, unit〉
such that:

· σl is an extension of σs,
· τ is an extension of τs,
· Ts = T ∗.U [protect r].T ∗∗.origin(O) up to reordering.

We extend the strong computation with a corresponding application of
(Trans DynPr)s to obtain:

· σ′′ = σs,

40

· τ ′′ = τs[r 7→ P],
· T ′′ = T ∗.U [r].T ∗∗.origin(O) up to reordering.

This application gives the desired result for T ′′. We combine the new
expressions for σ′, l′, τ ′, σ′′, and τ ′′ with the induction hypothesis. Hence,
σ′l′ extends σ′′ and τ ′ extends τ ′′.

(2) The further strong computation is given by the induction hypothesis, with
straightforward changes in the pool and the protection state that corre-
spond to the application of (Trans DynPr)s.

(3) This transition updates the protection state of a reference location to P.
The desired result follows from the induction hypothesis.

(4) This transition updates the protection state of a reference location to P.
The desired result follows from the induction hypothesis.

• (Trans DynUn)o:
(1) When 〈σ, τ, T, O, l〉 7−→o 〈σ′, τ ′, T ′, O′, l′〉 by this rule, we have:

· σ′ = σ,
· τ ′ = τ [r 7→ U],
· T = T ∗.U [unprotect r].T ∗∗,
· T ′ = T ∗.T ∗∗,
· O′ = O,
· l′ = l,
· r 6∈ dom(l).

The induction hypothesis gives a strong computation ending in 〈σs, τs, Ts, unit〉
such that:

· σl is an extension of σs,
· τ is an extension of τs,
· Ts = T ∗.U [unprotect r].T ∗∗.origin(O) up to reordering.

We extend the strong computation with a corresponding application of
(Trans DynUn)s to obtain:

· σ′′ = σs,
· τ ′′ = τs[r 7→ U],
· T ′′ = T ∗.U [r].T ∗∗.origin(O) up to reordering.

This application gives the desired result for T ′′. We combine the new
expressions for σ′, l′, τ ′, σ′′, and τ ′′ with the induction hypothesis. Hence,
σ′l′ extends σ′′ and τ ′ extends τ ′′.

(2) The further strong computation is given by the induction hypothesis, with
a modification to the protection state of some reference location r.

(3) In the course of this new further strong computation, each reference loca-
tion accessed must be in mode P, by dynamic separation. Since every ref-
erence location in a must be accessed, and since protect and unprotect

do not work in protected code, we have that τ ′′′(r′) = P for each r′ ∈ a.
Since τ ′ is an extension of τ ′′′, we conclude that τ ′(r′) = P for each r′ ∈ a.

(4) To make a transition with (Trans DynUn)o, we require that the reference
location being unprotected is not in dom(l). In this instance, l′ = l, and
thus the location is not in dom(l′). Thus, the desired result follows from
the induction hypothesis.

41

• (Trans Undo)o:
(1) When 〈σ, τ, T, O, l〉 7−→o 〈σ′, τ ′, T ′, O′, l′〉 by this rule, we have:

· σ′ = σl,
· τ ′ = τ ,
· T ′ = origin(O).T ,
· O′ = ∅,
· l′ = ∅.

The induction hypothesis gives a strong computation ending in 〈σs, τs, Ts, unit〉
such that:

· σl is an extension of σs,
· τ is an extension of τs,
· Ts = T.origin(O) up to reordering.

or, in other words:
· σ′ is an extension of σs,
· τ ′ is an extension of τs,
· Ts = T ′ up to reordering.

The desired result follows from O′ = l′ = ∅.
(2) O′ is ∅, so it does not have the form O†.(e, f, a, P).O††, hence this claim

is vacuously true.
(3) Similarly, this claim is vacuously true as well.
(4) Since l′ = ∅, τ ′(r) = P for every r ∈ dom(l′), vacuously.
• (Trans Unprotect)o:
(1) When 〈σ, τ, T, O, l〉 7−→o 〈σ′, τ ′, T ′, O′, l′〉 by this rule, we have:

· σ′ = σ,
· τ ′ = τ ,
· T ′ = T.P [unprotected e].P ,
· O = O∗.(e, f, a, P).O∗∗,
· O′ = O∗.O∗∗,
· origin(O′) = origin(O∗.O∗∗),
· l′ = l − a.

By assumption, (e, f, a, P) does not conflict with O∗.O∗∗. The induction
hypothesis gives that there is a strong computation ending in 〈σs, τs, Ts, unit〉
such that:

· σl is an extension of σs,
· τ is an extension of τs,
· Ts = T.origin(O′).f up to reordering.

The induction hypothesis also gives a further strong computation:

〈σs, τs, Ts, unit〉7−→s〈σs, τs, T
′′′, f〉7−→∗

s〈σ′′′, τ ′′′, T ′′′.P,P [unprotected e]〉

where:
· σ′(l′ − a) is an extension of σ′′′,
· τ ′′′ is an extension of τs, and τ ′ is an extension of τ ′′′,
· T ′′′ = T.origin(O′).

We extend the strong computation with a corresponding application of

42

(Trans Unprotect)s to obtain:
· σ′′ = σ′′′,
· τ ′′ = τ ′′′,
· T ′′ = T.origin(O′).P.P [unprotected e] up to reordering.

By combining these new expressions with the induction hypothesis and
making a note that l′ − a = l′, we obtain:

· σ′l′ extends σ′′,
· τ ′ extends τ ′′,
· T ′′ = T ′.origin(O′) up to reordering.

(2) Suppose that (e∗, f∗, a∗, P ∗) is any other non-conflicting try. The further
strong computation of (e∗, f∗, a∗, P ∗) is given by the induction hypothesis,
up to changes in the initial values of reference locations in a. The absence
of conflict that is the hypothesis of the application of (Trans Unprotect)o

implies that a∗ and a do not intersect. Thus, the further strong compu-
tation that accesses only locations in a∗ commutes with the computation
that transitions with (Trans Unprotect)o.

(3) This transition does not add a reference location to a, and τ ′ = τ . The
desired result follows from the induction hypothesis.

(4) This transition does not add anything to the log, and τ ′ = τ . The transi-
tion with (Trans Unprotect)o may remove things from the log, so dom(l′) ⊆
dom(l). The desired result follows from the induction hypothesis.

• (Trans Done)o: This case is almost identical to that of (Trans Unprotect)o,
but slightly simpler.

43

