
The Prophecy of Undo

Mart́ın Abadi

University of California at Santa Cruz?

Abstract. Prophecy variables are auxiliary program variables whose
values are defined in terms of current program state and future behav-
ior. This paper explains their relevance to reasoning about systems with
“undo” operations, and develops an approach that facilitates their use.

1 Introduction

Auxiliary variables are often helpful in reasoning about systems and in proving
their correctness. The most common auxiliary variables are history variables,
whose values are defined in terms of current system state and past behavior.
On the other hand, the definitions of prophecy variables, which can be seen
as dual to history variables, refer to the future behavior of a system rather
than to its past behavior [1]. Prophecy variables are considerably less mundane
and well-understood than history variables. Although they may seem counter-
intuitive, prophecy variables are sometimes necessary for the completeness of
reasoning methods. They have not been employed frequently in reasoning about
actual systems, but their uses (for example, linearizability proofs [6, 5]) have
been compelling and significant. This paper aims to contribute to their study
and to their practical application.

Specifically, this paper highlights a class of important applications for proph-
ecy variables, namely reasoning about systems with “undo” operations. These
operations play a variety of roles, such as rolling back the effects of aborted
transactions, restoring from snapshots in case of a failure, and recovering from
attacks (e.g., [3, 4, 8]). In all these cases, the correctness of “undo” is both delicate
and critical. In particular, although an “undo” may be selective (for example,
in security, applying only to the effects of an attack), the “undo” should not
give rise to inconsistencies in a system’s observable behavior. When one system
component rolls back a non-deterministic computation, other components should
generally roll back any of their own actions influenced by the relevant non-
deterministic choices; those choices may later be revisited, leading to different
results. Prophecy variables can help in reasoning about the state of the system,
basically because they can predict which computations will be rolled back.

Work on these applications leads us to the development of proof strategies
that facilitate the use of prophecy variables. In the presence of liveness proper-
ties, the soundness of prophecy variables generally requires a certain finiteness

? Most of this work was done while M. Abadi was at Microsoft Research. He is now
at Google.

condition (roughly, that for each state there are only finitely many possible
prophecies). For instance, when a variable represents an internal decision on
how long a system will run, the condition helps ensure that this decision can-
not be “undone” infinitely often and that the system cannot run forever. Even
when this finiteness condition can be satisfied, it complicates the definition of
prophecy variables. We devise an approach that allows us to ignore the condi-
tion during the bulk of the reasoning, and then ensure finiteness via a separate
quotient construction. (To date, the experience with this approach is all related
to “undo”; but the approach is more general, at least in theory.)

The paper focuses on two small, instructive examples. In both cases, we
prove that a lower-level system with “undo” is a correct refinement of a higher-
level system without “undo”. The same ideas and techniques apply to reasoning
about larger systems, and indeed the origin of this paper is ongoing research on
a practical dataflow computing platform named Naiad [12]. The small examples
of this paper have the advantage of not including the peculiarities of Naiad and
other intricate features not directly relevant to our present purposes.

The literature contains a few other, somewhat related examples. In particular,
Lampson has observed the relevance of prophecy variables to refinements proofs
for protocols for reliable message delivery despite crashes [10]. His writings, how-
ever, do not include a precise definition of the required prophecy variables. Lamp-
son’s ideas are, to our knowledge, the most closely related to the present paper.
Other work deals with the use of prophecy variables in proofs of program proper-
ties, rather than in refinement proofs, sometimes with the support of automated
tools (e.g., [2]), which we do not consider in this paper. Thus, Sezgin, Tasiran,
and Qadeer have developed a method for static verification of concurrent pro-
grams that includes prophecy variables [13]; they employed prophecy variables
for expressing the consequences of interference between threads.

The literature also contains variations on the notion of prophecy variable
and related concepts, such as backwards simulation relations [11]. In particular,
Jonsson relaxed the finiteness requirement so that it needs to apply only infinitely
often [7]. (He also provided an explanation of the connections between extant
proof techniques, to which we refer the reader for additional background.) Those
variations may well be helpful in reasoning about some systems with “undo”
operations, complementing the present work.

The next section is a review of our framework for specifications and refine-
ment proofs. Section 3 presents the first example. Section 4 introduces an ap-
proach to finiteness. Section 5 presents the second example, which leverages the
results of Section 4. Section 6 concludes. We give the proofs for examples in the
body of the paper; the proofs for the metatheory are in an appendix.

2 Specifications and refinement proofs (review)

This section reviews our framework for specifications and the basic machinery
of refinement mappings and prophecy variables (mostly from [1]). It contains no
technical novelties.

2

2.1 State spaces, behaviors, and properties

We assume a fixed set ΣE of externally visible states. A state space Σ is a subset
of ΣE × ΣI for some set ΣI of internal states, or the set ΣE itself. We let ΠE

be the obvious projection mapping from ΣE ×ΣI onto ΣE .
The sequence 〈〈s0, s1, s2, . . .〉〉 is said to be stutter-free if, for each i, either

si 6= si+1 or the sequence is infinite and si = sj for all j ≥ i. We define \σ as the
stutter-free sequence obtained from σ by replacing every maximal finite subse-
quence si, si+1, . . . , sj of identical elements with the single element si. When S
is a set of sequences, we let Γ (S) = {τ : ∃σ ∈ S.\σ = \τ}, and we say that S is
closed under stuttering if S = Γ (S).

For any set Σ, we write Σω for the set of all infinite sequences of elements
in Σ. We write σ|m for the prefix of σ of length m. We say that an infinite
sequence 〈〈σ0, σ1, σ2, . . .〉〉 of sequences in Σω converges to the sequence σ in Σω

if for all m ≥ 0 there exists n ≥ 0 such that σi|m = σ|m for all i ≥ n. In this
case, we define limσi = σ. We say that σ is a limit point of a set S if there exist
elements σi in S such that limσi = σ. (While every element of S is trivially a
limit point of S, in general S may have additional limit points.)

If Σ is a state space, then a Σ-behavior is an element of Σω. A ΣE-behavior
is called an externally visible behavior. A Σ-property is a set of Σ-behaviors that
is closed under stuttering. If the property contains all its limit points, then it is
called a safety property. A ΣE-property is called an externally visible property.
If P is a Σ-property, then ΠE(P) is a set of externally visible behaviors but not
necessarily an externally visible property because it need not be closed under
stuttering. The externally visible property induced by a Σ-property P is the
set Γ (ΠE(P)). When Σ is clear from context or is irrelevant, we may use the
terms behavior and property instead of Σ-behavior and Σ-property. We some-
times apply the adjective “complete”, as in “complete behavior”, to distinguish
behaviors and properties from externally visible behaviors and properties.

2.2 State machines

A state machine is a triple (Σ,F,N) where

– Σ is a state space,
– F , the set of initial states, is a subset of Σ,
– N , the next-state relation, is a subset of Σ ×Σ.

The (complete) property generated by a state machine (Σ,F,N) consists of
all infinite sequences 〈〈s0, s1, . . .〉〉 such that s0 ∈ F and, for all i ≥ 0, either
〈si, si+1〉 ∈ N or si = si+1. (We use angle brackets for elements of N , as in
〈si, si+1〉.) This set is closed under stuttering, so it is a Σ-property. It is also a
safety property. The externally visible property generated by a state machine is
the externally visible property induced by its complete property. In general, this
externally visible property need not be a safety property.

For simplicity, we do not consider fairness conditions or other explicit liveness
properties that can be imposed on state machines. Even without them, the

3

externally visible properties generated by state machines can imply non-trivial
liveness properties (see [1, Section 3] and the example of Section 5), so the
finiteness condition on prophecy variables cannot be ignored.

We loosely follow the TLA approach for specifying state machines [9]. Thus,
we write specifications as logical formulas, of the form:

∃y1, . . . , yn. F ∧ [N]v

where:

– the state is represented by a set of state functions, which we write as variables
x1, . . . , xm, y1, . . . , yn;

– we distinguish external variables and internal variables, and the internal
variables (in this case, y1, . . . , yn) are existentially quantified;

– F is a formula that may refer to the variables;

– is the temporal-logic operator “always”;

– N is a formula that may refer to the variables and also to primed versions of
the variables (which denote the values of those variables in the next state);

– v is a list of variables v1, . . . , vk, and [N]v abbreviates N ∨ ((v′1 = v1)∧ . . .∧
(v′k = vk)).

The role of the subscript v is to guarantee closure under stuttering.

Such formulas do not describe state spaces, which we define separately.

2.3 Implementations and refinement mappings

A state machine S implements a state machine S′ if and only if the externally
visible property induced by S is a subset of the externally visible property in-
duced by S′. In other words, S implements S′ when every externally visible
behavior allowed by S is also allowed by S′.

A refinement mapping from a state machine S = (Σ,F,N) to a state machine
S′ = (Σ′, F ′, N ′) is a mapping f : Σ → Σ′ such that:

R1. For all s ∈ Σ, ΠE(f(s)) = ΠE(s).

R2. f(F) ⊆ F ′.

R3. If 〈s, t〉 ∈ N then 〈f(s), f(t)〉 ∈ N ′ or f(s) = f(t).

The following is a straightforward specialization of the soundness theorem
for refinement mappings [1]:

Proposition 1. If there exists a refinement mapping from S to S′, then S im-
plements S′.

Thus, refinement mappings, which work at the level of states, offer a convenient
method for proving containment between sets of sequences of states.

4

2.4 Very simple prophecy variables

Sometimes one needs to prove invariants and add auxiliary variables before con-
structing refinement mappings. As indicated in the Introduction, the most com-
mon auxiliary variables are history variables; their values are defined in terms
of current system state and past behavior. For instance, for a program with an
integer variable x, a history variable h may record the largest value of x seen so
far; formally, h would be defined by the initial condition h = x and the transi-
tion relation h′ = max(h, x′), which says that at every step the new value of h
is the maximum of the previous value of h and the new value of x. Conversely,
a prophecy variable might be defined by h = max(h′, x), going from the future
to the past, without an initial condition. The exact requirements on prophecy
variables are, unfortunately, somewhat more intricate.

Formally, our starting point will be the notion of simple prophecy vari-
ables [1]. (The difference with “full-scale” prophecy variables has to do with
stuttering.) Moreover, since we focus on refinement but not equivalences, and
since our state machines do not include fairness conditions or other explicit live-
ness properties, we can omit requirements named P3 and P5 in [1]. We say that
a state machine SP = (ΣP , FP , NP) is obtained from S = (Σ,F,N) by adding
a very simple prophecy variable when the following requirements are satisfied:

P1. ΣP ⊆ Σ ×ΣP for some set ΣP .
P2′. FP = {(s, p) ∈ ΣP | s ∈ F}.
P4′. If 〈s, s′〉 ∈ N and (s′, p′) ∈ ΣP

then there exists (s, p) ∈ ΣP such that 〈(s, p), (s′, p′)〉 ∈ NP .
P6. For all s ∈ Σ, the set {(s, p) ∈ ΣP } is finite and nonempty.

The following is a special case of the soundness theorem for prophecy vari-
ables [1]:

Proposition 2. If SP is obtained from S by adding a very simple prophecy
variable, then S implements SP.

3 First example

Our first example is rather minimal. Its purpose is to illustrate why and how
prophecy variables are useful for proving that a lower-level system with “undo”
refines a higher-level system without “undo”. Non-deterministic choice is promi-
nent in this example and in the second one, because non-determinism typically
complicates “undo”, as suggested in the Introduction. More technically, the ex-
ample also demonstrates how the definition of a state space with a prophecy
variable can play a role similar to that of an invariant.

3.1 High-level specification (no “undo”)

In our high-level system, an integer is chosen internally and then revealed, once.
The internal choice is made by assigning a value to the internal variable y.

5

The publication of that choice consists in copying that value to the external
variable x. Both variables have the value ready before those assignments.

The state space ΣHigh is thus (Z ∪ {ready})× (Z ∪ {ready}).

Initial condition:

InitProp
∆
= (x = y = ready)

Steps:

1. Choosing an integer:

Choose
∆
= ((x = x′ = y = ready) ∧ (y′ ∈ Z))

2. Publishing the choice:

Publish
∆
= ((x = ready) ∧ (y ∈ Z) ∧ (x′ = y) ∧ (y′ = y))

The high-level specification:

SpecH
∆
= ∃y.(InitProp ∧ [Choose ∨ Publish]x,y)

3.2 Low-level specification (with “undo”)

In the low-level specification, additional transitions can undo choices. The spec-
ification is silent on why rollbacks happen—whether because of failures or as
deliberate steps. Accordingly, for simplicity, we do not model failure detection,
nor do we distinguish a “redo” from an original choice.

The state space ΣLow equals ΣHigh; moreover, the initial condition and the
actions for choosing and for publishing a choice are exactly as above in the
high-level specification. We have one additional action for undoing a choice:

Undo
∆
= ((x = x′ = ready) ∧ (y ∈ Z) ∧ (y′ = ready))

The low-level specification:

SpecL
∆
= ∃y.(InitProp ∧ [Choose ∨Undo ∨ Publish]x,y)

3.3 Prophecy variable

There is no direct refinement mapping from the low-level specification to the
high-level specification, basically because there is no way to know whether to map
a low-level state (ready, n) to (ready, n) or to (ready, ready) without predicting
whether the choice of n will persist. To be conservative, we could always map
(ready, n) to (ready, ready), but then a low-level transition that publishes n
would need to be expanded into two high-level transitions, something that plain
refinement mappings do not support. In more realistic variants of this example,
the number and complexity of the additional high-level transitions may be larger;
in the example of Section 5, the conservative approach is not viable at all.

On the other hand, we can find a suitable refinement mapping after introduc-
ing a prophecy variable, as we show next. This prophecy variable is an internal
variable that we add by defining an enriched state space:

6

Construction 1 The state space ΣP
Low consists of tuples (x, y,D) where

1. (x, y) ∈ ΣLow,
2. D ∈ {done, notdone},
3. x ∈ Z implies D = done.

Intuitively, done indicates that a choice is final; notdone that it is not.

Initial condition:

InitPropP
∆
= InitProp

Steps:

1. Choosing an integer:

ChooseP
∆
= (Choose ∧ (D = D′))

2. Undoing the choice:

UndoP
∆
= (Undo ∧ (D = notdone))

3. Publishing the final choice:

PublishP
∆
= (Publish ∧ (D = D′))

The enriched low-level specification:

SpecP
∆
= ∃y,D.(InitPropP ∧ [ChooseP ∨UndoP ∨ PublishP]x,y,D)

Note the absence of an initial condition on D, and that the value of D affects
the enabledness of the action UndoP. These features clearly indicate that D
is not an ordinary history variable. In other respects, D is quite tame: trivial
equations such as D = D′ and D = notdone are easy to handle in reasoning
with these definitions.

Proposition 3. SpecP is obtained from SpecL by adding a very simple prophecy
variable.

Proof: The conditions on the state space (P1), on initial states (P2′), and on
existence and finiteness (P6) are immediate.

The condition on backward steps (P4′) is the only non-trivial one, but it
is still easy. Since Choose ∨ Undo ∨ Publish implies x 6∈ Z, the choice of D is
unconstrained by condition (3) in Construction 1. So, for backward steps, taking
whatever value of D the corresponding action suggests is appropriate (D = D′

or D = notdone, depending on whether the transition corresponds to Choose or
Publish or to Undo).

7

3.4 Refinement mapping

Next we construct a refinement mapping from the low-level specification with a
prophecy variable to the high-level specification:

Proposition 4. Let f : ΣP
Low → ΣHigh be such that:

f(x, y, done) = (x, y)

f(x, y, notdone) = (ready, ready)

Then f is a refinement mapping from SpecP to SpecH .

Proof: – The constraint that x ∈ Z implies D = done (condition (3) in
Construction 1) entails that f(x, y, notdone) = (ready, ready) preserves
the value of the external variable x.

– Initial states are mapped to initial states, trivially.
– ChooseP transitions are mapped to stutters if D = notdone and to Choose

transitions otherwise: in a ChooseP transition, (x, y,D) = (ready, ready, D)
and (x′, y′, D′) = (ready, y′, D′) with y′ ∈ Z; hence f(x, y,D) = (ready,
ready) and f(x′, y′, D′) = (ready, ready) if D = notdone and = (ready, y′)
otherwise.

– UndoP transitions are mapped to stutters: in a UndoP transition, (x, y,D) =
(ready, y, notdone) and (x′, y′, D′) = (ready, ready, D′); hence f(x, y,D) =
(ready, ready) and f(x′, y′, D′) = (ready, ready).

– PublishP transitions are mapped to Publish transitions: in a PublishP tran-
sition (x, y,D) = (ready, y,D) where y ∈ Z and (x′, y′, D′) = (y, y,D);
hence x′ ∈ Z, so D′ = D = done by condition (3) in Construction 1, so
f(x, y,D) = (ready, y) where y ∈ Z and f(x′, y′, D′) = (y, y).

3.5 Main result

We conclude:

Proposition 5. SpecL implements SpecH .

Proof: By Propositions 3 and 2, SpecL implements SpecP . By Propositions 4
and 1, SpecP implements SpecH . The claim follows by transitivity.

4 An approach to finiteness

In this section we present results that can facilitate proofs with prophecy vari-
ables. Although they do not constitute a panacea, they conveniently enable us
to shift the finiteness requirement on prophecy variables through a quotient con-
struction. We demonstrate their use in the example of Section 5, below. (They
would also have been helpful in the example of Section 3 if we had foolishly
allowed not only done and notdone but all strings as possible values of D.)

8

4.1 Quotients

When Q is an equivalence relation on Σ, the quotient of the state machine
S = (Σ,F,N) by Q is the state machine S/Q = (Σ/Q, F/Q, N/Q) such that:

Q1. Σ/Q = Σ/Q (the set of equivalence classes of states from Σ).
Q2. For s ∈ Σ/Q, s ∈ F/Q if and only if there exists s′ ∈ s such that s′ ∈ F .
Q3. For s, t ∈ Σ/Q, 〈s, t〉 ∈ N/Q if and only if

there exist s′ ∈ s and t′ ∈ t such that 〈s′, t′〉 ∈ N .

We represent each equivalence class in Σ/Q by an arbitrary member (say,
the smallest in a fixed ordering of Σ), so that Σ/Q ⊆ Σ ⊆ ΣE × ΣI for some
set ΣI .

4.2 Refinement mappings via quotients

We say that a function f with domain Σ respects the equivalence relation Q on
Σ when, for all s, t ∈ Σ, if sQt then f(s) = f(t).

Proposition 6. Let S = (Σ,F,N) and S′ = (Σ′, F ′, N ′), and let S/Q be the
quotient of S by an equivalence relation Q on Σ. Assume that:

– f is a refinement mapping from S to S′,
– f respects Q.

Let f/Q : Σ/Q → Σ′ be such that, for all s ∈ Σ/Q, f/Q(s) = f(s). Then f/Q is
a refinement mapping from S/Q to S′.

4.3 Very simple prophecy variables via quotients

We define a state machine SP = (ΣP , FP , NP) to be obtained from S =
(Σ,F,N) almost by adding a very simple prophecy when the usual conditions
P1, P2′, and P4′ hold, and instead of P6 we have only part of it:

P6′. For all s ∈ Σ, the set {(s, p) ∈ ΣP } is nonempty.

The following proposition enables us to recover a simple prophecy variable:

Proposition 7. Let S = (Σ,F,N) and SP = (ΣP , FP , NP), and let SP
/Q =

(ΣP
/Q, F

P
/Q, N

P
/Q) be the quotient of SP by the equivalence relation Q on ΣP .

Assume that:

1. SP is obtained from S almost by adding a very simple prophecy variable,
2. for all (s1, p1), (s2, p2) ∈ ΣP , if (s1, p1)Q(s2, p2) then s1 = s2 (in other

words, projecting to the first component respects Q),
3. for all s ∈ Σ, the set {(s, p) ∈ ΣP }/Q is finite.

Then SP
/Q is obtained from S by adding a very simple prophecy variable.

9

4.4 Invariants and quotienting

Invariants are often needed before other arguments in proofs. In particular, the
required conditions for refinements mappings (R1 and especially R3) sometimes
hold only for reachable system states, and the role of invariants is to focus
attention on those states. The propositions in this section enable us to combine
invariants with quotienting.

We say that Inv is an inductive invariant of the state machine S = (Σ,F,N)
if Inv ⊆ Σ, F ⊆ Inv , and, for all s, t ∈ Σ, if 〈s, t〉 ∈ N and s ∈ Inv then t ∈ Inv .
Given a subset Inv of Σ and an equivalence relation Q on Σ, we write Inv/Q
for the subset of Σ/Q such that s ∈ Inv/Q if and only if there exists s′ ∈ s such
that s′ ∈ Inv . (This notation generalizes the definition of F/Q.) We say that Inv
respects Q when, for all s, t ∈ Σ, if sQt and s ∈ Inv then t ∈ Inv .

Proposition 8. Assume that:

– Inv is an inductive invariant of S = (Σ,F,N),
– Inv respects the equivalence relation Q on Σ.

Then Inv/Q is an inductive invariant of S/Q = (Σ/Q, F/Q, N/Q).

Given a specification S = (Σ,F,N) and a subset Inv of Σ, we write S + Inv
for (Σ,F,N ∩ (Inv ×Σ)).

Proposition 9. Assume that Inv is an inductive invariant of S = (Σ,F,N).
Then S and S + Inv generate the same complete property.

Proposition 10. Assume that Inv respects Q. Then the complete property that
S/Q + Inv/Q generates is included in that of (S + Inv)/Q.

5 Second example

Our second example is slightly longer and much trickier than the first. It illus-
trates how the finiteness requirement on prophecy variables can be conveniently
ignored in the core of a refinement argument.

5.1 High-level specification (no “undo”)

In the high-level system, integers are chosen internally in ascending order, and
then revealed, gradually. The choice is made by adding elements to an internal
variable y that holds a finite set. The publication of a choice consists in moving
the largest element of y to the external variable x, which also holds a finite set.

The state space ΣHigh is thus Pf (Z)×Pf (Z) where Pf (Z) is the set of finite
sets of integers.

Initial condition:

InitProp
∆
= (x = y = ∅)

10

Steps:

1. Choosing one more integer:

Choose
∆
= ∃n ∈ Z.((n > max(x ∪ y)) ∧ (y′ = y ∪ {n}) ∧ (x′ = x))

2. Publishing the largest pending choice:

Publish
∆
= ∃n ∈ Z.((n = max(y)) ∧ (y′ = y − {n}) ∧ (x′ = x ∪ {n}))

The high-level specification:

SpecH
∆
= ∃y.(InitProp ∧ [Choose ∨ Publish]x,y)

Note that SpecH allows all behaviors where x takes a sequence of values ∅, {0},
{0,−1}, . . . , {0,−1, . . . ,−k}, but not their limit, so it is not a safety property.

5.2 Low-level specification (with “undo”)

In the low-level specification, additional transitions can undo choices. Again, the
state space ΣLow equals ΣHigh; moreover, the initial condition and the actions
for choosing and for publishing a choice are exactly as above in the high-level
specification. We have one additional action for undoing choices:

Undo
∆
= ∃S ⊆ Z.((y′ = y ∩ S) ∧ (x′ = x))

This action models a selective rollback, in which we keep choices only if they are
in a given set S of “survivors”.

The low-level specification:

SpecL
∆
= ∃y.(InitProp ∧ [Choose ∨Undo ∨ Publish]x,y)

5.3 Prophecy variable

Again, we cannot directly find a refinement mapping from the low-level spec-
ification to the high-level specification. The constraints on the order in which
integers are chosen and published contribute to this difficulty.

– For instance, suppose that we were to map the low-level state ({4}, {2, 3})
to the high-level state ({4}, {2, 3}), naively. This trivial mapping cannot
possibly be satisfactory. According to the low-level specification, ({2, 4}, ∅)
is reachable from ({4}, {2, 3}) (via an “undo” of 3 and the publication of 2),
while according to the high-level specification no state of the form ({2, 4}, ·)
is reachable from ({4}, {2, 3}).

– On the other hand, unlike in the first example (see Section 3.3), we can-
not pretend that choices are not made “until the last minute”. For in-
stance, we cannot map the low-level state ({4}, {2, 3}) to the high-level state
({4}, ∅). According to the low-level specification, ({2, 3, 4}, ∅) is reachable
from ({4}, {2, 3}) (by publishing 3 and then 2), while according to the high-
level specification no state of the form ({2, 3, 4}, ·) is reachable from ({4}, ∅).

11

So we introduce a prophecy variable. We add the prophecy variable as an internal
variable in an enriched state space:

Construction 2 The state space ΣP
Low consists of tuples (x, y,D) where

1. (x, y) ∈ ΣLow,
2. D ⊆ Z,
3. x ⊆ D.

Intuitively, choices of the integers in D will never be undone in the future.
Accordingly, condition (3) says that choices that have been revealed cannot be
undone.

Initial condition:

InitPropP
∆
= InitProp

Steps:

1. Choosing one more integer:

ChooseP
∆
= (Choose ∧ (D = D′))

2. Undoing some choices:

UndoP
∆
= ∃S ⊆ Z.((y′ = y ∩ S) ∧ (x′ = x) ∧ (D = (D′ ∩ S) ∪ x))

3. Publishing a choice:

PublishP
∆
= (Publish ∧ (D = D′))

The enriched low-level specification:

SpecP
∆
= ∃y,D.(InitPropP ∧ [ChooseP ∨UndoP ∨ PublishP]x,y,D)

Note the equation D = (D′∩S)∪x in UndoP, which defines D from D′. Such
definitions are typical for prophecy variables. In this case, the equation might be
read as saying that the choices of integers that will never be undone henceforth
are the choices of integers already in x or the choices that “survive” this UndoP
step and will never be undone afterwards.

Several variants are possible. In particular, we could change the state space
so that D is included in x ∪ y, thus ensuring that for each (x, y) there are only
finitely many possible values for D. Accordingly, we would have to make other
adjustments, not all of them attractive. For instance, in ChooseP, we would have
to replace D = D′ with a more complicated equation, such as D = D′ ∩ (x∪ y).
Such expressions would then appear pervasively throughout proofs. In a larger
example (like the one of interest to us in the context of Naiad), such a change can
create more work than it avoids. So we proceed without a finiteness guarantee;
quotienting will nevertheless allow us to complete the verification.

12

Proposition 11. SpecP is obtained from SpecL almost by adding a very simple
prophecy variable.

Proof: The conditions on the state space (P1), on initial states (P2′), and on
existence (P6′) are again immediate.

The condition on backward steps (P4′) is the only non-trivial one: it requires
care in order to ensure that x ⊆ D. In the cases of transitions Choose and Publish,
we take D = D′ as suggested by the definitions of ChooseP and PublishP, and
the desired result follows since x ⊆ x′ in both cases. In the case of a transition
Undo, we take D = (D′ ∩ S) ∪ x for a set S as suggested by the definition of
UndoP, and immediately obtain that x ⊆ D.

5.4 Refinement mapping

We let Inv be the predicate x ∩ y = ∅, which says that x and y are disjoint. It
is a straightforward inductive invariant of SpecH , SpecL, and SpecP . Relying on
Inv , we construct a refinement mapping:

Proposition 12. Let f : ΣP
Low → ΣHigh be such that:

f(x, y,D) = (x, y ∩D)

Then f is a refinement mapping from SpecP + Inv to SpecH .

Proof: – The mapping trivially preserves the external variable x.
– It maps initial states to initial states.
– It maps ChooseP transitions to Choose transitions or to stutters, depending

on whether the integer chosen is in D.
– It maps PublishP transitions to Publish transitions: if a PublishP transition

adds n to x, then n ∈ y and n ∈ x′, so n ∈ D′ by condition (3) in Construc-
tion 2, so n ∈ D since D = D′, so n ∈ y ∩D.

– It maps UndoP transitions to stutters: for some S ⊆ Z, we have y′ ∩D′ =
(y∩S)∩D′ = y∩(D′∩S) = y∩((D′∩S)∪x) = y∩D since D = ((D′∩S)∪x).
The equation y ∩ (D′ ∩ S) = y ∩ ((D′ ∩ S) ∪ x) exploits the invariant Inv .

5.5 Main result (via quotienting)

At this point, we have the main ingredients of a proof that SpecL implements
SpecH : an auxiliary variable that (almost) satisfies all expected conditions, an
invariant, and a refinement mapping. It remains to put them together. The
recipe for this purpose has several steps but is easy and fairly generic. The steps
are much as in the first example (Proposition 5), but with an extra layer of
quotienting. Crucially, the statement of the final result (Proposition 13) does
not mention inductive invariants or quotients.

Proposition 13. SpecL implements SpecH .

13

Proof: We quotient ΣP
Low by a relation Q:

(x1, y1, D1)Q(x2, y2, D2)
if and only if

(x1, y1) = (x2, y2) and y1 ∩D1 = y2 ∩D2

We prove that SpecL implements SpecP/Q and that SpecP/Q implements SpecH .
The claim follows by transitivity.

1. For each x and y, the set of equivalence classes {(x, y,D) ∈ ΣP
Low}/Q is finite,

because y is finite. Therefore, by Propositions 11 and 7, SpecP/Q is obtained
from SpecL by adding a very simple prophecy variable. By Proposition 2,
SpecL implements SpecP/Q.

2. Both Inv and f respect the equivalence relation Q: the definition of Inv
does not even mention D, and that of f uses it only in a context of the
form y ∩D. Since Inv is an inductive invariant of SpecP , Inv/Q is an induc-
tive invariant of SpecP/Q by Proposition 8. Therefore, SpecP/Q implements
SpecP/Q + Inv/Q by Proposition 9. In turn, SpecP/Q + Inv/Q implements
(SpecP + Inv)/Q by Proposition 10. Finally, (SpecP + Inv)/Q implements
SpecH by Proposition 12 (which constructs a refinement mapping), Proposi-
tion 6 (which quotients the mapping), and Proposition 1 (which asserts the
soundness of refinement mappings). We deduce that SpecP/Q implements
SpecH by transitivity.

6 Conclusion

Prophecy variables are generally useful for manipulating the timing of non-
deterministic choices. Specifically, they help in constructing refinement mappings
when a low-level specification makes its non-deterministic choices later than a
corresponding high-level specification. Therefore, prophecy variables are broadly
relevant to reasoning about systems with “undo” operations: those operations
can roll back computations that include non-deterministic choices, which are
effectively not made until they are committed, perhaps by a later output action.

The examples of this paper focus on the delicate interaction between “undo”
operations and non-determinism. Of course, actual systems have many other as-
pects, including non-trivial deterministic computations and sophisticated meth-
ods for rollback based on logging and checkpointing (e.g., [3]). Nevertheless,
reasoning about those systems can benefit from prophecy variables and from the
techniques described in this paper. Our ongoing work on Naiad, for instance, fea-
tures non-deterministic scheduling choices; “undo” is typically a rollback caused
by a failure. Prophecy variables are crucial in the proof that a low-level spec-
ification with failures refines a high-level specification where such failures are
assumed impossible. As in this paper, prophecy variables predict which choices
will persist and which will be revisited.

14

Acknowledgments

I am grateful to Michael Isard, Leslie Lamport, and Butler Lampson for discus-
sions on the subject of this paper.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Com-
puter Science 82(2), 253–284 (1991)

2. Cook, B., Koskinen, E.: Making prophecies with decision predicates. In: Proceed-
ings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 399–410 (2011)

3. Elnozahy, E.N., Alvisi, L., Wang, Y., Johnson, D.B.: A survey of rollback-recovery
protocols in message-passing systems. ACM Computing Surveys 34(3), 375–408
(2002)

4. Harris, T., Larus, J.R., Rajwar, R.: Transactional Memory, 2nd edition. Synthesis
Lectures on Computer Architecture, Morgan & Claypool Publishers (2010)

5. Henzinger, T.A., Sezgin, A., Vafeiadis, V.: Aspect-oriented linearizability proofs.
In: D’Argenio, P.R., Melgratti, H.C. (eds.) CONCUR 2013 – Concurrency Theory
– 24th International Conference. Lecture Notes in Computer Science, vol. 8052,
pp. 242–256. Springer (2013)

6. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems 12(3), 463–
492 (1990)

7. Jonsson, B.: Simulations between specifications of distributed systems. In: Baeten,
J.C.M., Groote, J.F. (eds.) CONCUR ’91, 2nd International Conference on Concur-
rency Theory. Lecture Notes in Computer Science, vol. 527, pp. 346–360. Springer
(1991)

8. Kim, T., Wang, X., Zeldovich, N., Kaashoek, M.F.: Intrusion recovery using selec-
tive re-execution. In: 9th USENIX Symposium on Operating Systems Design and
Implementation. pp. 89–104 (2010)

9. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

10. Lampson, B.W.: Reliable messages and connection establishment. In: Mullender,
S. (ed.) Distributed Systems, pp. 251–281. Addison-Wesley (1993)

11. Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations: I. Untimed
systems. Information and Computation 121(2), 214–233 (1995)

12. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad: a
timely dataflow system. In: ACM SIGOPS 24th Symposium on Operating Systems
Principles. pp. 439–455 (2013)

13. Sezgin, A., Tasiran, S., Qadeer, S.: Tressa: Claiming the future. In: Leavens, G.T.,
O’Hearn, P.W., Rajamani, S.K. (eds.) Proceedings of the Third International Con-
ference on Verified Software: Theories, Tools, Experiments. Lecture Notes in Com-
puter Science, vol. 6217, pp. 25–39. Springer (2010)

15

Appendix

This appendix contains a few proofs missing from the body of the paper.

Proof of Proposition 6: f/Q satisfies conditions R1, R2, and R3 on refine-
ment mappings:

– R1 for f/Q follows from assumption R1 for f .
– R2 for f/Q follows from assumption R2 for f , Q2 for Q, and the assumption

that f respects Q.
– R3 for f/Q follows from assumption R3 for f , Q3 for Q, and the assumption

that f respects Q.

Proof of Proposition 7: We check conditions P1, P2′, P4′, and P6.

– P1 for SP
/Q follows from P1 for SP, which gives the assumptionΣP ⊆ Σ×ΣP ,

and from the definition of quotients. P1 requires that ΣP /Q ⊆ Σ × ΣI for
some set ΣI . This property holds because of the representation of equivalence
classes by arbitrary members: ΣP /Q = {[(s, p)] | (s, p) ∈ ΣP } ⊆ {(s, p) |
(s, p) ∈ ΣP } = ΣP ⊆ Σ×Σp. (Here, we write [(s, p)] for (s, p)’s equivalence
class.)

– P2′ for SP
/Q follows from P2′ for SP and Q2 for Q.

– P4′ for SP
/Q follows from P4′ for SP and Q3 for Q.

– P6 for SP
/Q requires that, for all s ∈ Σ, the set {(s, p) ∈ ΣP

/Q} is finite
and nonempty. The latter condition, nonemptiness, follows from assumption
(2) and P6′ for SP. (Assumption (2) ensures that the representative for the
equivalence class for (s1, p1) is of the form (s1, p2) for some p2.) The former,
finiteness, follows from assumption (3).

Proof of Proposition 8: We need to check:

– Inv/Q ⊆ Σ/Q, which holds by definition.
– F/Q ⊆ Inv/Q, which is immediate from F ⊆ Inv and the monotonicity of

(·)/Q.
– For all s, t ∈ Σ/Q, if 〈s, t〉 ∈ N/Q and s ∈ Inv/Q then t ∈ Inv/Q: If 〈s, t〉 ∈
N/Q then there exists s′ ∈ s and t′ ∈ t such that 〈s′, t′〉 ∈ N . If s ∈ Inv/Q,
then there exists s′′ ∈ s such that s′′ ∈ Inv . By the hypothesis that Inv
respects Q, s′ ∈ Inv , so t′ ∈ Inv and t ∈ Inv/Q.

Proof of Proposition 9: Every complete behavior generated by S + Inv is
trivially generated by S. In the other direction, suppose that S generates the
complete behavior 〈〈s0, s1, s2, . . .〉〉. Then s0 ∈ F and, for each i, si = si+1 or

16

〈si, si+1〉 ∈ N . Since Inv is an inductive invariant of S, we obtain by induction
on i that si ∈ Inv . Therefore, for each i, we have si = si+1 or 〈si, si+1〉 ∈
N ∩ (Inv × Σ). It follows that S + Inv also generates the complete behavior
〈〈s0, s1, s2, . . .〉〉.

Proof of Proposition 10: By definition,

S/Q + Inv/Q = (Σ/Q, F/Q, N/Q ∩ (Inv/Q ×Σ))

and
(S + Inv)/Q = (Σ/Q, F/Q, (N ∩ (Inv ×Σ))/Q)

Suppose that S/Q + Inv/Q generates the complete behavior 〈〈s0, s1, s2, . . .〉〉, so
we have s0 ∈ F/Q and, for each i, si = si+1 or 〈si, si+1〉 ∈ N/Q ∩ (Inv/Q ×Σ).

Next we argue that, since Inv respects Q, N/Q ∩ (Inv/Q ×Σ) is included in
(N∩(Inv×Σ))/Q. Suppose that 〈s, t〉 ∈ N/Q∩(Inv/Q×Σ). So there exist s′, t′ ∈
Σ such that s′ ∈ s, t′ ∈ t, and 〈s′, t′〉 ∈ N and there exists s′′ ∈ Σ such that
s′′ ∈ s and s′′ ∈ Inv . Since Inv respects Q, s′ in Inv . So 〈s′, t′〉 ∈ (N ∩(Inv×Σ))
and 〈s, t〉 ∈ (N ∩ (Inv ×Σ))/Q, as desired.

It follows that, for each i, we have si = si+1 or 〈si, si+1〉 ∈ (N∩(Inv×Σ))/Q.
Hence, (S + Inv)/Q also generates 〈〈s0, s1, s2, . . .〉〉.

17

