
Computational Secrecy by Typing for the Pi Calculus

Martı́n Abadi1,2, Ricardo Corin1,3, and Cédric Fournet1

1 Microsoft Research
2 University of California, Santa Cruz

3 University of Twente

Abstract. We define and study a distributed cryptographic implementation for
an asynchronous pi calculus. At the source level, we adapt simple type systems
designed for establishing formal secrecy properties. We show that those secrecy
properties have counterparts in the implementation, not formally but at the level
of bitstrings, and with respect to probabilistic polynomial-time active adversaries.
We rely on compilation to a typed intermediate language with a fixed scheduling
strategy. While we exploit interesting, previous theorems for that intermediate
language, our result appears to be the first computational soundness theorem for
a standard process calculus with mobile channels.

1 Introduction

In security, both attacks and defenses can operate at various levels of abstraction. For a
distributed program, reasoning about security can be in terms of programming-language
constructs and concepts, or in terms of their implementations. When those implementa-
tions use cryptography, the cryptographic primitives may be represented as black boxes,
as specific functions on bitstrings, or even as computing processes with timing and
power-consumption characteristics that an attacker may attempt to exploit. While pro-
gramming abstractions for security can be helpful, they should ideally be mapped to
concrete implementations that resist realistic low-level attacks.

In the last decade, a substantial research effort has started to address this problem
(e.g., [1,5,7,9,11–13,17,19]). In this paper, we contribute to this line of work by inves-
tigating an implementation of a concurrent language with message passing and channel
mobility. We treat cryptography both formally (in terms of symbolic expressions) and
computationally (at the level of bitstrings, with resource-bounded adversaries).

Specifically, we define and study a distributed cryptographic implementation for an
asynchronous pi calculus. At the source level, we adapt simple type systems designed
for establishing formal secrecy properties. In particular, we rely on secrecy types for
asymmetric communication, in the style of the local pi calculus [3, 18], and on the
name-confinement guarantees implied by putting names into scoped groups [14]. We
show that those secrecy properties have strong computational counterparts in the imple-
mentation, with respect to probabilistic polynomial-time active adversaries that operate
on concrete bitstrings.

The implementation leverages Laud’s recent results [17] on secrecy by typing in the
context of a simulatable cryptographic library [9, 11, 12]. Laud has defined a restricted

variant of the spi calculus [6] with a fixed scheduling strategy and without channel mo-
bility (so with fixed, global communication ports). We use Laud’s calculus as an inter-
mediate language: we translate the pi calculus to his calculus, then rely on his use of the
simulatable cryptographic library. Laud employs a type system for secrecy and proves
its soundness with respect to the cryptographic library. We show that our translation is
type-preserving. Then, via Laud’s results, we obtain computational secrecy guarantees,
as a soundness theorem for our pi calculus typings.

Related Work The comparison of formal and computational cryptography is an ac-
tive research field (e.g., [7, 11, 17, 19]); it has produced computational justifications for
formal models of cryptographic operations and for classes of protocols that use formal
cryptography. At a higher level, we have implementations of process calculi in terms of
black-box, formal cryptography (e.g., [1, 4, 5]). It might be tempting to try to compose
the results from those two efforts. For instance, one might imagine a translation from
the pi calculus to Turing machines via the spi calculus. Unfortunately, this strategy is
not viable at present, and may never be. First, compiling the pi calculus to the spi calcu-
lus while preserving security guarantees is difficult at best [1]. In addition, we lack a full
computational interpretation for the pi or the spi calculus; in particular, the pi calculus
features non-determinism and non-termination, which seem at odds with probabilistic
polynomial-time computation. Type systems do help, as does a certain realism in setting
goals—for instance, aiming to preserve only secrecy properties, and not necessarily all
testing equivalences. Alternatively, one may alter the pi calculus to reflect implementa-
tion constraints; Adão and Fournet [8] thus designed a calculus with mobile names (but
not mobile channels) and ad hoc communications primitives, and established the com-
putational soundness of its implementation for observational equivalence. Other works
also develop implementations of abstract security functions. In particular, Canetti and
Krawczyk have considered the problem of implementing secure channels [13], without
however a language framework.

Our main result appears to be the first computational soundness theorem for a stan-
dard process calculus with mobile channels. In fact, the literature does not seem to con-
tain even a computational soundness theorem for CCS. Going beyond CCS, the main
difficulties that we address pertain to channel scopes and mobility, which are central to
the pi calculus. Secrecy by typing can be regarded as a discipline for that mobility.

Contents Section 2 defines our source language. Section 3 presents a local type sys-
tem. Section 4 explains the intermediate language. Section 5 describes a distributed
implementation of the asynchronous pi calculus. Section 6 presents the computational
secrecy result. Section 7 considers the addition of name groups. Section 8 concludes.

2 The Source Language

This section introduces our source process calculus, by giving its syntax and semantics.
It also discusses secrecy, informally.

The syntax of the calculus appears in Figure 1. It assumes an infinite set of names
and an infinite set of variables; a, b, c, k, s, and similar identifiers range over names,
and x, y, and z range over variables. The syntax distinguishes a category of terms (data)

M, N ::= terms
x, y, z variable
a, b, c, k, s name

P, Q ::= processes
M〈M1, . . . , Mn〉 output
M(x1, . . . , xn).P input
!M(x1, . . . , xn).P replicated input
0 nil
P |Q parallel composition
(νa)P restriction
if M = N then P else Q conditional

Fig. 1. Syntax of the process calculus

and processes (programs). The terms are variables and names. The processes include
constructs for communication, concurrency, and dynamic name creation, roughly those
of the pi calculus, and a conditional. The calculus is polyadic, in the sense that messages
are tuples of terms, and asynchronous, in the sense that the output construct does not
have a built-in acknowledgment. Inputs may be replicated by prefixing a “!”. We write
!=M(x1, . . . , xn) when the replication is optional. As usual, we may omit an “else”
clause when it consists of the nil process 0. The name a is bound in (νa)P . The variables
x1, . . . , xn are bound in P in the process M(x1, . . . , xn).P . We write fn(P) for the set
of names free in P . A process is closed if it has no free variables; it may have free
names. We identify processes up to renaming of bound names and variables.

The semantics of our calculus is defined as usual for the asynchronous pi calculus.
We write P → Q when P reduces to Q in a single reduction step. We write P ≡ Q
when P and Q are structurally equivalent. We also let ≈ represent weak observational
congruence. These relations are defined only on closed processes; their definitions ap-
pear in the full version of this paper.

Concepts of Secrecy In this formal setting, there are two different definitions of se-
crecy. (See [2] for some discussion and references.) According to the first definition,
a process P preserves the secrecy of a piece of data M if P never publishes M , or
anything that would permit the computation of M , even in interaction with an attacker.
This kind of secrecy guarantee is common in the analysis of security protocols. It is
particularly adequate and effective for dealing with the secrecy of fresh values that can
be viewed as atomic, such as keys and nonces. Cardelli, Ghelli, and Gordon, and also
Abadi and Blanchet, use versions of this definition in their work on secrecy by typ-
ing [3, 14]. Even though both Laud’s type system and ours draw on those works, our
computational results correspond to a stronger definition of secrecy. According to this
second definition, a process P (x) preserves the secrecy of the value of a variable x if
an adversary cannot distinguish P (M) from P (N) for every M and N . This definition
has the advantage of excluding partial or implicit flows of information.

3 A Local Type System for the Source Language

In this section we give a first type system for the source language. This type system
enforces asymmetric communication in the sense of the local pi calculus [18].

Our type system is based upon that of Abadi and Blanchet [3], as is Laud’s (so this
section is partly a review, borrowing from previous papers). More precisely, we adapt

a fragment of the original type system which excludes cryptography. In order to match
Laud’s intermediate type system, we also modify the subtyping relation, and restrict the
typing rule for conditionals. Our types are defined by the grammar:

T ::= DSecret | CSecret[T1, . . . , Tn] | CPublic[T1, . . . , Tn] | Public

Type DSecret is used for data intended to be kept secret, like message payloads of a
protocol; CSecret[T1, . . . , Tn] is the type of a channel on which the adversary cannot
communicate, and which carries n-tuples with components of types T1, . . . , Tn. On the
other hand, CPublic[T1, . . . , Tn] is the type of a channel on which the adversary may
send (but not receive) messages; the channel may be intended to carry n-tuples with
components of types T1, . . . , Tn, but the adversary may send any data it has on the
channel. Finally, Public is the type of all public data. The subtyping relation is the least
reflexive relation such that CPublic[T1, . . . , Tn] ≤ Public.

The rules of the type system concern four judgments:

– E ` � means that E is a well-formed environment.
– E ` M : T means that M is a term of type T in environment E.
– E `� M :S means that S is the set of possible “true” types of M in environment E.
– E ` P says that the process P is well-typed in environment E.

The rules are as follows. The metavariable u ranges over both names and variables.

Well-formed environment: ∅ ` �
E ` � u /∈ dom(E)

E, u : T ` �

Terms:
E ` � (u : T) ∈ E

E ` u : T

E ` M : T T ≤ T ′

E ` M : T ′

Sets of types of terms:
E ` � (x : T) ∈ E

E `� x : {T ′ | T ′ ≤ T}
E ` � (a : T) ∈ E

E `� a : {T}
Processes:

E ` M : Public ∀i ∈ {1, . . . , n}, E ` Mi : Public

E ` M〈M1, . . . , Mn〉
(Output Public)

E ` M : CL[T1, . . . , Tn] ∀i ∈ {1, . . . , n}, E ` Mi : Ti

E ` M〈M1, . . . , Mn〉
(Output CL)

(a : Public) ∈ E E, x1 : Public, . . . , xn : Public ` P

E `!=a(x1, . . . , xn).P
(Input Public)

(a : CPublic[T1, . . . , Tm]) ∈ E E, x1 : Public, . . . , xn : Public ` P
E, x1 : T1, . . . , xm : Tm ` P if m = n

E `!=a(x1, . . . , xn).P
(Input CPublic)

(a : CSecret[T1, . . . , Tn]) ∈ E E, x1 : T1, . . . , xn : Tn ` P

E `!=a(x1, . . . , xn).P
(Input CSecret)

E ` �
E ` 0

(Nil)
E ` P E ` Q

E ` P |Q (Parallel)
E, a : T ` P T 6= DSecret

E ` (νa)P
(Restriction)

E `� M : S1 E `� N : S2 DSecret /∈ S1∪S2 if S1∩S2 6= ∅ then E ` P E ` Q

E ` if M = N then P else Q
(Cond)

The typing rules for output say that any public data can be sent on a public chan-
nel, and tuples with the expected types T1, . . . , Tn can be sent on a channel of type
CL[T1, . . . , Tn], for L ∈ {Public,Secret}. Therefore, by subtyping, any public data
can be sent on a channel of type CPublic[T1, . . . , Tn]. On the other hand, the attacker
cannot have channels of type CSecret[T1, . . . , Tn]. Therefore, we can guarantee that only
tuples with types T1, . . . , Tn can be sent on such channels. In the rules for input, the
channel in question is required to be represented by a name a (not a variable), as in the
local pi calculus. We distinguish three cases, considering the type of a.

– If a is of type Public, then the corresponding output must have been typed using
(Output Public), so the input values are public. Rule (Input Public) treats this case.

– When a is of type CPublic[T1, . . . , Tm], two cases arise. In the first case, the cor-
responding output has been typed using (Output Public) and subtyping. Then the
input values are of type Public. In the second case, the corresponding output has
been typed using (Output CL). In this case, the input values have the expected types
T1, . . . , Tm. Rule (Input CPublic) takes into account both cases, by checking that
the process P executed after the input is well-typed in both.

– When a is of type CSecret[T1, . . . , Tn], it cannot be known by the attacker, and the
corresponding output must have been typed using (Output CL). The input values
are therefore of the expected types T1, . . . , Tn.

Rule (Cond) exploits the idea that if two terms M and N cannot have the same type,
then they are certainly different. In this case, the process if M = N then P else Q
may be well-typed without P being well-typed. To determine whether M and N may
have the same type, we determine the set of possible types of M and N . If M is a
variable x, and (x : T) ∈ E, then x may of course have type T . Because of subtyping,
when T = Public, x may also be replaced at run-time with a name whose type is a
subtype of T . Hence the possible types of x are {T ′ | T ′ ≤ T}. When M is a name a,
its only possible type is the type assigned to it in the environment. Rule (Cond) also has
a condition that excludes any comparison of DSecret terms. This condition simply rules
out any flow of information from DSecret values to the control flow of the process, which
may be observable by the adversary. Finally, rule (Restriction) excludes the creation of
names with type DSecret (although not of names with secret-channel types). These two
last conditions on rules (Cond) and (Restriction) are not present in the work of Abadi
and Blanchet, but they are imposed to meet the requirements of payload secrecy (see
Section 4).

An Example We revisit and adapt an example from Abadi and Blanchet that concerns
the following protocol in which A sends to B a secret s and B acknowledges it:

Message 1. A → B : k, a on b
Message 2. B → A : k, k′ on a
Message 3. A → B : s on k′

Message 4. B → A : ack on k

Here, a and b are channels with A and B as only receivers, respectively. Initially, A
creates a secret channel k, and sends it along with the return channel a on b. In response,
B sends k, as proof of origin, along with a new secret channel k′. Finally, A sends s
on k′, and B sends ack on k. The goal of this protocol is to guarantee the secrecy of s.

In our calculus, we may represent the principals of this protocol by the processes:

A = (νk)(b〈k, a〉 | a(x, y).if x = k then (y〈s〉) | k(z))

B = b(x, y).(νk′)(y〈x, k′〉 | k′(z).x〈ack〉)

As detailed below, we can assign types such that A | B typechecks with type DSecret

for s. According to our main result (Theorem 1), this typing implies the computational
secrecy of any value substituted for s. We let

E = a : CPublic[CSecret[Public], CSecret[DSecret]],

b : CPublic[CSecret[Public], CPublic[CSecret[Public], CSecret[DSecret]]],
s : DSecret, ack : Public

and obtain E ` A |B as follows. In the typing of A, we choose k : CSecret[Public].
The output b〈k, a〉 is then typed by rule (Output CL). The input a(x, y) is typed by rule
(Input CPublic), and two cases arise:

– x : Public, y : Public. This case is vacuous by rule (Cond): in the test x = k, the
two terms do not have common types.

– x : CSecret[Public], y : CSecret[DSecret]. In this case, the output y〈s〉 is typed by
(Output CL). (The condition of (Cond) is fulfilled: DSecret 6∈ {CSecret[Public]}.)
The remaining input k(z) is easily typed by rule (Input CSecret).

In process B, the input b(x, y) is typed by (Input CPublic), and two similar cases arise.

4 The Intermediate Language

The models of Backes et al. and Laud are concerned with configurations of probabilistic
polynomial-time Turing machines. The machines are connected at ports; two ports can
be connected by a wire. Some of these machines represent honest parties; others are
controlled by the adversary. At any given time, at most one machine is active.

The Idealized Cryptographic Library [9–12] The cryptographic library provides an
abstract view of cryptography, in the following sense. Each principal is associated with
a deterministic machine Pi; this machine is connected to a concrete instance of the li-
brary Mi that runs all cryptographic algorithms on behalf of Pi and maintains a database
that maps abstract handles to cryptographic representations. Instead of n concrete li-
brary machines Mi, one can connect a single idealized library THn, with the same
ports, that maps abstract handles to shared, symbolic (“Dolev-Yao”) representations.
The main results of Backes et al. relate the security of two systems that use, respec-
tively, the concrete and idealized versions of the library, under standard computational
cryptographic assumptions. Hence, in order to prove the security of a system that uses
the concrete version, it suffices to reason on a system that uses the idealized version.

Laud’s Intermediate Language [17] Laud’s language can be used for programming
each of the machines Pi, using processes that can send and receive messages and ab-
stractly operate on message contents using library calls. Although the language is in-
spired by the spi calculus, its semantics is significantly different, as it reflects low-level
implementation constraints of the cryptographic library. In particular:

– Communications occur on global, static, bidirectional channels, associated with the
ports of the underlying machines. Some of these channels are intrinsically secure,
but are used solely to code initialization and security specifications.

– The adversary controls the scheduling between machines, and all channels that rep-
resent an untrusted network. Hence, it can intercept all network traffic, and even
disable the execution of a local process. (In contrast, a pi calculus context can read
a replicated output message on a public channel, but cannot prevent other processes
from reading it as well; see [8].)

– In other respects, the language is deterministic; in particular, parallel execution
within a machine is supported by an interpreter that maintains a run-queue of input
processes.

– The control flow of the machines is carefully restricted. When a machine is acti-
vated, it reads a single message from one of its input wires, it processes the message
and runs for a bounded amount of time, it puts at most one message in one of its
output wires, and yields.

– The usage of the library imposes some programming discipline, for instance to
exclude encryption cycles [9] or the leakage of private keys.

We use the following grammar for Laud’s language, with minor syntactic changes:

v ::= values
x variable
n integer constant
⊥ failed computation

e ::= expressions
v value
gen nonce() nonce generation
gen symenc key(i) symmetric-key generation
privenc(ek, et) symmetric-key encryption
privdec(ek, et) symmetric-key decryption
keypair() asymmetric-key generation
pubkey(e) asymmetric encryption key
pubenc(ek, et) asymmetric-key encryption
pubdec(ek, et) asymmetric-key decryption
store(e) value storage
retrieve(e) value retrieval (by handle)
list(e1, . . . , en) list
list proj(ei, e) projection

I ::= input process
c(x).Q input
!c(x).Q replicated input

I∗ ::= sequence of inputs
I; I∗

0
Q ::= processes

I∗ input
c〈e〉.I∗ output
⊥ run-time failure
let x = e in Q1 else Q2

let binding
if e = e′ then Q1 else Q2

conditional

Expressions represent calls to the cryptographic library. These calls, when successful,
return handles to new entries; otherwise they return ⊥. Expression gen nonce() creates
a fresh nonce. Expression gen symenc key(i) generates a symmetric key (where i is
a key rank used to prevent cycles; see Section 7). Expression keypair() generates an
asymmetric key pair and returns the private decryption key; pubkey(e) returns the asso-
ciated encryption key. Expressions privenc(ek, et), privdec(ek, et), pubenc(ek, et), and
pubdec(ek, et) provide encryptions and decryptions; decryption visibly fails if et is
not a message encrypted under the key associated with ek. Expressions store(e) and
retrieve(e) store and retrieve data, to and from the library, respectively. Expression
list(e1, . . . , en) constructs a list from n values; list proj(ei, e) retrieves its ith value.

Input processes I represent passive threads, held in the interpreter run-queue. Proc-
esses Q represent threads activated by an input; they perform at most one output, and
append input processes I∗ to the run-queue. Processes for input, output, and conditional
are similar to those of the source calculus. Process let x = e in Q1 else Q2 evaluates
the expression e; if evaluation succeeds, then Q1 runs with the result value substituted
for x; otherwise, Q2 runs. Process ⊥ represents run-time failure, written II for “invalid
input” in [17]. Intuitively, ⊥ causes the current thread to abort, for instance after failing
an evaluation or a test: the input process that triggered the thread is put back into the
run-queue, and the rejected message is passed to the next input in the run-queue.

Next, we give the syntax for types for the intermediate language, as it is used in this
paper. See [17] for further details, including the subtyping relation and the typing rules.

T ::= intermediate types
Public public data
SecData secret data
SNonce secret nonce
EK[T] asymmetric encryption key
DK[T] asymmetric decryption key
list(T1, . . . , Tn) list
SKi[T] symmetric key
T1 + T2 sum

Type Public is the type for public data. Its counterpart for secret data is SecData. Type
SNonce is the type for secret nonces. Type list(T1, . . . , Tn) is for lists. Types EK[T]
and DK[T] are the types of public/private asymmetric keys for encrypting values of
type T , while SKi[T] is the type of symmetric keys of order i for encrypting values of
type T . The index i is used for avoiding encryption cycles. Finally, type T1 + T2 is the
sum type of T1 and T2. Sum types play a role similar to the double typing of P in rule
(Input CPublic) of Section 3.

Secrecy by Typing A concrete configuration Cn = 〈S,H,A〉 consists of a concrete
system S of (Pi)i=1..n machines connected to their library machines (Mi)i=1..n, along
with a user machine H connected to free ports of S, plus an adversary machine A that
connects all the remaining unconnected ports. Let (Ii)i=1..n be intermediate-level input
processes (hence, consisting of passive threads) used to program the machines Pi of S.
Laud’s results [17, Theorem 1, Corollary 2] say that if each Ii typechecks in some envi-
ronment Γ , then Cn preserves secrecy of all data communicated by the user machine H
to S. More precisely, Laud shows that in the configuration Cn, the system S preserves
payload secrecy of all user data, in the sense defined by Backes and Pfitzmann within
the simulatable cryptographic library [10]. Basically, a system S preserves payload se-
crecy if no adversary A, even if colluding with a user machine H, can distinguish an
instance of S running with the user inputs provided by H from an instance of S where
the inputs are converted to random values (and then replaced back), by a “scrambling”
machine F that runs between S and H. Hence, the notion of payload secrecy can be re-
garded as a computational version of the second formal definition of secrecy described
in Section 2.

5 A Distributed Implementation of the Source Language

In this section, we translate assemblies of pi calculus processes into intermediate-lan-
guage input processes. A pi calculus process represents a concurrent system, but does
not indicate the distribution of its subprocesses across machines.

For the source process P =
∏

i=1..n Pi, our implementation distributes the subpro-
cesses Pi across the machines Pi, for each i = 1..n.

We first rearrange the source processes Pi into threads. We then give a composi-
tional translation for the threads that run within each machine. Finally, we describe the
top-level implementation and its initialization process.

Normal Forms for Source Processes Source threads are processes that perform a se-
ries of name creations and tests, then yield a parallel composition of inputs and outputs.
We use the following grammar:

A ::= atomic processes
M(x1, . . . , xn).T input
!M(x1, . . . , xn).T replicated input
M〈M1, . . . , Mn〉 output

T ::= threads
(νn)T restriction
if M = N then T else T ′ conditionalQn

i=1 Ai (n ≥ 0) atomic processes

For every source process P , we show that there exists a thread T ≈ P , obtained
from P by repeatedly applying the two rewriting steps below in all process contexts:

P |(νn)Q (νn)(P |Q) after renaming n so that n /∈ fn(P) (1)
P | if M = N then Q else Q′ if M = N then P |Q else P |Q′ (2)

Step (1) is a structural equivalence. Step (2) is an observational equivalence in all con-
texts. Both steps preserve source typing, and the rewriting always terminates. We let
T (P) represent one such thread for P .

Machine Translation The core of our translation maps channel-based communications
to runs of a particular cryptographic protocol.

Informally, the machine run-queue contains one input process for every running
atomic process of the source process. When a machine is proposed a message, the mes-
sage is matched against the pending inputs in the run-queue. If the message is accepted
by the translation of an input, then the message triggers the translation of a thread,
which runs to completion, then returns one acknowledgment message and appends new
input processes to the run-queue. If the message is accepted by the translation of an
output, then the message simply triggers this pending output.

We translate a term M to a list of two elements: an encryption key and a nonce. We
let M+ = list proj(M, 1) and M c = list proj(M, 2). We write let x1, . . . , xn = e in P
to abbreviate let l = e in let x1 = list proj(l, 1) in . . . in let xn = list proj(l, n)
in P else ⊥ . . . else ⊥ where l does not occur in P .

We translate processes as follows:

[[M〈M1, . . . , Mn〉]] = cont().net〈pubenc(M+, list(Mc, M1, . . . , Mn))〉
[[!=a(x1, . . . , xn).P]] = !=net(z).let a′, x1, . . . , xn = pubdec(a−, z) in

if a′ = ac then (ack〈 〉.[[P]]) else ⊥
[[0]] = 0

[[P |Q]] = [[P]]; [[Q]]
[[(νa)P]] = let a− = keypair() in

(let a = list(pubkey(a−), gen nonce()) in [[P]] else 0) else 0
[[if M = N then P else Q]] = if M = N then [[P]] else [[Q]]

We represent every output by an encryption followed by an output on a public chan-
nel net , and every input by the corresponding input and decryption. Specifically, we
translate a local channel a to an asymmetric key pair (with public key a+ and private
key a−) and a nonce ac. The capability to receive on channel a is represented by hav-
ing a−, while the capability to send on channel a is represented by having both a+

and ac. The nonce ac is necessary as well as the key a+ because, under standard cryp-
tographic assumptions, a+ may be recovered from any message encrypted under a+.

Every output is guarded by an input on channel cont . This guard ensures that our
implementation sends one output at a time. Conversely, every successful input is ac-
knowledged by an immediate output on channel ack , so that the environment knows
that the message has been delivered and need not be proposed again—as required for
functional correctness. (The symbol represents a fresh variable or a dummy value.)
The translation of inputs is defined only for local channel names—not for variables, as
in x(y).P ; this condition ensures that every input translation is within the static scope
of the corresponding decryption key.

Crucially, our implementation does not depend on typing information. In contrast
to ordinary types, secrecy types need not be known to the implementor. They express
relative secrecy properties that can be used for studying the behaviour of a system in
the presence of an adversary, possibly with different typings for different adversaries.

Initialization of the Distributed Computation Initialization deals with the free names
of the source processes Pi for i = 1..n. We first group these names, as follows. Let ãi

be the free names used for input in Pi. Let ã = ∪ãi, b̃i = fn(Pi) \ ãi, and b̃ = ∪b̃i \ ã.
Informally, the names b̃ represent data supplied by the attacker or the user.

We require that ãi ∩ ãj = ∅ when i 6= j, thereby reflecting a requirement of the un-
derlying cryptographic library: asymmetric decryption keys cannot be communicated.
It is similar to the locality requirement of the local pi calculus. Otherwise, our typed
translation would accommodate the distribution of private encryption keys as well.

Turning our attention to the knowledge of the adversary, we let ãRW represent
names controlled by the adversary, such that ãRW ∩ ã = ∅, and let ãW ⊆ ã repre-
sent names made available to the adversary for output. We finally let s̃ be b̃ \ ãRW .
These names represent user secrets.

We are basically interested in source processes that behave like (νã)(export〈ãW 〉 |
import(ãRW).(P1 | . . . |Pn){M̃/s̃}), where M̃ are the secrets substituted for s̃. In or-
der to obtain a distributed program in the intermediate language, we use an additional
machine P0 for initialization. In particular, P0 distributes the cryptographic materials
associated with top-level restricted channels, using low-level secure communications.

We introduce syntactic sugar for polyadic communication in the intermediate lan-
guage: we let c(x̃).P abbreviate c(z).let x̃ = z in P and c〈ẽ〉.P abbreviate c〈list(ẽ)〉.P .
We arrive at the following definition for the intermediate-level input processes I0, I1,
. . . , In initially hosted by the machines P0, P1, . . . , Pn:

I0 = (export i(eai))i=1..n.export〈eaW 〉.import(eaRW).user(es).(cont().import i〈ebi〉)i=1..n

Ii = cont().[[(νeai[])]]
�
export i〈eai〉.import i(

ebi).[[T (Pi)]]
�

for i = 1..n

where export i and import i are low-level secure channels between P0 and Pi, user is
a low-level secure channel from the user H to P0, export and import are low-level
channels between P0 and the adversary A, the context [[(νãi)[]]][] is the translation
of the source context that binds the names ãi, and ()i=1..n abbreviates a sequence of
actions for i = 1, . . . , n.

(Considering that initialization is part of the specification, rather than the imple-
mentation itself, we rely on low-level secure channels. We could perform most of the
initialization on net , but we would still rely on some initial key distribution.)

In summary, our concrete distributed configuration Cn = 〈S,H,A〉 consists of a
system S of n + 1 machines Pi that each runs the intermediate-language processes Ii

defined above plus n + 1 library machines Mi that realize the cryptographic primitives,
along with a user machine H and an adversary machine A.

Discussion Our definition of the processes Ii for i = 1..n does not depend on the
origin of the imported values b̃i. In other words, the implementation does not know a
priori which values are controlled by the adversary. This origin is determined instead
in the definition of I0, by the multiplexing between values that come either from peer
machines or from the adversary.

For simplicity, our implementation assumes that all communications are distribu-
ted—even if Ii includes matching inputs and outputs. We could also support (and type-
check) a sort of channels for machine-local communications, with an optimized imple-
mentation that does not rely on cryptography.

Our implementation is not meant to resist all attacks. Indeed, the adversary can
affect the control flow of the program, for instance by replaying messages. Consider
for example the source process P = (νa)(a〈〉 | a().a().adv〈s〉). According to the pi
calculus semantics, P preserves the secrecy of s from a context that knows adv—
in fact P behaves just like the inert process 0. With our implementation, the secrecy
of s is broken if the adversary has the decryption key for adv : the adversary observes
an opaque message on net (produced by evaluating pubenc(a+, list(ac))) and it can
forward that message twice to the machine that hosts the inputs on a, causing that
machine to send back pubenc(adv+, list(adv c, s)), and eventually the adversary can
extract s. Note, however, that the rules of Section 3 safely exclude any typing E ` P
that contains both s : DSecret and adv : Public.

Functional Correctness Although we are mainly interested in secrecy, it is also im-
portant to check that our implementation actually works. We therefore establish that our
implementation is functional for one particular definition of the adversary that imple-
ments a reliable network.

To this end, we briefly recall the main notations used by Laud in the deterministic
operational semantics of the intermediate language. Let Pi[Q] represent the passive

state of a local machine that implements the series of input processes Q, along with the
state of the idealized cryptographic library. We write (Pi[Q], α) −→−→ (P′i[Q

′], β⊥) for a
series of computation steps from state Pi[Q] to state P′i[Q

′]. The message α represents
an encoded input from the adversary. The outcome β⊥ represents either an encoded
output or ⊥, which indicates either that the input was not accepted or that the input was
accepted with no response. We omit the definition of encoded inputs and outputs, and
simply write ((A)) for an encoded message produced by Pi to send the source output A.

We state operational correspondences for inputs and outputs as follows. We let T ,
T ′, T ′′ range over parallel compositions of source inputs and outputs, and let A range
over source outputs.

– If T |A → T ′ then T |A → P and (Pi[[[T]]],net((A))) −→−→ (P′i[[[T
′′]]]), ack) for

some P and (νã′)T ′′ ≡ T (P). Otherwise, (Pi[[[T]]], net((A))) −→−→ (P′i[[[T]]],⊥).
– If T has an output, then T ≡ A |T ′′ and (Pi[[[T]]], cont) −→−→ (P′i[[[T

′′]]],net((A)))
for some A and T ′′. Otherwise, (Pi[[[T]]], cont) −→−→ (P′i[[[T]]],⊥).

These correspondences reflect an unknown, deterministic scheduling; they guarantee
only that, if some threads in T may input A, then one of their implementations will
input A, and similarly for outputs. In the first correspondence, (νã′) represents the
new restrictions in evaluation context; their translations create new keys recorded in the
library, so the source restrictions are discarded in T ′′.

The proposition below relies on the cooperation of an adversary N that performs
initialization, then repeatedly retrieves all pending outputs, stores them in a queue, and
repeatedly attempts to deliver the pending outputs to each of the machines in turn. The
proposition states that the implementation then follows one of the expected (finite or
infinite) source traces.

Proposition 1 (Functional correctness). Let the machines (Pi)i=0..n implement the
source processes (Pi)i=1..n with initialization parameters ã, ãRW , ãW , s̃. Let S be the
idealized system ((Pi)i=0..n,THn). Let P = (νã)

∏
i=1..n Pi.

There exist an adversary N, a user H, and source reductions P →∗ P ′ 6→ (or
P →` P ′ for any ` ≥ 0) such that P ′ ≡ (νã′)

∏
i=1..n P ′

i and the configuration
(S,H,N) reaches a state such that the run-queue of every machine Pi of S contains the
input processes [[T (P ′

i)]] for i = 1..n.

6 Computational Secrecy by Local Typing

We establish payload secrecy for the distributed implementation of arbitrary source pro-
cesses. We translate types and type environments, then verify that source type deriva-
tions always yield valid type derivations in the intermediate language. The translation
of types is as follows:

[[DSecret]]t = SecData
[[Public]]t = Public

[[CSecret[T1, . . . , Tn]]]t = list(EK[list(SNonce, [[T1]]
t, . . . , [[Tn]]t)], SNonce)

[[CPublic[T1, . . . , Tn]]]t = list(EK[list(Public, [[T1]]
t, . . . , [[Tn]]t)], Public)

Hence, the translation of channel types follows our choice of communication protocol.
We lift our translation from types to environments. When translating the name bind-

ing for a, we bind two variables: a to the translated type, and a− to the type of the
corresponding private decryption key. We translate bindings as follows:

[[x:T]]t = x:[[T]]t

[[a:DSecret]]t = a:[[DSecret]]t

[[a:Public]]t = a:[[Public]]t, a−:[[Public]]t

[[a:CSecret[T1, . . . , Tn]]]t = a:[[CSecret[T1, . . . , Tn]]]t, a−:DK[list(SNonce, [[T1]]
t, . . . , [[Tn]]t)]

[[a:CPublic[T1, . . . , Tn]]]t = a:[[CPublic[T1, . . . , Tn]]]t, a−:DK[list(Public, [[T1]]
t, . . . , [[Tn]]t)]

We let Γ0 be the intermediate-language environment that assigns types to the im-
plementation channels net , ack , cont , export , import , and export i, import i, user i for
i = 1..n in such a way that Γ0 ` I0. (The definition of Γ0 appears in the full version of
this paper.) We let [[E]]t be Γ0 plus the translations of the bindings in E.

The next lemma states that source subtyping is preserved, and that all type deriva-
tions for source terms and processes yield type derivations in the intermediate language.

Lemma 1 (Type preservation).

1. If T ≤ T ′ then [[T]]t ≤ [[T ′]]t.
2. If E ` M : T then [[E]]t ` M : [[T]]t.
3. If E ` P , then [[E]]t ` [[P]].

We obtain:

Theorem 1. Let P =
∏

i=1..n Pi. Let the machines (Pi)i=0..n implement the source
processes (Pi)i=1..n with initialization parameters ã, ãRW , ãW , s̃.

Let E be the source typing environment that contains

– (s : DSecret) for each s ∈ s̃;
– (a : CSecret[T̃]) for each a ∈ ã \ ãW ;
– (a : CPublic[T̃]) for each a ∈ ãW ;
– (b : Public) for each b ∈ ãRW .

If E ` P , then the concrete system (Pi,Mi)i=0..n preserves payload secrecy of s̃.

We illustrate the use of the theorem on the example of Section 3. We have estab-
lished that E ` A |B. Let S be the system that includes machines (Pi)i=0,1,2 with
initialization parameters ã1 = {a}, ã2 = {b}, ã = {a, b}, b̃1 = {b, s}, b̃2 = {ack},
b̃ = {ack, s}, ãRW = {ack}, ãW = {a, b}, and s̃ = {s}, such that P1 hosts the
translation of A, P2 hosts the translation of B, and P0 runs the initialization process I0:

I0 = export1(a).export2(b).export〈a, b〉.import(ack).user(s).
cont().import1〈b, s〉.cont().import2〈ack〉

Since E meets the conditions of Theorem 1, system S preserves payload secrecy of s.

7 Types for Channel Groups

In this section, we supplement our type system with typing rules adapted from Cardelli
et al. [14]. These rules are also designed to ensure formal secrecy by typing, but they
concern symmetric communication channels, confined using scoped groups of names.
Relying on this confinement discipline, we can implement channels using symmetric
encryption, with computational secrecy guarantees.

Group Types in the Source Language Group types embody static scoping policies
in the pi calculus; they help control the dynamic extrusion of channels by partitioning
them into named groups and statically controlling the scope of these groups. Groups
can be dynamically created as part of the computation; they ensure that “channels of
group G are forever secret outside the initial scope of (νG)” [14].

We extend the grammars for source processes and types accordingly:

P, Q ::= processes
. . . (see Section 2)
M〈M1, . . . , Mn〉s output
M(x1, . . . , xn)s.P input
!M(x1, . . . , xn)s.P replicated input
(νG)P group restriction
(νsa : G[T1, . . . , Tn])P restriction

T ::= types
. . . (see Section 3)
G[T1, . . . , Tn] channel in group G

We assume an infinite set of groups and let G, G′ range over groups. The process (νG)P
binds G with scope P . We consider processes up to renaming of bound groups.

The other processes enable communication and restriction on names that belong to
a group, much as the processes of Section 2, except for an additional “s” that indicates
the usage of group names (so that we can select symmetric-key cryptography in the
implementation). Restrictions also mention types, which are useful here for guiding the
translation.

Operationally, group restrictions behave like name restrictions, with similar structu-
ral-equivalence rules and an additional context rule for reductions: P → P ′ ⇒ (νG)P
→ (νG)P ′. Hence, group types do not play any dynamic role, and we can retrieve
untyped source processes and the untyped semantics by type erasure [14, Section 3].

We supplement our type system with additional typing rules for groups:

E ` � G /∈ dom(E)

E, G ` �
E ` � G ∈ dom(E) u /∈ dom(E) E ` T1, . . . , E ` Tn

E, u : G[T1, . . . , Tn] ` �
E ` M : G[T1, . . . , Tn] E, x1 : T1, . . . , xn : Tn ` P

E `!=M(x1, . . . , xn)s.P
(Input G)

E ` M : G[T1, . . . , Tn] ∀i ∈ {1, . . . , n}, E ` Mi : Ti

E ` M〈M1, . . . , Mn〉s
(Output G)

E, G ` P

E ` (νG)P
(Group Restriction)

E, a : G[T1, . . . , Tn] ` P

E ` (νsa : G[T1, . . . , Tn])P
(Restriction G)

The well-formedness rules demand that all groups are recorded in E and group
types are not mutually recursive. Thus, (Group Restriction) ensures that a restricted G
never occurs in the type of a free variable.

The other rules are standard. In contrast with the rules for local channels, (Input G)
enables inputs on any term with a group type.

An Example Consider the processes:

A = (νsd : G[DSecret])(c〈d〉s | d〈s1〉s | d〈s2〉s)
B = !c(z)s.z(x1)s.z(x2)s

Here, c represents a private, long-term channel between A and B, and d represents a
private channel for a session; A creates d in group G, sends it to B on c, and uses d to
send secrets s1 and s2 to B.

We can assign types so that (νG)(νsc : G[G[DSecret]])(A |B) typechecks, with s1

and s2 of type DSecret.

Two Difficulties with Symmetric Encryption Scoped group types are a good match
for symmetric keys, with their limitations. We discuss two such standard limitations in
the context of the intermediate language and the idealized cryptographic library.

– Encryption cycles may occur when the same symmetric keys are used both as en-
cryption keys and within encrypted values. Cycles are potentially unsafe, and there-
fore excluded by standard computational definitions of secrecy [7]. In particular,
cycles must be excluded in the cryptographic library [9], as follows: every secret
symmetric-key encryption has an integer rank, k, and the idealized library checks
that, for every encryption, (the symbolic representation of) the value to be encrypted
includes only encryptions of a strictly lower rank.

– Key compromises may occur during the computation, but they are hard to model
computationally. The cryptographic library simplifies the issue by requiring that
any symmetric key that may eventually be leaked to the adversary be leaked before
any encryption under the key becomes known by the adversary [9]. Laud’s type
system simplifies further, and excludes any leakage of symmetric keys by typing.

To address the second limitation, we extend the intermediate language, as follows.
By convention, we use rank 0 to indicate a key that is (immediately) leaked to the
adversary. We refine the rule (SK) for gen symenc key(k) [17]:

k ≥ 0

gen symenc key(k) : SKk[T]
(SK)

into two rules:

gen symenc key(0) : Public
(PSK)

k > 0

gen symenc key(k) : SKk[T]
(SK′)

The special typing rule for k = 0 is admissible4; indeed, Laud’s system already supports
symmetric keys of type Public received from the adversary.

Moreover, we assume that the library implementation of gen symenc key(k) detects
k = 0 and then leaks the key to the adversary, using some additional port. Technically,
we establish payload secrecy result for systems with this modification. However, it is
straightforward to show that, if a system preserves payload secrecy while leaking some
symmetric keys, then the same system without the leak also preserves payload secrecy.

4 P. Laud, private communication

(If an adversary breaks payload secrecy for the system without the leak, then the same
adversary breaks payload secrecy for the system with the leak—by just ignoring the
extra input.) This latter system does not dynamically rely on the rank parameters k.

Distributed Implementation We describe the distributed implementation of source
processes with groups as an extension of the implementation of Section 5.

As a global, preliminary step, we partition the free groups of the source processes Pi

for i = 1, . . . , n into public and private groups, we rename the restricted groups so that
all groups are pairwise distinct, and we give a rank to every type: rank(G[T1, . . . , Tn]) =
1 + maxi=1..n(rank(Ti)) when G is private or restricted; all other types have rank 0.

We extend the translations for types and processes as follows:

[[G[T1, . . . , Tn]]]t =

�
Public when G public
SKrank(G[T1,...,Tn])[list([[T1]]

t, . . . , [[Tn]]t)] otherwise
[[M〈M1, . . . , Mn〉s]] = cont().net〈privenc(M, list(M1, . . . , Mn))〉

[[!=M(x1, . . . , xn)s.P]] = !=net(z).let x1, . . . , xn = privdec(M, z) in ack〈 〉.[[P]]
[[(νG)P]] = [[P]]

[[(νsa : T)P]] = let a = gen symenc key(rank(T)) in [[P]] else 0

The translation of environment is extended to group-type bindings pointwise, and
discards groups. As in Section 6, we show that our translation of processes is well-
typed. Initialization applies unchanged: we exchange private-group names in ã \ ãW

(just as names of type CSecret[T1, . . . , Tn]) and public-group names in ãRW .
Finally, we generalize Proposition 1, Lemma 1, and Theorem 1 to systems with

both kinds of channel implementations, with the additional requirement that, in the top-
level source environment, the types within public-group types be either Public or other
public-group types. (We leave details for the full version of this paper.)

8 Conclusion

In summary, we obtain computational secrecy guarantees for an implementation of a
standard process calculus with mobile channels. The guarantees apply to processes that
conform to typing disciplines originally designed for establishing formal secrecy. It is
pleasing that these typing disciplines have a strong, non-trivial computational meaning.
One may also be able to extend these results to other secrecy requirements. Further,
we expect that analogous results may be established for typing disciplines that enforce
authenticity [16] (as already suggested by Laud) and authorization [15]. In addition,
implementations such as the one considered in this paper can be hardened against many
kinds of attacks, whether or not the corresponding security properties are captured in
type systems. Unfortunately, however, some attractive extensions appear challenging.
For instance, protection against traffic analysis may require expensive implementation
strategies or changes in the source calculus [1, 8]. An interesting direction for further
research is the development of high-level models and calculi that would be both conve-
nient for programming and amenable to sound, efficient implementations.

Acknowledgments Abadi’s work was partly supported by the National Science Foun-
dation under Grants CCR-0208800 and CCF-0524078. Corin’s work was partly sup-
ported by an NWO travel grant 02-1979.

References

1. M. Abadi. Protection in programming-language translations. In 25th International Collo-
quium on Automata, Languages and Programming, volume 1443 of LNCS, pages 868–883.
Springer-Verlag, 1998.

2. M. Abadi. Security protocols and their properties. In F. Bauer and R. Steinbrueggen, editors,
Foundations of Secure Computation, NATO Science Series, pages 39–60. IOS Press, 2000.

3. M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. Theoretical
Computer Science, 298(3):387–415, Apr. 2003.

4. M. Abadi, C. Fournet, and G. Gonthier. Authentication primitives and their compilation. In
27th ACM Symposium on Principles of Programming Languages, pages 302–315, Jan. 2000.

5. M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel abstractions.
Information and Computation, 174(1):37–83, Apr. 2002.

6. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Information and Computation, 148(1):1–70, 1999.

7. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

8. P. Adão and C. Fournet. Cryptographically sound implementations for communicating pro-
cesses (extended abstract). In 33rd International Colloquium on Automata, Languages and
Programming, volume 4052 of LNCS, pages 83–94. Springer-Verlag, July 2006.

9. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryp-
tographic library. In 17th IEEE Computer Security Foundations Workshop, pages 204–218,
2004.

10. M. Backes and B. Pfitzmann. Relating symbolic and cryptographic secrecy. In IEEE Sym-
posium on Security and Privacy, pages 171–182, 2005.

11. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations. In 10th ACM Conference on Computer and Communications Security, pages
220–230, 2003.

12. M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a simulatable
cryptographic library. International Journal of Information Security, 4(3):135–154, 2005.

13. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In Encrocrypt 2001, volume 2045 of LNCS. Springer-Verlag, 2001.

14. L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and group creation. Information and
Computation, 196(2):127–155, 2005.

15. C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization policies.
In 14th European Symposium on Programming, volume 3444 of LNCS, pages 141–156.
Springer, 2005.

16. A. D. Gordon and A. S. A. Jeffrey. Types and effects for asymmetric cryptographic protocols.
J. Computer Security, 12(3/4):435–484, 2004.

17. P. Laud. Secrecy types for a simulatable cryptographic library. In 12th ACM Conference on
Computer and Communications Security, pages 26–35, 2005. Also Research Report IT-LU-
O-162-050823, Cybernetica, Aug. 2005.

18. M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In 25th International
Colloquium on Automata, Languages and Programming, volume 1443 of LNCS, pages 856–
867. Springer-Verlag, 1998.

19. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In 1st Theory of Cryptography Conference (TCC), pages 133–151, 2004.

