Language-Based Enforcement of Privacy Policies

Katia Hayati and Martin Abadi

Department of Computer Science
University of California, Santa Cruz

Abstract. We develop a language-based approach for modeling and ver-
ifying aspects of privacy policies. Our approach relies on information-flow
control. Concretely, we use the programming language Jif, an extension
of Java with information-flow types. We address basic leaks of private in-
formation and also consider other aspects of privacy policies supported by
the Platform for Privacy Preferences (P3P) and related systems, namely
the notion of purpose and the retention of data.

1 Introduction

Entities with a Web presence should not only define and publish their privacy
policies but also ensure that they comply with those policies. A recent online
survey [2] conducted by the Privacy Place [3] indicates that users may not mind
when a website uses their personal information to tailor their browsing, but that
they care about the possible misuse of this information and support punishments
for misbehaving websites.

The problem of enforcing privacy policies has recently been attacked from
several angles and in various domains (general enterprises [6], financial institu-
tions [4], etc.). However, there have been no solutions at the level of programming
languages. A language-level modeling of privacy policies should help program-
mers in avoiding inadvertent implementation mistakes. It should also facilitate
the auditing of code by independent entities.

In a different context, there has been much work on restricting flows of infor-
mation in programs (e.g., [9]), and on programming languages that support such
restrictions (e.g., [13, 18, 19, 20, 21]). These restrictions can serve for guarantee-
ing integrity and secrecy properties. Although secrecy and privacy are related,
it does not seem straightforward to reduce privacy policies (of the kinds consid-
ered in the privacy literature, and used in websites and elsewhere) to standard
secrecy properties. Moreover, while privacy concerns are sometimes mentioned
in some papers on those programming language, the papers do not show how to
apply their techniques to enforcing privacy policies.

In this paper, we start to bridge the gap between those two lines of work.
We explore how to use an information-flow system embodied in a programming
language for guaranteeing that programs abide by their stated privacy policies.
We address basic leaks of private information and also consider other facets of
privacy policies.



In order to ground our work, we base our concepts of privacy on the Platform
for Privacy Preferences (P3P) [23]. Although the P3P project is a young one,
it has generated much interest and ongoing research (for example, about its
implementation [1]). The goal of the P3P effort is twofold: to allow websites
to specify their privacy policies concisely and precisely, and to enable users to
specify their privacy preferences in order to check them automatically against
the published policies of websites. A P3P file is an XML document that describes
which information a website collects, what it intends to do with it, and how long
it will be kept. A P3P file should also describe a way for a user to resolve a conflict
with the website (for example, if the user believes information was mishandled).
However, P3P is limited in scope. In particular, it is outside its scope to verify
that websites really do abide by their stated policies in the implementation of
their Web applications.

As a programming language, we use Jif [16, 17, 18]. It is an extension of Java
that includes an enriched type system for specifying and checking information-
flow security properties. It has not previously been used for providing privacy
guarantees in a systematic way, but we believe that it is quite attractive for this
purpose.

We show how we can use Jif for modeling and verifying aspects of privacy
policies. Specifically, we consider three aspects of privacy: data cannot be (inad-
vertently) leaked; data is used at most for the purpose for which it was collected;
and data is retained no longer than promised. These aspects constitute a core
subset of the notions addressed by P3P. Of course, these notions are not specific
to P3P privacy policies. They are also present, with variants, in other contexts,
even beyond the Web.

The rest of this paper is organized as follows. Next, in Section 2, we present
some further background material. In Section 3 we show how Jif can be used
to give basic privacy guarantees. In Section 4 we explain how to represent pur-
poses with principals. In Section 5 we treat retention guarantees. We conclude
in Section 6.

2 Background

The problem of making it easier to control how private information is handled
has been considered from many perspectives. Dreyer and Olivier [10] describe a
system based on graph theory where entities are vertices in a graph and infor-
mation flow between entities is represented by edges between vertices. In order
to determine whether an inadmissible flow occurs, they use a graph reachability
algorithm. Ashley, Powers, and Schunter [6] describe a system in which privacy
information is attached to data. He and Antén [12] describe a system based on
role engineering for modeling privacy policies. The authors also discuss P3P and
lattices of purposes. Antén and her collaborators deplore the lack of a solution
coming from the security sphere (see for example He’s technical report [11] in
addition to the previously cited paper). Privguard [15] is a system for protecting
private data based on the purpose for which it was collected. It uses encryption



to achieve security. The Enterprise Privacy Authorization Language (EPAL) in
development at IBM [5] is an alternative to P3P. IBM has also developed the
Declarative Policy Monitoring [8] and Reference Monitor technologies [14], de-
signed to provide programming support for the enforcement of privacy policies
written in EPAL or P3P. The enforcement appears to be done dynamically (for
example in LDAP sniffers) and not at the language level. In addition to these
projects, we are aware of some nascent efforts in this area (such as PAW [22]).

Type-based information-flow analysis for programming languages is a rich
field, of which Jif is a prominent example. Work in the field is concerned with
enforcing integrity and secrecy properties at the level of programs, relying on
programming-language support. For example, Palsberg and @Orbaek [19] develop
a A-calculus with explicit trust operations, and equip it with a trust-type system;
the SLam calculus [13] is a A-calculus in which types express both integrity and
secrecy properties.

While some of the foundational research in this area applies only to founda-
tional calculi or “toy” programming languages, the techniques developed carry
over to powerful, general-purpose programming languages. These include Jif
(which, as mentioned in the introduction, is an extension of Java) and also Flow
Caml (an extension of ML) [20, 21].

Jif provides mostly static information-flow checking via a type system based
on the Decentralized Label Model [18]. The programmer must annotate variables,
methods, and class declaration with a label. (Jif does not force the programmer
to annotate every single variable: Jif infers labels not explicitly declared, and
sets them to be as restrictive as possible.) A label specifies who owns data and
who can read it. For example, the label {Alice:} means that Alice owns the
data and only Alice can read it, and {Alice: Bob} means that Alice owns
the data and Bob can read it too. The entities that own and read data are
called principals. Principals are first-class objects (in the sense that they may be
passed around). They are related to each other by the acts-for relation. If Alice
acts-for Bob, then Alice can do everything Bob can do. The acts-for relation is
reflexive and transitive. In addition, Jif supports a declassify operation, which
enables the owner of a piece of data to give it a less restrictive label in certain
circumstances.

3 Basic control of information leaks

At a very basic level, Jif can be used to ensure that sensitive data is not leaked.
For this purpose, we can represent categories of data (such as categories of
sensitive data) with principals.

As an example, let us consider two principals, named SecretUserData and
SharedUserData, and assume that SecretUserData acts-for SharedUserData.
Then anything owned by SharedUserData is accessible by SecretUserData, but
the converse is not true. Thus, while secret data may depend on shared data,
leaks of secret data into shared data can be caught, as illustrated in the following
code fragment:



// This code does not (and should not) compile.

int{SecretUserData: } credit_rating = 3;
// owned by SecretUserData and readable by no one else.

int{SharedUserData: } rebate;
// owned by SharedUserData, and can be accessed
// by SecretUserData.

if (credit_rating > 4) {
rebate = 1;
// ERROR: the (visible) value of rebate depends on the
// (supposedly secret) value of credit_rating.
} else {
rebate = 0;

}

This code fragment does not compile in Jif, because the value of rebate depends
on the value of credit_rating. This dependency constitutes an inappropriate
flow of information. If the value of a public variable depends on the value of
a secret variable, then by observing the output of a program a non-authorized
entity could infer information about the secret data.

As this example demonstrates, some of the most basic privacy properties can
be supported by the Jif type system. In more elaborate examples, finer-grained
data classifications can be used to indicate the intended recipients of a piece of
data and other additional information. In any case, with Jif, the programmer
has fewer worries that correctly labeled data will flow in unexpected or forbidden
ways.

4 Purpose

In this section, we tackle the problem of modeling purposes in Jif. First, we review
the definition of the notion of “purpose”. Then we discuss how to represent
purposes with Jif principals. Finally we briefly discuss the assurance problem:
how can we make sure a program does what it promises to do?

4.1 What is a purpose?

Data is collected to fulfill a purpose. A purpose describes what the system intends
to do with a piece of data. Examples include “tailoring the homepage of a website
to the tastes of a particular client”, “enabling a third-party shipping service to
ship the goods to the client”, “providing adequate medical care to a patient”,
and the like.

A purpose should be interpreted as an “upper bound”, so the goal of a
verifier is to make sure that the system does at most what it promised to do



with the piece of data. To clarify this point, consider the example of an online
bookseller that collects the user’s mailing address for the purpose of shipping the
purchased goods to the user. Then it is acceptable if the website actually does
nothing with the address. For example, the user might have entered his address
but then changed his mind about the particular purchase. On the other hand,
the bookseller should not be allowed to do more than it promised. For example,
it should not be allowed to sell the user’s address to a telemarketing company.

Purposes can have a hierarchical structure. For example, the purpose of “traf-
fic analysis” can be subsumed under the purpose of “website administration”.
Therefore, if a piece of data was collected with the purpose of helping with
website administration, the system should be allowed to use it for the specific
sub-purpose of “traffic analysis”. The opposite, however, should not be true.

The P3P specification describes eleven specific purposes, and one catch-all
“other” purpose which must be accompanied with a human-readable description.
However, the notion of purpose can be more general than allowed in the P3P
definition (which, for example, does not talk about sub-purposes). The model
that we propose can adequately handle the P3P notion of purpose, and it is also
powerful enough to describe a collection of purposes with sub-purpose relations,
more broadly.

4.2 Modeling purpose with principals

The model We choose to represent a purpose with a principal in Jif. The
programmer must create a principal for every purpose found in the policy. Data
which is collected for a specific purpose is annotated as being owned by the
corresponding principal. Methods which are needed for a specific purpose are
annotated as bearing the authority of the corresponding principal.

This modeling achieves a number of goals. First of all, it ensures that correctly
labeled data is going to be used only by the principals that have been explicitly
granted authorization to use it. It also enables the programmer to make the
program more explicit, as the purpose of methods is declared alongside them.
In practice, the programmer does not need to annotate every single method, as
Jif does some type inference. When type information is missing, type inference
aims to find the most conservative label.

Consider the following code fragment. It shows a slightly more involved ex-
ample than that of Section 3, and illustrates again how data cannot be misused.
In this example WebAdmin and Marketing are two unrelated principals.

class LogProcessor {

// the return type of total_hits is an int which
// should be owned by WebAdmin and readable

// by no one else.

public int{WebAdmin: } total_hits() {
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}

int{Marketing: } hits = (new LogProcessor(...)).total_hits();
// ERROR: the label of hits is incompatible with

// the return label of total_hits().

}

An error is raised at compile time, preventing that data for LogAmin be made
accessible to Marketing.

Sub-purposes Sub-purposes are also easy to model via the acts-for relation.
For example, if LogAdmin is a sub-purpose of Admin, then we can let the principal
LogAdmin act-for Admin. So if a piece of data is collected for the (generic) purpose
of Admin, it may in particular be used for the purpose of LogAdmin.

Suppose we have defined these two principals. We can then write the following
code fragment:

InetAddress{Admin: } client_address = ...;

int{LogAdmin: } client_uid = client_address.hashCode();

The second assignment is legal even though LogAdmin uses a variable owned by
Admin.

Multiple purposes Multiple purposes can be understood as another facet of
sub-purposes. We can use the acts-for relation again to model data which is
collected for several different purposes. The following construction is similar to
the modeling of groups and roles in the Decentralized Label Model [18].

As an example, consider the purposes LogAdmin, WebAdmin, and Admin in-
troduced above. Both WebAdmin and LogAdmin are sub-purposes of Admin, so
we let both LogAdmin and WebAdmin act-for Admin. Suppose that the variable
client_address is collected for both LogAdmin and WebAdmin purposes. Then
we can label client_address with Admin, and it will be usable by both LogAdmin
and WebAdmin.

Other examples may combine apparently unrelated purposes, such as the
purpose Marketing defined above and the purpose WebAdmin. Suppose that we
thought that a datum unique_hits should be used for both of these purposes.
We can construct a new principal Marketing_or_WebAdmin, let Marketing and
WebAdmin act-for the new principal, and use Marketing_or_WebAdmin in the an-
notation for unique_hits. In Jif this would not involve changing the already
existing definition of Marketing or WebAdmin, because the superiors of a princi-
pal (those who act-for the principal) are declared alongside it.

While in principle one could construct an exponential number of compound
purposes from a set of basic purposes, only those necessary for a particular



program would have to be declared and used in that program. We expect these
tasks to be of manageable complexity.

Conditional purposes Next, we discuss the situation (absent in P3P but
present in other contexts [12]) where a piece of data val was collected for a
purpose P but could be used for a purpose Q under certain well-defined circum-
stances. In Jif, val can have the label {P: }, but P can use the declassify
operation when necessary.

The following code fragment illustrates this concept:

class Log authority(LogAdmin) {
// The class is annotated as bearing LogAdmin’s authority.

double{LogAdmin: } computeAvg(...) {
}
int{LogAdmin: } orderOfMagnitude(double{LogAdmin: } x) {

}

int{LogAdmin: Marketing} showAvg() throws SecurityException
where authority(LogAdmin) {
// The method is annotated as bearing LogAdmin’s authority
// so it is allowed to declassify data owned by LogAdmin.

int{LogAdmin: } magn = orderOfMagnitude (computeAvg(...));

if (certain_well_defined_circumstances) {
return declassify(magn, {LogAdmin: Marketing});
// returns magn with the new label
// {LogAdmin: Marketing}.

}
else {
throw new SecurityException();
}
}
}

The places in a program where the declassify operation appears constitute
clear targets for detailed auditing. Thus, although the use of declassify may
weaken the guarantees that can be established at the programming-language
level, a Jif program with a few careful declassifications offers a better basis for
enforcement than an arbitrary Java program.



Roles and purposes The principals that we use for representing purpose are
regular principals in Jif. Myers and Liskov [18] have shown how to use principals
and the acts-for relation to model roles. A principal may have several roles
in an organization and wish to keep them separate. Roles are important in
other contexts [12], and this modeling of purposes could be combined with the
straightforward expression of roles to yield a richer system.

4.3 Assurance

It is important to realize that Jif, with our representation of purposes, will not
guarantee that principals will perform only those actions that are necessary
for the declared purposes. For example, we obtain no guarantee that a princi-
pal called WebAdmin will only administer a website, nor that a principal called
Statistics will perform only statistical actions.

Nevertheless, information-flow checking does help. It can reduce the size of
the code that needs to be examined in order to ensure that data is used only for
the declared purposes.

In order to achieve higher assurance, one may combine the formal reasoning
of the type system with a statement from the programmer (or some other re-
sponsible entity) certifying that the code does what it is supposed to do, and
no more. This statement may in particular address any use of declassification
operations. Ideally, it would be accompanied with a formal proof.

5 Retention

Another dimension of privacy is controlling how long user data may be retained.
Although Jif does not have a built-in mechanism for expressing time or retention,
in this section we show a treatment of retention that works within the existing Jif
label system. We complete the section with another brief discussion of assurance.

5.1 Retention periods

Our treatment addresses P3P’s retention model, which defines five possible reten-
tion periods: no-retention, stated-purpose, legal-requirement, business-
practices, and indefinitely. The label no-retention means that the data
should be used only to complete the current action and should never be stored.
Similarly, stated-purpose indicates that the data should be destroyed once the
purpose for which is was collected is finished. This period could be longer than
just the current transaction. For example, if a website collects a mailing address
to share with an expediter, it might take a while to communicate the address
to the expediter and complete the shipping. The retention legal-requirement
indicates that the data will be retained for as long as is required by law. This
period can vary, but for example the law sometimes requires banks to hold finan-
cial information for a year. The annotation business-practices is similar in
intent, but here the considerations pertain to business rather than the law. The



annotation indefinitely is the least restrictive: it indicates that the website
may keep the data for any amount of time, but imposes no requirement.

It is of course possible that dealing with other models of retention would
require changes and extensions to our approach.

5.2 Retention labels

We can relate the idea of retention to information flow. A datum that may be
retained only for a short time should not influence a datum that is retained for a
very long time. For example, there should be no information flow from a variable
with the label no-retention to a variable with the label legal-requirement.

Using this idea, we can represent retention periods within the existing Jif
label system. We represent them as principals, much in the same way as pur-
poses. Next we illustrate this encoding through an example; other encodings are
possible.

In our example, total page views and credit_rating are variables in-
tended for long-term retention, while temp_cookie, credit_report_cookie, and
viewed _credit_report are variables intended for short-term use only (perhaps
simply for displaying one webpage to the user). We omit the code that initial-
izes the variables. For simplicity, we assume that these variables are all for the
purpose of log administration, represented by the principal LogAdmin.

We introduce a principal for each retention period. In the example, we have
two such principals, named NoRetention and Indefinitely, and we are con-
cerned with preventing information flows from NoRetention to Indefinitely.
Since flows in the opposite direction are admissible, we let NoRetention act-for
Indefinitely.

Each of the variables has two owners: the purpose principal LogAdmin and a
retention principal (one of NoRetention and Indefinitely). Labels with mul-
tiple owners, such as these ones, are supported in Jif. Intuitively, a component
of a label with an owner A indicates A’s policy. A label with multiple owners can
be understood as the conjunction of the policies of all the owners.

int{LogAdmin: ; NoRetention: } temp_cookie;
boolean{LogAdmin: ; NoRetention: } viewed_credit_report;
int{LogAdmin: ; NoRetention: } credit_report_cookie;
int{LogAdmin: ; Indefinitely: } total_page_views;
int{LogAdmin: ; Indefinitely: } credit_rating;

// This assignment is OK (this ‘‘if’’ block typechecks).
if (viewed_credit_report) {
credit_report_cookie = NO_SHOW_AD;
}
else {
credit_report_cookie = SHOW_AD;
}



// This block typechecks too.
actsFor (NoRetention, Indefinitely) {
// This “‘if’’ block executes only if it is the case that
// NoRetention acts-for Indefinitely.
// The reason we have to add a runtime check of this fact is
// that acts-for relationships may change.
if (credit_rating > 5) {
temp_cookie = 1;
}
else {
temp_cookie = 2;
}
}

// ERROR: short-term information used in

// long-term variable.

if (viewed_credit_report) {
total_page_views++;

}

Here, the value of viewed_credit_report is not allowed to influence the value of
total _page_views, which may be kept indefinitely. Thus, the information-flow
analysis addresses both purposes and retentions, simultaneously and indepen-
dently.

5.3 Assurance

Much as for purposes, the Jif type system offers helpful support for reten-
tions, but no actual “real-world” guarantees. For example, Jif does not have
any independent information on the legal requirements associated with the label
legal-requirement, and the Jif type system need not forbid storing data with
the label no-retention on disk.

On the other hand, many such difficulties may be prevented if retention labels
are correctly associated with system interfaces. In particular, the file-system
interface could simply prevent the writing of data with the label no-retention.
Thus, it may be possible to guarantee that data with the label no-retention is
indeed ephemeral.

6 Conclusion

In this paper we present an approach for modeling and verifying some privacy
properties in Jif, a programming language with an information-flow type sys-
tem. We show how purposes and retention periods, in the sense of P3P, may
be represented in Jif. We believe that this approach is rich enough to support



additional privacy properties. In particular, we have developed some preliminary
techniques for expressing the anonymous use of data.

So far we have focused on the checking of specific privacy properties on small
pieces of code. We have not considered how our approach could apply to large
software-engineering projects; we can only speculate on this question. Neither
have we considered how those properties are assembled and expressed as a full
policy. This policy may be written in P3P or a similar language, but it could also
be represented by a Jif interface (analogous to a Java interface). In this case,
the problem of checking compliance with the policy reduces to Jif typechecking.
For other policy languages, the problem of checking compliance may also be
tractable provided those languages are given a precise semantics.
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