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Layout randomization is a powerful, popular technique for software protection. We present it and

study it in programming-language terms. More specifically, we consider layout randomization as

part of an implementation for a high-level programming language; the implementation translates
this language to a lower-level language in which memory addresses are numbers. We analyze

this implementation, by relating low-level attacks against the implementation to contexts in the

high-level programming language, and by establishing full abstraction results.
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1. INTRODUCTION

Several techniques for protection are based on randomization (e.g., [Druschel and
Peterson 1992; Yarvin et al. 1993; Kc et al. 2003; Forrest et al. 1997; Bhatkar et al.
2005; Bhatkar et al. 2003; Barrantes et al. 2005; Berger and Zorn 2006; Novark et al.
2008; Erlingsson 2007; Novark and Berger 2010]). The randomization may concern
the layout of data and code within an address space, data representations, or the
underlying instruction set. In all cases, the randomization introduces artificial
diversity that can serve for impeding attacks. In particular, layout randomization
can thwart attacks that rely on knowledge of the location of particular data and
functions (such as system libraries). In addition, randomization can obfuscate
program logic, against reverse engineering.
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2 · M. Abadi and G.D. Plotkin

Other techniques for protection address similar goals. For example, methods that
ensure the integrity of control flow and data flow, statically or dynamically, can also
regulate the use of system libraries (e.g., [Morrisett et al. 1999; Kiriansky et al. 2002;
Abadi et al. 2009; Erlingsson 2007]). The static methods may be based on types
or other static analyses. The dynamic methods often rely on reference monitors,
whether implemented in hardware or software, at the boundaries of address spaces
or inline. In addition to the diversity of their mechanisms, protection techniques
vary in their goals and the underlying attack models. Some aim to offer precise,
general guarantees, while others stop only some specific attack that can be easily
modified to overcome the protection. They also vary in the difficulty of deploying
them and in their costs. No single protection technique appears to be always
superior to all others. In this paper we focus on layout randomization because it is
in widespread use [PaX Project 2004; Howard and Thomlinson 2007], it has been
subject to practical attacks (e.g., [Anonymous 2002; Shacham et al. 2004; Sotirov
and Dowd 2008]), and it has hardly been studied rigorously.

We present layout randomization as part of an implementation for a high-level
programming language. The language that we consider includes higher-order func-
tions and mutable variables that hold natural numbers, which we call locations.
Some of the locations are designated as public while others are designated as pri-
vate, with the intent that an attacker should not have direct access to the latter. For
instance, consider a program that manipulates data that should remain secret or be
protected from tampering, such as a value that indicates the authentication status
of a communication channel (as in [Chen et al. 2005, Section 4.4]). The program
may store this data in a private location; it may publish a function that internally
uses the private location, and this function may be invoked by untrusted pieces
of code. The implementation translates the high-level language to a lower-level
language in which memory addresses are natural numbers; layout randomization
consists in mapping the private locations to random addresses in data memory. If
the data memory is large enough and the randomization good enough, then even
an attacker with access to all of data memory (for example, able to modify the
contents of any particular memory address via a buffer overflow) cannot find the
private locations efficiently with high probability. (Otherwise, the attacker may
succeed, as demonstrated in actual exploits, e.g., [Shacham et al. 2004].) We derive
that the security properties that hold against attackers that cannot access the pri-
vate locations directly continue to hold in this implementation, in a probabilistic
sense and against resource-bounded adversaries.

Thus, our work takes place in a programming-language setting, and it draws
on a line of research on protection in programming languages, and more broadly
on ideas and techniques from programming-language theory (e.g., [Morris 1973;
Abadi 1998]). These include the use of contexts for representing attackers, and of
contextual equivalence and similar relations for expressing security properties. Re-
markably, though, this line of research has said little on randomization; a notable
exception is the work of Pucella and Schneider [2006], which we describe further
in Section 6. In addition, our probabilistic results are analogous to computational-
soundness theorems in the analysis of security protocols (e.g., [Abadi and Rogaway
2002; Comon-Lundh and Cortier 2008; Backes et al. 2009]). These theorems re-
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late symbolic proofs of protocol security, in which keys and ciphertexts are formal
expressions, to proofs in a computational model in which keys and ciphertexts are
bitstrings subject to complexity-theoretic assumptions. Unlike security protocols,
however, the systems that we consider neither include concurrency nor rely on
cryptography, but they do include higher-order functions. Despite these important
differences, we hope that our work will enrich the study of computational sound-
ness, in particular by showing that some of its themes and methods are applicable
beyond security protocols.

The next section (Section 2) discusses our results in more detail but still infor-
mally. Section 3 contains preliminary technical material. Sections 4 and 5 are the
core of the paper; they treat models in which errors are fatal and recoverable (but
costly), respectively. Section 6 concludes. An electronic appendix contains proofs
and additional technical material; it can be accessed in the ACM Digital Library
(see below).

2. DISCUSSION OF RESULTS

Layout randomization can be applied in a variety of systems contexts. In some (in
particular, in kernel mode), accesses to unmapped memory addresses may be fatal
violations that result in immediate termination. In others (often in user mode),
erroneous accesses may take place repeatedly without causing execution to abort;
a program that performs an erroneous access may recognize that it has done so.

This distinction leads to two models for what happens when an attacker accesses
an unused address in data memory (rather than an address that houses a private
location). In one model, such accesses are fatal violations; in the other, such accesses
are not fatal and can be detected.

In both cases, our main results concern translations between the high-level lan-
guage with locations and a lower-level language with natural-number addresses. (In
contrast, one could study layout randomization by focusing exclusively on low-level
behavior, as in [Berger and Zorn 2006, Section 6].) In the high-level language, there
is a distinct type of locations loc and, assuming that the expression M has this
type, one can write expressions like !locM and M :=loc M

′ for reading from and
storing into a location. In the low-level language, on the other hand, if M has type
nat then one can write !natM and M :=nat M

′ for reading from and writing to a
natural-number address, which may be obtained as the result of arbitrary numerical
computations in M .

In order to study the security of these translations, we represent high- and low-
level attackers as contexts. More precisely, for a program M of type σ, we take
attackers to be expressions C of type σ → bool. The boolean output is standard
in programming-language theory, but technically we could as well use the type
σ → nat, for example. Informally, we think of C as interacting with M and
possibly trying to obtain information about the contents of private locations or to
tamper with them. Attackers must not have direct access to the private locations,
so we consider only public attackers C, which are those containing no occurrences
of any private locations. (Public low-level attackers do have access to all of memory,
nevertheless, but via natural-number addresses rather than via locations.)

This representation of the attacker as a context amounts to a threat model, which
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allows rich interactions between the program being protected and its attacker. Both
theoretical work and practical attacks often employ more limited threat models, in
which, for example, the attacker provides only one input or a small number of
inputs. On the other hand, this representation excludes power-analysis attacks,
timing-analysis attacks, and the like, as well as any attacks that subvert the under-
lying execution platform. Realistically, layout randomization may not withstand
such attacks anyway.

In general, a low-level attacker could exploit the operations !nat and :=nat for
crafting attacks that would be impossible in the high-level language. In an ex-
treme case, when erroneous accesses are not fatal, an attacker could iterate over all
addresses.

Nevertheless, we show that the attacks possible in the low-level language are no
worse than those that are possible in the high-level language, in a probabilistic
sense and, if erroneous accesses are not fatal, within some number of such memory
accesses that serves as a bound on the complexity of the attacks. More precisely,
we map each high-level program M to a low-level program M↓, and consider the
behavior of M↓ in an arbitrary low-level context C. We construct a corresponding
high-level context C↑ which does not directly access M ’s private locations and is
such that M in C↑ exhibits the same behavior as M↓ does in C (possibly in a
probabilistic sense). In the model where erroneous accesses are fatal, C↑M returns
a given boolean, for example, if, and only if, CM↓ does (see Theorem 4.5). In the
model where erroneous accesses are not fatal, one rather has that C↑M returns a
given boolean if, and only if, CM↓ does with high probability, and then only with an
assumption on the number of memory accesses being bounded (see Theorem 5.7).

Some of our results are phrased as full abstraction theorems for translations
between the high-level language with locations and the lower-level language with
natural-number addresses (Theorems 4.7 and 5.8). These theorems say, roughly,
that two programs are equivalent in the high-level language if, and only if, their
translations are equivalent (in a probabilistic sense) in the low-level language.
(Computational soundness is the implication from the high-level equivalence to
the low-level one.) The equivalences capture program indistinguishability in the
presence of an arbitrary attacker, represented as the context of the programs: the
attacker cannot, for example, force the two programs to yield different values (pos-
sibly in a probabilistic sense). As the examples below illustrate, the equivalences
can express both secrecy and integrity properties. Therefore, the theorems imply
the preservation of those secrecy and integrity properties.

The distinction of public and private locations, and the use of equivalences, are
similar to those in information-flow security. There, equivalences generally relate
two versions of the same program with different inputs (e.g., [Denning 1982; Vol-
pano et al. 1996]). Furthermore, preservation results are generally restricted to
equivalences that can be established using particular logics or type systems (see,
e.g., [Abadi 1999, Section 7] and [Medel 2006; Barthe et al. 2007; Fournet and Rezk
2008]). Like Fournet et al. [2009], we do not make such restrictions: our equiva-
lences may relate programs that differ in more than their inputs, and they need not
be proved with any particular method.
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Consider the following simple programs M and M ′ of the high-level language:

M = l := c M ′ = l := c′

where l is a private location and c and c′ are two distinct natural-number constants.
Here and in other examples, we omit the subscript loc on memory operations, for
brevity. These programs have type unit (the type conventionally used in functional
programming for commands). They can be distinguished by the context

λg :unit. (g; if !l = c then true else false)

but they are equivalent with respect to contexts that cannot access private locations.
This property captures a secrecy guarantee. Similarly, if l′ is a public location, the
following programs M and M ′:

M = λf :nat→ unit. l := c; f(c);
if !l = c then l′ := c else l′ := c′

M ′ = λf :nat→ unit. l := c; f(c);
l′ := c

can be distinguished by the context

λg : (nat→ unit)→ unit. (g(λx :nat. l := c′); if !l′ = c then true else false)

but they are equivalent with respect to contexts that cannot access private locations,
because the argument f (supplied by the context) cannot tamper with l. This
property captures an integrity guarantee. In an implementation in which l is housed
in a random address in data memory, an attacker should find it hard to read or
write the contents of l, so the secrecy and integrity guarantees should be preserved.
As we see below, this is indeed the case.

Such a result may seem obvious. However, as we discuss, some other “equally
obvious” results do not hold, and some variants and extensions appear problematic.
We illustrate this point with the following small example. Writing Ω for a chosen
nonterminating program and ∗ for the value of type unit, we consider the programs:

M = λf :unit→ unit. Ω
M ′ = λf :unit→ unit. letx be f(∗) in Ω

The implementations of M and M ′ can be distinguished by a context that passes
a function f that always produces a fatal error. Such a function can easily be
expressed in the model where erroneous accesses are fatal. On the other hand,
M and M ′ will be equivalent in the high-level language unless this language too
includes constructs that force immediate termination. Therefore, full abstraction
fails without such constructs. Although of mostly theoretical interest, this small
example is reminiscent of some actual attacks in which the distinction between error
and nontermination leaks important information [Sovarel et al. 2005].

Thus, our work demonstrates that layout randomization can offer some delicate
but strong guarantees. Layout randomization is not just an ad hoc mitigation,
or “security by obscurity”. Nevertheless, our results have substantial limitations.
They provide an incomplete account of software protection, ignoring most of the
complications of practical implementations.
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Many of the limitations directly correspond to limitations of the languages that
we consider. For instance, these languages do not include the storage of functions in
the heap, which our results do not treat; so we do not study whether an attacker can
call a piece of code by guessing where in memory it resides, as in “jump-to-libc”
attacks [Erlingsson 2007].

Another limitation of our results is that they do not all apply to programs that
receive or send locations—although they do apply to higher-order programs that
receive or send functions for manipulating locations. We deliberately define our
languages with locations as first-class values of a type loc. While this generality
leads to an extra hypothesis in some of our theorems, it also enables us to discuss
the difficulties that arise with locations as first-class values:

— Suppose that we allow loc to occur in contravariant positions in the types of
the programs that we are protecting (that is, we allow loc to occur within an odd
number of left-hand sides of function-space arrows, as in, for example, loc→ unit

and ((loc→ unit)→ unit)→ unit). In the implementations of those programs,
locations correspond to natural numbers, but in general this correspondence is not
surjective. So a low-level attacker may attempt to poison the programs by providing
a number that does not represent a location instead of one that does represent
a location, and might gain information from the resulting errors. Consider for
instance the programs:

M = λx :loc. Ω M ′ = λx :loc. let y be !x in Ω

which both have type loc→ unit. While a high-level attacker cannot distinguish
these two programs, a low-level attacker may attempt to distinguish them, with
high probability, by passing a number that does not represent a public location:
the naive implementation of M will diverge, that of M ′ will produce an error. Such
examples might be addressed by an implementation strategy in which incoming
numbers that should represent locations are tested. These tests are reminiscent
of how pointers are treated with suspicion when they cross trust boundaries in
operating systems and other software systems.

— Suppose that we allow loc to occur in covariant positions in the types of
the programs that we are protecting (that is, we allow loc to occur within an
even number of left-hand sides of function-space arrows, as in, for example, loc
and (loc → unit) → unit). Then a low-level attacker may store the numbers
that represent the locations that it receives, and use them later, while analogous
storage is not possible for a high-level attacker—simply because locations cannot
hold locations in our high-level model. Letting l1 and l2 be private locations,
consider for instance the programs:

M = λf :loc→ unit. if !l2 = 0 then l2 := 1; f(l1) else Ω;
l1 := 0

M ′ = λf :loc→ unit. if !l2 = 0 then l2 := 1; f(l1) else Ω;
l1 := 1

which both have type (loc → unit) → unit. They differ only in whether they
store 0 or 1 in l1. Both of these leak l1 to an argument function f , then set l1. They
do the leaking at most once: this linearity is enforced by the flag l2. A low-level
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context can store the number that represents l1, then use it for reading what is
stored in l1, and thereby could distinguish the implementations of M and M ′ if
no additional precautions are taken. This counterexample is reminiscent of some
that arise in the study of cryptographic protocols, most notably a counterexample
to forward secrecy [Abadi 1998]. It could perhaps be addressed by some of the
techniques developed in such contexts. Unfortunately, those techniques may not
result in attractive, realistic implementation strategies for a programming language
such as ours, or for its obvious extensions where locations can hold other locations.
Such extensions can bring up further problems, which it would be interesting to
investigate in future research.

The significance of this limitation remains open to debate. One could argue that
programs should never receive or send locations: it is too hard to make this safe, and
exchanging functions, or objects with public methods and private fields, provides
more flexibility— assuming that an attacker cannot recover the locations in question
from the concrete representations of functions and objects. (Such a guarantee might
be provided statically by typing or dynamically, perhaps via capabilities.)

These arguments are particularly sensible in the context of implementations
where attackers have information on the offsets between private locations (much as
in [Shacham et al. 2004]). For instance, a practical implementation may well store
several private locations near one another, in a randomly placed block of memory
chosen for this purpose. Then an attacker that learns where l1 is housed may also
be able to infer that l2 is nearby. Such dependencies can weaken security.

3. TECHNICAL PRELIMINARIES

This section presents basic technical material on which both Sections 4 and 5 rely.
It describes both high- and low-level memory models and the common components
of the languages considered in this paper.

3.1 Memory models

We begin with a discussion of our memory models. We need two: an abstract one,
for the high-level language, and a more concrete one, for the low-level language.

For the abstract model we assume a finite set Loc of locations, ranged over by l,
and further assumed to be the disjoint union of two sets, PubLoc and PriLoc, of
public and private locations. Stores, ranged over by s, are maps s : Loc −→ N,
sending locations to natural numbers. For any store s, s(l) = n indicates that the
contents of the location l in the store s is n. We write Store for the set of stores.

For the concrete model we take the memory as having addresses 0, . . . , c, for a
given c ≥ 0, which we think of as logical or virtual addresses rather than physical
addresses; we assume that |Loc| ≤ c + 1. Memories, ranged over by m, are maps
m :{0, . . . , c} −→ N+1, where 1 is the set {∗}, + is disjoint union. For any memory
m, m(a) = n indicates that the memory m holds n at address a, and m(a) = ∗
indicates that a is an unused address of m. Storing natural numbers rather than
words is an idealization, as is the view of natural numbers as atomic entities that all
occupy the same space. With a little more effort we could use an alternative model
where words are stored and arithmetic operations can be performed on them.

Memory layouts, ranged over by w, are 1-1 maps w : Loc ↪→ {0, . . . , c}. They
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are used to connect the abstract and concrete memory models. Note that, whereas
there are infinitely many stores and memories, there are only a finite number of
memory layouts. We consider only those memory layouts extending a given public
layout wp :PubLoc ↪→ {0, . . . , c} that is fixed throughout.

For any store s and a memory layout w, there is a corresponding memory
mem(s, w) defined by:

mem(s, w)(a) =

{
s(l) if w(l) = a
∗ if a /∈ Ran(w)

where Ran(w) is the range of w. Note that the map s 7→ mem(s, w) is 1-1, but not
onto; we say that m has the form mem(s, w) if it equals mem(s, w) for some w. We
abbreviate mem(s, w) to sw.

In order to make probabilistic assertions, we need a probability distribution d
over the layouts extending wp. We mainly consider the uniform probability distribu-
tion U, which can be generated by fixing an ordering of Loc and then selecting, one-
by-one, a non-repeating sequence of elements randomly from {0, . . . , c} \Ran(wp),
choosing uniformly at each point from the remaining elements. When ϕ(w) is a
statement, we write Pd(ϕ(w)) for the probability that it holds with respect to the
distribution d.

For any A ⊆ N, we define w#A to mean that A ∩ (Ran(w)\Ran(wp)) = ∅.
Thinking of A as a set of attempted memory probes, allowing probes out of memory
bounds and at addresses of public locations, w#A holds precisely when none of these
probes hits private memory, that is, an address of a private location. Pd(w#A) is
then the probability that no probe in A hits private memory, using the above
convention on probabilistic statements with free variable w. We define:

δd(n) = min{Pd(w#A) | A ⊆ {0, . . . , c} \Ran(wp), |A| = n}

for n ≤ c+ 1− |PubLoc| (and δd(n) is undefined otherwise). This number will be
used to give our security guarantees. Note that δd(0) = 1 and that if δd(n) > 0
then n ≤ c+ 1− |Loc|, although the converse may fail.

In the case of the uniform distribution, PU(w#A) depends only on the cardinality
of A, if A ⊆ {0, . . . , c} \Ran(wp), so we have δU(n) = PU(w#A), for any such A
with |A| = n. Note that δU(n) > 0 if, and only if, n ≤ c+ 1− |Loc|.

We can give δU(n) by:

δU(n) =
|{w | w extends wp and Ran(w) ∩A = ∅}|

|{w | w extends wp}|

where A is any subset of {0, . . . , c} \ Ran(wp) of size n; it does not matter which
such subset is chosen. That is, δU(n) is the fraction of all memory layouts that
extend wp but do not meet any of a fixed choice of n non-public memory addresses.
The formula can be written in terms of binomial coefficients, by:

δU(n) =

(
c+ 1− n− |PubLoc|

|PriLoc|

)
/

(
c+ 1− |PubLoc|
|PriLoc|

)
Thus, δU(n) tends to 1 as c increases while PriLoc and PubLoc remain fixed. In-
tuitively, this fact means that, if one looks for private locations in a large enough
memory, getting n tries, one is almost certain to miss if the memory is large enough.
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As is shown by the following calculation, the uniform distribution U is optimal in
the sense that δU ≥ δd for any probability distribution d; that is, U maximizes δd.
The second step of the calculation uses the fact that the minimum of a nonempty
finite multiset of real numbers is less than, or equal to, their average.

δd(n) =def min{Pd(w#A) | A ⊆ {0, . . . , c} \Ran(wp), |A| = n}

≤
∑
{Pd(w#A) | A ⊆ {0, . . . , c} \Ran(wp), |A| = n}/

(
c+1−|PubLoc|

n

)
=

∑
{(
∑
w#A d(w)) | A ⊆ {0, . . . , c} \Ran(wp), |A| = n}/

(
c+1−|PubLoc|

n

)
=

∑
w

∑
{d(w) | A ⊆ {0, . . . , c} \Ran(w), |A| = n}/

(
c+1−|PubLoc|

n

)
=

∑
w d(w)

(
c+1−|Loc|

n

)
/
(
c+1−|PubLoc|

n

)
=

(
c+1−|Loc|

n

)
/
(
c+1−|PubLoc|

n

)
= (c+1−|Loc|)!(c+1−n−|PubLoc|)!

(c+1−n−|Loc|)!(c+1−|PubLoc|)!

=
(
c+1−n−|PubLoc|

|PriLoc|
)
/
(
c+1−|PubLoc|
|PriLoc|

)
= δU(n)

Non-uniform distributions may still be helpful in practice. For example, one may
wish to restrict randomization to part of the memory, or to restrict layouts (for
example mapping some locations into a special memory region), and it may be
possible to obtain sufficient security guarantees under such restrictions.

Our results hold for any probability distribution d. For the rest of the paper, we
fix a choice of d, and write P(ϕ(w)) and δn for Pd(ϕ(w)) and δd(n), respectively.

3.2 Languages

A number of quite similar languages are considered in this paper. They are all
versions of Moggi’s (call-by-value) computational λ-calculus, or λc-calculus, [Moggi
1989; 1991] with natural number and, possibly, location types, and with memory-
access operations at natural-number or location types. They all also have sum
types, which represent disjoint or discriminated unions [Mitchell 1996], and recur-
sion [Hasegawa and Kakutani 2002]. For general background on the λ-calculus,
see [Mitchell 1996; Pierce 2002].

The types of such a language are given by:

σ ::= b | unit | σ × σ | σ + σ | σ → σ

where b ranges over a given set of basic types which always includes a natural-
number type nat and may also include a location type loc. We write bool to
abbreviate unit + unit.
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10 · M. Abadi and G.D. Plotkin

The terms of such a language are ranged over by M and N , and given by:

M ::= x | c | ∗ | (M,M) | fstM | sndM |
inlσ,σM | inrσ,σM |
casesM inlx :σ.M inrx :σ.M |
λx :σ.M | MM | rec(f :σ → τ, x :σ).M

where c ranges over a given set of constants c of a given type σ, written c : σ.
These always include the natural numbers n ∈ N, together with constants for
the usual arithmetic operations and relations, such as addition + : nat × nat →
nat and equality =nat: nat × nat → bool. They may also include constants for
memory access, for example :=nat:loc×nat→ unit for assignment. The recursion
construction rec(f : σ → τ, x : σ).M should be thought of as defining a function
f :σ → τ such that f(x) = M .

There are standard notions of free and bound variables, of closed terms, and of
the capture-avoiding substitution M [N/x] of a term N for all free occurrences of
a variable x in a term M . There are also standard typing rules for judgements
Γ ` M : σ, that a term M has type σ in the context Γ, where contexts have the
form Γ = x1 : σ1, . . . , xn : σn. Here are two examples:

Γ `M :σ

Γ ` inlσ,τ M :σ + τ

Γ, f :σ → τ, x :σ `M :τ

Γ ` rec(f :σ → τ, x :σ).M :σ → τ

We write M :σ for ` M :σ, and read it as “M (is) of type σ”; one can think of
σ as the interface of the term M . If M :σ then we say that M is well-typed (and
it is necessarily closed). Unique typing holds: a term has at most one type relative
to a given environment.

We may omit type subscripts when that should not cause confusion, e.g., we write
inlM instead of inlσ,τ M ; we also write letx : σ beM inN for (λx : σ.N)M .
We adopt standard infix notations, e.g., writing M := N for := (M,N), if that
improves readability. For the booleans, we write true and false for inl ∗ and
inr ∗, respectively, and the conditional expression ifB thenM elseN abbreviates
casesB inlx : unit.M inrx : unit. N , where x occurs free in neither M nor N .
To make the usual connection between applicative and imperative programs, we
may write com (which stands for “command”) for unit, skip for ∗, and M ;N for
letx :unit beM inN (where x is not free in N).

Throughout this paper, we define the operational semantics of such a language
in the style of Felleisen and Friedman [1986], beginning by defining values V , eval-
uation contexts E, and redexes R. We classify each constant as a value or a redex;
in particular the numerals and the constants for the assumed arithmetic operations
and relations are always values; the error-raising constants of the high-level lan-
guage of Section 4.1 are examples of constants which are not values. Values are
terms which can be thought of as (syntax for) completed computations; they are
ranged over by V and defined by:

V ::= c (if c is classified as a value) |
∗ | (V, V ) | inlV | inrV | λx :σ.M
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Evaluation contexts are ranged over by E and are defined by:

E ::= [−] | (E,M) | (V,E) | fstE | sndE |
inlE | inrE | casesE inlx :σ.M inrx :σ.M |
EM | V E

We write E[M ] for the term obtained by replacing the “hole” [−] in an evaluation
context E by a term M . The computational thought behind evaluation contexts
is that, in a term of the form E[M ], the first computational step arises within M .
The redexes R include:

c (if c is classified as a redex)

fst (V, V ) snd (V, V )

cases inlV inlx :σ.M inrx :σ.M

cases inrV inlx :σ.M inrx :σ.M

(λx :σ.M)V rec(f :σ → τ, x :σ).M

together with specified other redexes involving the various constants, including
evident arithmetic redexes for the assumed arithmetic operations and relations, for
example i+ j and i =nat j.

For every well-typed term M , exactly one of the following possibilities holds:

—M is a value, or

—M can be analyzed uniquely in the form E[R], with R a well-typed redex.

However, this has to be verified separately for each language.
The operational semantics itself involves various relations and properties, and

there is quite a bit of variation between the different languages. In all cases, how-
ever, a relation R −→M between the above redexes and terms proves useful. It is
defined as follows:

fst (V, V ′) −→ V snd (V, V ′) −→ V ′

(λx :σ.M)V −→M [V/x]

rec(f :σ → τ, x :σ).M −→ λx :σ.M [rec(f :σ → τ, x :σ).M/f ]

. . .

where the ellipses indicate evident missing arithmetic redex transitions, such as:

i =nat i −→ true and i+ j −→ k

where k is the sum of i and j.

4. THE FATAL-ERROR MODEL

As explained in Section 2, our results compare the security properties implied by the
semantics of high-level languages with those obtained from layout randomization in
low-level languages. In this section, relying on the general framework of Section 3,
we define a particular high-level language and a particular low-level language, then
we develop the corresponding comparison.
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Specifically, we consider a low-level model in which an erroneous memory access
gives rise to a fatal error (that is, an irrecoverable error). A corresponding construct
to raise such errors is needed at high-level, as discussed in Section 2. Section 4.1
presents the high-level language; since it has an error-raising construction, its op-
erational semantics has an error predicate, as well as the usual transition relation.
Section 4.2 presents the low-level language; its operational semantics additionally
has an error predicate which is labelled by a natural number; this instrumentation
is used in proofs and is not regarded as part of program behavior.

To mediate between the two languages, an instrumented high-level language,
extending the high-level language, is given in Section 4.3. This language has facili-
ties for memory access at both location and natural-number types, with non-public
natural-number accesses always raising an instrumented error. We have a behavior-
preserving translation to the high-level language and a translation to the low-level
language which is additionally sensitive to the instrumentation.

With these tools, we present our main results for the fatal-error model in Sec-
tions 4.4 and 4.5, to the effect that high- and low-level attackers have essentially
equal power, modulo the translation from the high-level to the low-level language,
and that this translation preserves and reflects suitable notions of contextual equiv-
alence.

4.1 The high-level language

The high-level language employs the abstract notion of location. The basic types
are nat and loc. The constants are the arithmetic constants, together with error-
raising constants:

raise errorσ :σ (for every σ)

and constants for accessing and updating locations (which do not raise errors):

lloc :loc (l ∈ Loc) !loc :loc→ nat :=loc:loc× nat→ com

Of these, the arithmetic constants and the constants for accesses and updating
locations are values, and the error-raising constant is a redex. As well as the redexes
specified by the general framework, there are the following two kinds:

!locV V :=loc V

For the semantics of the high-level language we define a configuration to be a
pair (s,M) with s a store and M a well-typed term. The semantics then consists
of a transition relation and an error property:

(s,M) −→ (s′,M ′) (s,M) ↓error

The transition relation and the error property are obtained from the special case
of redexes by two rules:

(s,R) −→ (s′,M ′)

(s, E[R]) −→ (s′, E[M ′])

(s,R) ↓error
(s, E[R]) ↓error

For redexes we take the transitions to be given by:

(s, !loclloc) −→ (s, n) (if s(l) = n) (s, lloc :=loc n) −→ (s[l 7→ n], skip)
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and a rule:

R −→M ′

(s,R) −→ (s,M ′)

The error property is given by:

(s, raise errorσ) ↓error
The operational semantics is “small-step”; one can define a corresponding “big-

step” semantics by:

(s,M) =⇒ (s′, V ) ⇐⇒ (s,M)→∗ (s′, V )
(s,M) ⇓error ⇐⇒ ∃s′,M ′. (s,M)→∗ (s′,M ′) ↓error
(s,M) ⇑ ⇐⇒ ∀n. ∃s′,M ′. (s,M)→n (s′,M ′)

Note that these relations and properties are mutually exclusive. The relation
(s,M) =⇒ (s′, V ) holds if M evaluates to the value V with final store s′ when
the initial store is s; the property (s,M) ⇓error holds if the term M results in an
error when the initial store is s; the property (s,M) ⇑ holds if M diverges when
the initial store is s.

4.2 The low-level language

In the low-level language all memory accesses are made via natural numbers. Con-
sequently we take the only basic type to be nat. (A possible variant would be to
have a separate memory-address type.) As well as the arithmetic constants, the
low-level language has error-raising constants:

raise errorσ (for every σ)

and memory-access constants:

lnat :nat (l ∈ Loc) !nat :nat→ nat :=nat:nat× nat→ com

Note that loc cannot occur in σ in raise errorσ as it is not a low-level type,
and also that there are constants lnat for all the locations, not just the public ones.
We say that a term is public if every lnat that occurs in it has l ∈ PubLoc. We take
!nat and :=nat to be values, and raise errorσ and lnat (with l ∈ Loc) to be redexes.
The other redexes are those specified by the general framework, together with:

!natV V :=nat V

Configurations in the low-level operational semantics are pairs (m,M) of a mem-
ory m and a well-typed term M . The semantics is defined relative to a choice of a
memory layout: this memory layout is needed to interpret the location constants
lnat, which here function as names for addresses. It consists of a transition relation
and two error properties, all relative to the memory layout chosen:

w |= (m,M) −→ (m′,M ′)

w |= (m,M) ↓error w |= (m,M) ↓aerror
These are obtained from the special case of redexes much as above:

w |= (m,R) −→ (m′,M ′)

w |= (m,E[R]) −→ (m′, E[M ′])
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w |= (m,R) ↓error
w |= (m,E[R]) ↓error

w |= (m,R) ↓aerror
w |= (m,E[R]) ↓aerror

For the redexes, the transitions and error properties are given by the rule:

R −→M ′

w |= (m,R) −→ (m,M ′)

together with:

w |= (m, raise errorσ) ↓error w |= (m, lnat) −→ (m,w(l)) (l ∈ Loc)

and:

w |= (m, !nata) −→ (m,n) (if a ∈ {0, . . . , c} and m(a) = n)
w |= (m, !nata) ↓aerror (if a /∈ {0, . . . , c} or m(a) = ∗)

and:

w |= (m, a :=nat n) −→ (m[a 7→ n], skip) (if a ∈ {0, . . . , c} and m(a) 6= ∗)
w |= (m, a :=nat n) ↓aerror (if a /∈ {0, . . . , c} or m(a) = ∗ )

The low-level big-step operational semantics is defined by:

w |= (m,M) =⇒ (m′, V ) ⇐⇒ w |= (m,M)→∗ (m′, V )

w |= (m,M) ⇓aerror ⇐⇒ ∃m′,M ′.w |= (m,M)→∗ (m′,M ′) ↓aerror
w |= (m,M) ⇓error ⇐⇒ ∃m′,M ′.w |= (m,M)→∗ (m′,M ′) ↓error
w |= (m,M) ⇑ ⇐⇒ ∀n. ∃m′,M ′. w |= (m,M)→n (m′,M ′)

As is the case at the high-level, these relations and properties are mutually ex-
clusive. Note that if w |= (m,M) ↓aerror or w |= (m,M) ⇓aerror, and m has the form
sw, then a /∈ Ran(wp).

4.3 The instrumented high-level language

In order to relate the high-level semantics uniformly to the low-level language we
instrument it by adding some constants for accessing the store at type nat; in the
final analysis, these will be translated away. Thus, the instrumented high-level
language serves as a stepping stone, with semantics that resembles that of the
high-level language but with a syntax that includes low-level constructs.

The instrumented high-level language has the same basic types as the high-level
language and its constants are those of the high-level language together with:

lnat :nat (l ∈ PubLoc) !nat :nat→ nat :=nat:nat× nat→ com

We take lnat to be a redex (for l ∈ PubLoc), and !nat and :=nat to be values, and
classify the other constants as in the case of the high-level language. The other
redexes are those specified by the general framework, together with the following
ones:

!natV V :=nat V !locV V :=loc V

the latter two kinds being inherited from the high-level language.
For the operational semantics, configurations are defined as for the high-level

language, but we add an instrumented error property:

(s,M) ↓aerror (a ∈ N)
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We then proceed as for the high-level language, adding a rule for the instrumented
error property:

(s,R) ↓aerror
(s, E[R]) ↓aerror

redex transitions:

(s, lnat) −→ (s, wp(l)) (l ∈ PubLoc)
(s, !nata) −→ (s, s(l)) (l ∈ PubLoc, a = wp(l))
(s, a :=nat n) −→ (s[l 7→ n], skip) (l ∈ PubLoc, a = wp(l))

and instrumented error properties:

(s, !nata) ↓aerror (s, a :=nat n) ↓aerror (a /∈ Ran(wp))

For the big-step semantics one defines one more predicate:

(s,M) ⇓aerror ⇐⇒ ∃s′,M ′.(s,M)→∗ (s′,M ′) ↓aerror
Note that if (s,M) ↓aerror or (s,M) ⇓aerror then a /∈ Ran(wp). Note too that the op-

erational semantics of the instrumented high-level language is conservative over that
of the high-level language. For the small-step operational semantics, conservativ-
ity means that, for any high-level terms M and N , a transition (s,M) −→ (s′,M ′)
holds in the high-level language if, and only if, it does in the instrumented high-level
language, and similarly for properties (s,M) ↓error. Conservativity then follows
for the big-step operational semantics: for every high-level term M and value V ,
(s,M) =⇒ (s′, V ), (s,M) ⇓error, or (s,M) ⇑ hold in the high-level language if, and
only if, they do in the instrumented one.

4.3.1 Translating instrumented high-level to high-level. Every term M :σ of the
instrumented high-level language can be translated to a term M↑ :σ of the high-level
language. First we need a function to convert addresses of public locations to the
locations themselves. Let l(1), . . . , l(p) be a listing without repetitions of PubLoc,
and set ai =def wp(l

(i)), for i = 1, p. Define the high-level term G : nat → loc to
be:

λx :nat.if x = a1 then (l(1))loc
elseif x = a2 then (l(2))loc

...
elseif x = ap then (l(p))loc
else raise errorloc

with the evident understanding of the multiple conditional.
Then the translation is given by replacing the additional constants of the instru-

mented high-level language as follows:

l↑nat = wp(l) (l ∈ PubLoc)

!↑nat = λx :nat. !locGx

:=↑nat = λx :nat× nat. G(fstx) :=loc (sndx)

and leaving the other constants fixed. The idea of this translation is to raise an
error whenever the low-level term makes a non-public memory access.
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Define (s,M) ⇓uerror to hold if, and only if, either (s,M) ⇓error holds or else
(s,M) ⇓aerror does, for some a. (The ↓uerror property can be read as “uninstrumented
error”.) Then the translation is correct for the big-step semantics in the following
sense:

Proposition 4.1. Let M be a well-typed term of the instrumented high-level
language. Then:

(1 ) If (s,M) =⇒ (s′, V ) then (s,M↑) =⇒ (s′, V ↑).

(2 ) If (s,M) ⇓uerror then (s,M↑) ⇓error.
(3 ) If (s,M) ⇑ then (s,M↑) ⇑.

4.3.2 Translating instrumented high-level to low-level. We translate types σ and
terms M :σ of the instrumented high-level language to types σ↓ and terms M↓ :σ↓

of the low-level language. For types we replace all occurrences of loc by nat.
For terms we replace each occurrence of a type σ by one of σ↓, and translate the
constants as follows:

(lloc)
↓ = lnat

(!loc)
↓ = !nat

(:=loc)
↓ = :=nat

(raise errorσ)↓ = raise errorσ↓

taking the translation to act as the identity on lnat (l ∈ PubLoc), !nat and :=loc.
The translation is correct with respect to the low-level semantics, in the sense,

roughly, that M↓ simulates M . However there is a small problem in that the
translation of a location value is not a natural-number value but, rather, is a natural-
number redex. For that reason a translation of a term of a given type, e.g., lloc,
can make a transition to a term not itself a translation of a term of that type.

In order to track this correspondence between high-level and low-level terms, we
define a simulation relation M ↘w N between terms of the instrumented high-
level language and the low-level language, parameterized on a memory layout w.
We take this relation to be the least relation between terms of the instrumented
high-level language and the low-level language which includes:

c↘w c
↓ lloc ↘w w(l)

and which is closed under the other language constructs, meaning that, for example:

—if M1 ↘w N1 and M2 ↘w N2 then M1M2 ↘w N1N2, and

—if M ↘w N then λx :σ.M ↘w λx :σ↓. N .

For any term M of the instrumented high-level language we have M ↘w M↓;
further, if M :σ and M ↘w N then N :σ↓.

We have the following big-step simulation lemma:

Proposition 4.2. Suppose that M ↘w N for well-typed terms M of the instru-
mented high-level language and N of the low-level language. Then:

(1 ) If (s,M) =⇒ (s′, V ), then there is a V ′, with V ↘w V
′, such that

w |= (sw, N) =⇒ (s′w, V
′).

(2 ) If (s,M) ⇓error then w |= (sw, N) ⇓error.
ACM Journal Name, Vol. V, No. N, Month 20YY.



On Protection by Layout Randomization · 17

(3 ) If (s,M) ⇓aerror then, if a /∈ Ran(w), w |= (sw, N) ⇓aerror.
(4 ) If (s,M) ⇑ then, for any w, w |= (sw, N) ⇑.

The third case is particularly important as it enables one to use the instrumented
high-level language to track memory accesses in the low-level language largely in-
dependently of memory layout.

4.4 High- and low-level attackers

We are now in a position to formulate our theorems for the fatal-error case. The
general idea is to show that a program (taken to be a closed term) executed in
the abstract memory model is equally secure if executed in the concrete one. In
terms of our typed programming language, one desires that a high-level term M :σ
is as secure as its low-level counterpart M↓ : σ↓. It turns out that this holds if σ
is loc-free, i.e., if σ↓ = σ; of course this restriction refers only to the interface of
M : locations can still be used internally, that is, subterms of M can have types
with occurrences of loc. (Our security result does not hold more generally—see
the discussion in Section 2.)

In this section, we study the relation between high- and low-level attackers, rep-
resented as contexts. In Section 4.5, we consider equivalences. Say that an in-
strumented high-level term (low-level term) is public if it contains no occurrence
of any lloc (respectively lnat) with l ∈ PriLoc. One desires that attackers gain no
advantage by attacking at low-level rather than at high-level. They certainly lose
none, as, for any public high-level term C : σ → bool, the low-level term C↓ is of
equal attacking power, as the following proposition establishes:

Proposition 4.3. Let M : σ be a high-level term and let C : σ → bool be a
public high-level term. Then:

(1 ) If (s, CM) =⇒ (s′, V ) then, for any w, w |= (sw, C
↓M↓) =⇒ (s′w, V ).

(2 ) If (s, CM) ⇓error then, for any w, w |= (sw, C
↓M↓) ⇓error.

(3 ) If (s, CM) ⇑ then, for any w, w |= (sw, C
↓M↓) ⇑.

These exhaust all possibilities for the big-step semantics of CM .

We restate this proposition in terms of a convenient notion of evaluation function.
For any store s and term M :σ of the instrumented high-level language, and so also
of the high-level language, define their behavior Eval(M, s) by:

Eval(M, s) =

 (s′, V ) if (s,M) =⇒ (s′, V )
error if (s,M) ⇓uerror
Ω if (s,M) ⇑

Here error is a token indicating the raising of an error (and Ω is the divergent
program chosen above).

Similarly, for any low-level term M : σ, memory m, and layout w define their
behavior Evalw(M,m) by:

Evalw(M,m) =

 (m′, V ) if w |= (m,M) =⇒ (m′, V )
error if w |= (m,M) ⇓uerror
Ω if w |= (m,M) ⇑
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where w |= (m,A) ⇓uerror is defined to hold if, and only if, either w |= (m,A) ⇓error
holds or w |= (m,A) ⇓aerror does, for some a.

We write xw to mean (sw,M) when x is (s,M) and x when x is error or Ω.
Proposition 4.3 is then equivalent to the following proposition:

Proposition 4.4. Let M : σ be a high-level term and let C : σ → bool be a
public high-level term. Then:

Eval(CM, s)w = Evalw(C↓M↓, sw)

for any store s and memory layout w.

For a converse, suppose now that C : σ → bool is a public low-level term (so,
as above, σ is loc-free since low-level types do not contain loc). Then C is also
a public instrumented high-level term, and we would like to show that the public
high-level term C↑ :σ → bool is an attacker of equal power. This will be true in a
probabilistic sense:

Theorem 4.5. Suppose that M : σ is a high-level term and C : σ → bool is a
public low-level term. Then one of the following three mutually exclusive statements
holds for any store s:

—∃s′, V. ∀w.w |= (sw, CM
↓) =⇒ (s′w, V ) and (s, C↑M) =⇒ (s′, V ),

—P(w |= (sw, CM
↓) ⇓uerror) ≥ δ1 and (s, C↑M) ⇓error, or

—∀w.w |= (sw, CM
↓) ⇑ and (s, C↑M) ⇑.

The probability bound δ1 arises because a non-public low-level memory access is
made independently of the layout.

Using the evaluation function we obtain a weaker but more memorable statement:

Corollary 4.6. Suppose that M :σ is a high-level term and C :σ → bool is a
public low-level term. Then, for any store s, we have:

P(Eval(C↑M, s)w = Evalw(CM↓, sw)) ≥ δ1
Note that both Theorem 4.5 and Corollary 4.6 follow from the special case of the
uniform distribution.

4.5 Equivalences

There is a natural relation of public (contextual) operational (high-level) equivalence,
refining the standard relation of operational equivalence. It is defined by setting,
for any two high-level terms, M , N of type σ:

M ≈h,p N ⇐⇒ ∀C :σ → bool. CM ∼h,p CN

where the quantification over C ranges over public high-level terms, and where, for
high-level terms M0, N0 :bool, we define:

M0 ∼h,p N0 ⇐⇒ ∀s.Eval(M0, s) =p Eval(N0, s)

where x =p y holds if, and only if, either x and y have the forms (s, V ) and (s′, V ′),
and s�PubLoc = s′ �PubLoc and V = V ′, or else x = y = error, or else x = y = Ω.
(As usual, if f is a function and S is a set then f �S is the restriction of f to S.)

At low-level, for any low-level terms M0, N0 :bool say that M0 ∼l,p N0 holds if,
and only if, for every store s at least one of the following three possibilities holds:
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— ∃s′, s′′, V. ∀w.w |= (sw,M0) =⇒ (s′w, V ) and w |= (sw, N0) =⇒ (s′′w, V ) and
s′ �PubLoc = s′′ �PubLoc,

— P(w |= (sw,M0) ⇓uerror) ≥ δ1 and P(w |= (sw, N0) ⇓uerror) ≥ δ1, or

— ∀w.w |= (sw,M0) ⇑ and w |= (sw, N0) ⇑.

This relation is a partial equivalence. (Reflexivity fails, in general, as a low-level
term containing a secret location constant can branch on the address of that location
in the memory.) If δ1 > 0 then the three possibilities are mutually exclusive; also,
if the first of them holds, then s′, s′′ and V are uniquely determined. As may be
expected, the relation is most restrictive in the case of the uniform distribution.

Now we define public (contextual) operational (low-level) partial equivalence, by
putting, for low-level terms M , N of type σ:

M ≈l,p N ⇐⇒ ∀C :σ → bool. CM ∼l,p CN

where the C are restricted to be public low-level terms.

Theorem 4.7. Let M,N : σ be high-level terms. Then, if σ is loc-free and
M ≈h,p N , then M↓ ≈l,p N↓. The converse holds for all σ, if δ1 > 0.

5. THE RECOVERABLE-ERROR MODEL

Much like Section 4, this section defines a high-level language and a low-level lan-
guage, and relates the security properties implied by the semantics of the former to
those obtained from layout randomization in the latter. Here, however, unlike in
Section 4, erroneous low-level memory accesses give rise to recoverable errors, and
a local recovery mechanism is available for handling such errors. Moreover, there
are no high-level errors.

Sections 5.1 and 5.2 present the high-level language and the low-level language,
respectively. As in Section 4, we employ an instrumented high-level language in or-
der to mediate between these two languages. This language, defined in Section 5.3,
has facilities for memory access at both location and natural-number types, with an
instrumented operational semantics that records natural-number memory accesses.

With these tools, we present our main results for the recoverable-error model in
Sections 5.4 and 5.5, to the effect that high- and low-level attackers have essentially
equal power, modulo the translation from the high-level to the low-level language,
and that this translation preserves and reflects suitable notions of contextual pub-
lic equivalence. Thus, our main results are analogous to those for the fatal-error
model. However, the recoverable-error model requires a more delicate analysis of
probabilities, and also upper bounds on numbers of memory accesses.

5.1 The high-level language

The high-level language employs the abstract notion of location. The basic types
are nat and loc, and the constants are the arithmetic constants, together with
constants for accessing and updating locations:

lloc :loc (l ∈ Loc) !loc :loc→ nat :=loc:loc× nat→ com

Note that, unlike in the fatal-error case, there is no constant for raising an error.
All the constants are values, and as well as the redexes specified by the general
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framework, there are the following two:

!locV V :=loc V

We define a configuration to be a pair (s,M) with s a store and M a well-typed
term. The semantics of the high-level language then consists of a transition relation:
(s,M) −→ (s′,M ′) which is obtained from the special case of redexes:

(s,R) −→ (s′,M ′)

(s, E[R]) −→ (s′, E[M ′])

For redexes we take the transitions to be given by:

(s, !loclloc) −→ (s, n) (s(l) = n)
(s, lloc :=loc n) −→ (s[l 7→ n], skip)

and the rule:

R −→M ′

(s,R) −→ (s,M ′)

The big-step semantics is defined by:

(s,M) =⇒ (s′, V ) ⇐⇒ (s,M)→∗ (s′, V )
(s,M) ⇑ ⇐⇒ ∀n. ∃s′,M ′. (s,M)→n (s′,M ′)

The relation and property are mutually exclusive.

5.2 The low-level language

In the low-level language all memory accesses are made via natural numbers, just as
in the fatal-error case. Consequently we take the only basic type to be nat. As well
as the arithmetic constants, the low-level language has memory-access constants:

lnat :nat (l ∈ Loc) !nat :nat→ nate :=nat:nat× nat→ come

where, for any type σ, we write σe for σ + unit. Note that there are constants for
all the locations, not just the public ones. The type σe is used to model recover-
able errors by values of the form inr ∗ : σe, which we write as error. The cases
mechanism for sum types makes it possible to write programs which can handle
such errors. For instance, an attacker may run a program that explores a part of
memory looking for an address that holds a natural number, such as the programs:

cases !nat0 inlx :nat. x inr y :unit. 57

and

cases !nat0 inlx :nat. x inr y :unit. cases !nat1 inl z :nat. z inru :unit. 57

which return the first natural number that they find in memory, and simply return
the constant 57 in case of failure.

We take !nat and :=nat to be values, and lnat to be a redex, for each l ∈ Loc. The
other redexes are those specified by the general framework, together with:

!natV V :=nat V

Configurations in the low-level operational semantics are pairs (m,M) of a mem-
ory m and a well-typed term M . The semantics is defined relative to a choice of
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a memory layout. It consists of a transition relation, together with a family of
transition relations parameterized by memory addresses a ∈ N:

w |= (m,M) −→ (m′,M ′)

w |= (m,M)
a−→ (m′,M ′) (a ∈ N)

The family of transition relations is used to keep track of erroneous memory ac-
cesses. These are obtained from the special case of redexes in the usual way:

w |= (m,R) −→ (m′,M ′)

w |= (m,E[R]) −→ (m′, E[M ′])

w |= (m,R)
a−→ (m′,M ′)

w |= (m,E[R])
a−→ (m′, E[M ′])

(a ∈ N)

For the redexes we take the transition relations to be given by the rule:

R −→M ′

w |= (m,R) −→ (m,M ′)

together with:

w |= (m, lnat) −→ (m,w(l)) (l ∈ Loc)

and:

w |= (m, !nata) −→ (m, inln) (if a ∈ {0, . . . , c} and m(a) = n)

w |= (m, !nata)
a−→ (m, error) (if a /∈ {0, . . . , c} or m(a) = ∗)

and:

w |= (m, a :=nat n) −→ (m[a 7→ n], inl skip) (if a ∈ {0, . . . , c} and m(a) 6= ∗)
w |= (m, a :=nat n)

a−→ (m, error) (if a /∈ {0, . . . , c} or m(a) = ∗ )

Notice that when an erroneous access is made then a non-fatal error arises.
For the low-level big-step semantics one needs to keep track of sets of erroneous

memory accesses, not just single ones. Accordingly, for A ⊆ N, define

w |= (m,M)
A−→ (m′,M ′)

to hold if either A = ∅ and w |= (m,M) −→ (m′,M ′), or else A = {a} and

w |= (m,M)
a−→ (m′,M ′). Then define

w |= (m,M)
A

=⇒ (m′,M ′)

to hold if there is a sequence:

(m,M) = (m0,M0), . . . , (mn,Mn) = (m′,M ′)

and sets Ai ⊆ N, for i = 1, n, such that

w |= (mi−1,Mi−1)
Ai−→ (mi,Mi)

for i = 1, n, and A =
⋃n
i=1Ai. Finally, define (m,M) ⇑A to hold if there is an

infinite sequence:

(m,M) = (m0,M0), . . . , (mi,Mi), . . .
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and sets Ai ⊆ N, for i ≥ 1, such that

w |= (mi−1,Mi−1)
Ai−→ (mi,Mi)

for i ≥ 1, and A =
⋃∞
i=1Ai.

5.3 The instrumented high-level language

In order to relate the high-level semantics uniformly to the low-level language we
instrument it by adding some constants for accessing the store at type nat. In
the instrumented high-level language, accesses to the natural-number addresses of
private locations will simply result in errors. In contrast, these accesses may work
in the low-level language.

The instrumented high-level language has the same basic types as the high-level
language and its constants are those of the high-level language together with:

lnat :nat (l ∈ PubLoc) !nat :nat→ nate :=nat:nat× nat→ come

We take lnat to be a redex (for l ∈ PubLoc), and !nat and :=nat to be values, and
classify the other constants as in the case of the high-level language. The other
redexes are those of the general framework, together with the following ones:

!natV V :=nat V !locV V :=loc V

the latter two kinds being inherited from the high-level language.
For the operational semantics, configurations are defined as for the high-level

language, but we add an instrumented transition relation:

(s,M)
a−→ (s′,M ′) (a ∈ N)

We then proceed as for the high-level language, adding a rule for the instrumented
transition relation:

(s,R)
a−→ (s′,M ′)

(s, E[R])
a−→ (s′, E[M ′])

together with:

(s, lnat) −→ (s, wp(l)) (l ∈ PubLoc)

and:

(s, !nata) −→ (s, inl s(l)) (l ∈ PubLoc, a = wp(l))
(s, a :=nat n) −→ (s[l 7→ n], inl skip) (l ∈ PubLoc, a = wp(l))

(s, !nata)
a−→ (s, error) (a /∈ Ran(wp))

(s, a :=nat n)
a−→ (s, error) (a /∈ Ran(wp))

For the big-step semantics one again needs to keep track of sets of non-public

memory accesses. So define (s,M)
A−→ (s′,M ′), where A ⊆ N, to hold if either

A = ∅ and (s,M) −→ (s′,M ′)

or else

A = {a} and (s,M)
a−→ (s′,M ′)
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Then define (s,M)
A

=⇒ (s′,M ′), where A ⊆ N, to hold if there is a sequence:

(s,M) = (s0,M0)
A1−→ . . .

An−→ (sn,Mn) = (s′,M ′)

with n ≥ 0, such that A =
⋃n
i=1Ai and define (s,M) ⇑A, where A ⊆ N, to hold if

there is an infinite sequence:

(s,M) = (s0,M0)
A1−→ . . .

Ai−→ (si,Mi)
Ai+1−→ . . .

such that A =
⋃∞
i=1Ai.

Note that the small-step semantics of the instrumented high-level language is
a conservative extension of that of the high-level language. That is, a transition
(s,M) −→ (s′,M ′) holds in the high-level language if, and only if, it does in the
instrumented high-level language. For the big-step semantics, we have, for any
terms M , M ′ of the high-level language:

(s,M) =⇒ (s′,M ′) ⇐⇒ (s,M)
∅

=⇒ (s′,M ′)
(s,M) ⇑ ⇐⇒ (s,M) ⇑∅

5.3.1 Translating instrumented high-level to high-level. Every term M :σ of the
instrumented high-level language can be translated to a term M↑ :σ of the high-level
language. First, as in the fatal-error case, we need a function to convert addresses
of public locations to the locations themselves. Define the high-level term

Gσ :nat→ (loc→ σ)→ (unit→ σ)→ σ

to be:

λx :nat. λf :loc→ σ. λg :unit→ σ.
if x = a1 thenf((l(1))loc)
elseif x = a2 thenf((l(2))loc)

...
elseif x = ap thenf((l(p))loc)
else g(∗)

where we make use of the enumeration of PubLoc and the definition of the ai given
in Section 4.3.1. The term Gσ has as arguments a number x and two continuations;
the first is used if x is the layout of a public location and the second otherwise.

The translation replaces the additional constants as follows, leaving the others
fixed:

l↑nat = wp(l) (l ∈ PubLoc)

!↑nat = λx :nat. Gx(λy :loc. inl (!locy))(λy :unit. error)

:=↑nat = λx :nat× nat. G(fstx)(λy :loc. inl (y :=loc sndx))(λy :unit. error)

The idea of the translation is to simulate non-public memory accesses by recoverable
errors. It is correct in the following sense:

Proposition 5.1. Let M be a well-typed term of the instrumented high-level
language. Then:

(1 ) If M is a value then so is M↑.
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(2 ) If (s,M)
A

=⇒ (s′, V ) then (s,M↑) =⇒ (s′, V ↑).

(3 ) If (s,M) ⇑A then (s,M↑) ⇑.

A small variation on this translation will also prove useful. For any a ∈ N define a
translation M↑a by the following alternative replacement of the additional constants.

(lnat)
↑
a = (lnat)

↑

(!nat)
↑
a = λx :nat. ifx = a then Ω else !↑natx

(:=nat)
↑
a = λx :nat× nat. if fstx = a then Ω else :=↑nat x

Proposition 5.2. Let M be a well-typed term of the instrumented high-level
language. Then, if a /∈ Ran(wp):

(1 ) If M is a value then so is M↑a .

(2 ) If (s,M)
A

=⇒ (s′, V ) then (s,M↑a ) =⇒ (s′, V ↑a ), if a /∈ A.

(3 ) If (s,M)
A

=⇒ (s′, V ) then (s,M↑a ) ⇑, if a ∈ A.

(4 ) If (s,M) ⇑A then (s,M↑a ) ⇑.

5.3.2 Translating instrumented high-level to low-level. We can translate types
σ and terms M :σ of the instrumented high-level language to types σ↓ and terms
M↓ : σ↓ of the low-level language. We obtain the translation σ↓ of a type σ by
replacing all occurrences of loc by nat. For terms we replace each occurrence of a
type σ by one of σ↓ and we replace the missing constants as follows:

(lloc)
↓ = lnat

(!loc)
↓ = λx :nat. cases !natx inl y. y inr z. 0

(:=loc)
↓ = λx :nat× nat. cases :=nat x inl y. y inr z. skip

and take the translation to act as the identity on the other constants, viz.: lnat
(l ∈ PubLoc), !nat and :=loc.

The translation is correct with respect to the low-level semantics, in the sense,
roughly, that M↓ simulates M . As above we employ a simulation relation M ↘w N
between terms of the instrumented high-level language and terms of the low-level
language, parameterized on a memory layout w.

We take this relation to be the least relation between terms of the instrumented
high-level language and terms of the the low-level language which includes:

c↘w c
↓ lloc ↘w w(l)

and which is closed under the other language constructs. For any term M of
the instrumented high-level language we have M ↘w M↓; further, if M : σ and
M ↘w N then N :σ↓.

We have a small-step simulation lemma:

Lemma 5.3. Suppose that M ↘w N for well-typed terms M of the instrumented
high-level language and N of the low-level language. Then:

(1 ) If M is a value, then there is a V ′, with M ↘w V ′, such that, for any m,
w |= (m,N) −→∗ (m,V ′).

(2 ) If (s,M) −→ (s′,M ′), then there is an N ′, with M ′ ↘w N ′, such that
w |= (sw, N) −→∗ (s′w, N

′).
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(3 ) If (s,M)
a−→ (s′,M ′), and a is not in Ran(w)\Ran(wp), then, for some N ′

such that M ′ ↘w N
′, we have w |= (sw, N)

a−→ (s′w, N
′).

The third case is particularly important as it enables one to find the memory
access largely independently of the memory layout. In terms of big-step relations
and properties we have:

Proposition 5.4. Suppose that M ↘w N for well-typed terms M of the instru-
mented high-level language and N of the low-level language. Then:

(1 ) If (s,M)
A

=⇒ (s′, V ), then, if w#A, there is a V ′ with V ↘w V ′ such that

w |= (sw, N)
A

=⇒ (s′w, V
′).

(2 ) If (s,M) ⇑A then, if w#A, w |= (sw, N) ⇑A.

5.4 High- and low-level attackers

We are now in a position to formulate our theorems for the recoverable-error case.
Much as in the fatal-error case, we wish to show that a high-level term M :σ is as
secure as its low-level counterpart M↓ :σ↓. This holds under the assumption that
σ is loc-free, i.e., that σ↓ = σ. (As in the fatal-error case, it does not hold more
generally.)

Say that an instrumented high-level term (low-level term) is public if it contains
no occurrence of any lloc (respectively lnat) with l ∈ PriLoc. We would again like
to show that attackers gain no advantage by attacking at low-level rather than at
high-level. As above, they certainly lose none since, for any public high-level term
C : σ → bool, the low-level term C↓ is of equal attacking power. The following
proposition, which relates C and C↓, follows immediately from Proposition 5.4:

Proposition 5.5. Let M : σ be a high-level term and let C : σ → bool be a
public high-level term. Then:

(1 ) If (s, CM) =⇒ (s′, V ) then, for any w, w |= (sw, C
↓M↓)

∅
=⇒ (s′w, V ).

(2 ) If (s, CM) ⇑ then, for any w, w |= (sw, C
↓M↓) ⇑∅.

These exhaust all the possibilities for the big-step semantics of CM .

As above, we restate this using evaluation functions. For any store s and term
M :σ of the instrumented high-level language (and so also any term of the high-level
language) define their behavior Eval(M, s) by:

Eval(M, s) =

{
(s′, V ) if (s,M)

A
=⇒ (s′, V )

Ω if (s,M) ⇑A

Note that we forget the A, regarding that as part of the instrumentation rather
than the actual behavior. However, it also proves useful to define Acc(M, s) to be

A∩{0, . . . , c} when (s,M)
A

=⇒ (s′, V ) or (s,M) ⇑A; Acc(M, s) records the accesses
made to non-public addresses.

Similarly, for any low-level term M : σ, memory m, and layout w define their
behavior Evalw(M,m) by:

Evalw(M,m) =

{
(m′, V ) if w |= (m,M)

A
=⇒ (m′, V )

Ω if w |= (m,M) ⇑A
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It also proves useful to define Accw(M,m) to be (A ∩ {0, . . . , c})\Ran(wp) when

w |= (m,M)
A

=⇒ (m′, V ) or w |= (m,M) ⇑A; |Accw(M,m)|measures the number of
“relevant” memory accesses made by M , starting from m, meaning those erroneous
accesses within memory bounds.

Analogously to Proposition 4.4, Corollary 5.6 expresses that for any public high-
level term C :σ → bool, the low-level term C↓ is of equal attacking power, as stated
above. We write xw to mean (sw,M) when x is (s,M) and Ω when x is Ω.

Corollary 5.6. Let M :σ be a high-level term and let C :σ → bool be a public
high-level term. Then:

Eval(CM, s)w = Evalw(C↓M↓, sw)

for any s and w.

For a converse, suppose now that C : σ → bool is a public low-level term (so
σ is loc-free). Then C is also a public instrumented high-level term of the same
type, and we would like to show that the public high-level term C↑ : σ → bool is
an attacker of equal power. This will be true in a probabilistic sense.

The following theorem gives a lower bound on the probability that high- and
low-level behaviour (for C↑M and CM↓, respectively) coincide, where the layout
w is allowed to vary according to its distribution and the store s is arbitrary. The
theorem requires an bound on the number b of erroneous accesses: without that an
attacker could explore all of memory. For small b, the high- and low-level semantics
coincide the most, with probability close to 1 when c is sufficiently large and the
probability distribution over the layouts is sufficiently uniform.

Theorem 5.7. Let M :σ be a high-level term and let C :σ → bool be a public
low-level term. Then, for any store s, and 0 ≤ b ≤ c − |Loc|, one of the following
holds:

(1 ) P(|Accw(CM↓, sw)| > b) ≥ δb+1, or

(2 ) P(|Accw(CM↓, sw)| ≤ b and Eval(C↑M, s)w = Evalw(CM↓, sw)) ≥ δb.

These alternatives are mutually exclusive if δb+1 > 1/2.

The first of the alternatives of Theorem 5.7 holds if |Acc(CM, s)| > b and the
second if |Acc(CM, s)| ≤ b. In the special case b = 0, the theorem implies that, for
all s,

—either P(|Accw(CM↓, sw)| > 0) ≥ δ1 or,

—for all w, |Accw(CM↓, sw)| = 0 and Eval(C↑M, s)w = Evalw(CM↓, sw).

In other words, either an erroneous access to memory is probable, with probability
at least δ1, or there is no such access and the high- and low-level semantics coincide.
Note too that the theorem follows from the special case of the uniform distribution.

It is natural to wonder if the probability bound δb+1 could be improved to δb in
Theorem 5.7. The reason for the δb+1 bound is that |Accw(CM↓, sw)| counts only
erroneous accesses; what seems needed for a δb bound is a way of counting attacker
guesses, including successful ones.
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5.5 Equivalences

We define a relation of (high-level) public (contextual) operational equivalence, refin-
ing the standard relation of operational equivalence. For any two high-level terms,
M , N of type σ, set:

M ≈h,p N ⇐⇒ ∀C :σ → bool. CM ∼h,p CN

where the quantification over C ranges over public high-level terms, and where, for
high-level terms M0, N0 :bool, we define:

M0 ∼h,p N0 ⇐⇒ ∀s.Eval(M0, s) =p Eval(N0, s)

where the relation x =p y holds if, and only if, either x and y have the forms (s, V )
and (s′, V ′), and s�PubLoc = s′ �PubLoc and V = V ′, or else x = y = Ω.

In order to define a corresponding low-level relation, we first define a modified
version of the low-level evaluation function that yields nontermination if there are
more than b erroneous accesses. For any b ≥ 0, set:

Evalbw(M,m) =

{
Evalw(M,m) if |Accw(M,m)| ≤ b
Ω otherwise

Next, for any b such that 0 ≤ b ≤ c − |Loc| and δb+1 > 1/2 we define a relation
∼bl,p between low-level terms M0, N0 : bool, by taking M0 ∼bl,p N0 to hold if, and
only if, for every store s one of the following (mutually exclusive) alternatives holds:

— for some s′ �PubLoc = s′′ �PubLoc and V ,

P(Evalbw(M0, sw) = (s′w, V )) ≥ δb and P(Evalbw(N0, sw) = (s′′w, V )) ≥ δb
— P(Evalbw(M0, sw) = Ω) ≥ δb+1 and P(Evalbw(N0, sw) = Ω) ≥ δb+1

Note that we quantify over memories that are layouts of stores, not all memories.
This relation is a partial equivalence: symmetry is evident, and transitivity follows
from the assumption that δb+1 > 1/2, which ensures that the alternatives are
mutually exclusive, and that, if the first alternative holds then s′, s′′ and V are
uniquely determined. (Reflexivity fails, in general, for the same reason as in the
fatal-error case.) As may be expected, the relation is most restrictive in the case
of the uniform distribution.

Now we define (low-level) public (contextual) operational partial equivalence, by
setting, for any two low-level terms M , N of type σ:

M ≈bl,p N ⇐⇒ ∀C :σ → bool. CM ∼bl,p CN

where the contexts C are restricted to be public low-level terms.
The following theorem says, roughly, that two programs are publicly equivalent

in the high-level language if, and only if, their translations are publicly equivalent in
the low-level language, with the caveat that the low-level equivalence is probabilistic
and conditioned on a bound b on the number of erroneous accesses.

Theorem 5.8. Let M,N :σ be high-level terms. Then, assuming that σ is loc-
free, 0 ≤ b ≤ c− |Loc|, and δb+1 > 1/2, we have:

M ≈h,p N iff M↓ ≈bl,p N↓
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It would be interesting to look for stronger computational-soundness results. For
example, one might consider changing ∼bl,p so as not to conflate nontermination
with too many erroneous accesses.

6. CONCLUSION

Given the abundance of disparate techniques for protection, it is useful to compare
those techniques. Our results relate layout randomization to the static guarantees
of the syntax of a high-level language in which the programs that represent attackers
can neither mention private locations directly nor access them via natural-number
addresses. Our work follows that of Pucella and Schneider [2006], which related
obfuscation and type systems. However, their theorems do not explicitly mention
resource bounds or probabilities, and focus on integrity properties. These theorems
basically pertain to the protection—by obfuscation or typing—of a program from
a potentially dangerous input. We consider more general attackers, represented by
arbitrary contexts, and also treat program equivalences, capturing not only integrity
but also secrecy properties. Despite these substantial differences, we share their goal
of understanding randomization in the context of programming languages and their
implementations.

Going further, one could study layout randomization for richer languages. Those
languages may include richer type systems, concurrency, and dynamic allocation,
in particular. For instance, they may allow the passing of locations (see Section 2),
much like security protocols pass communication channels and cryptographic keys.
Thus, despite the differences mentioned in the introduction, methods currently
being developed in the study of security protocols could also be helpful in the
study of layout randomization.

In another direction, one could explore variants and extensions—for instance,
with replication (e.g., [Berger and Zorn 2006])— as well as other forms of random-
ization. For instance, our methods seem to apply to techniques that rename opcodes
randomly. It may well also be possible to treat data structures or objects. To treat
a fixed collection of arrays of given lengths, for example, one might proceed along
the following lines. The memory model would specify the usual contiguous array
layouts, and there would then be an analogue of the uniform distribution which
assigns equal probabilities to all layouts. One would add a type array for arrays
and facilities for handling them to the high-level languages. The low-level languages
would remain as they are, except with the addition of constants of type nat for the
arrays. Finally, the translations from the high-level to the low-level languages would
amount to the usual implementation of the array operations, translating array to
nat. We conjecture that analogues of all the above results would go through, except
that it is not clear whether the uniform array layout distribution is optimal.

In such further advances, it may be tempting to develop and analyze sophisticated
implementations that yield the strongest possible guarantees. Again, the analogy
with security protocols may prove helpful. Nevertheless, those implementations
would be of only limited interest unless they correspond to methods that could
plausibly be used in actual systems. For instance, in models where the attacker
may corrupt all shared memory (not common in security protocols), it may be
futile to consider protection approaches that rely on frequent, extensive memory
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checks. Such difficulties should however encourage the development of programming
models and constructs for which security guarantees can be realistically obtained.
A promising step in this direction is the identification of the memory locations that
are critical to security and require protection [Pattabiraman et al. 2008].
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Fournet, Sergio Maffeis, Vaughan Pratt, Fred Schneider, and Ben Zorn for their
questions, comments, and encouragement.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/

journals/jn/20YY-V-N/p1-URLend.

REFERENCES

Abadi, M. 1998. Protection in programming-language translations. In Proceedings of the 25th

International Colloquium on Automata, Languages and Programming, K. G. Larsen, S. Skyum,

and G. Winskel, Eds. Lecture Notes in Computer Science, vol. 1443. Springer, 868–883.

Abadi, M. 1999. Secrecy by typing in security protocols. Journal of the ACM 46, 5, 749–786.

Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. 2009. Control-flow integrity: prin-
ciples, implementations, and applications. ACM Transactions on Information and System

Security 13, 1, 1–40.

Abadi, M. and Rogaway, P. 2002. Reconciling two views of cryptography (The computational
soundness of formal encryption). Journal of Cryptology 15, 2, 103–127.

Anonymous. 2002. Bypassing PaX ASLR protection. Phrack 11, 59.

Backes, M., Hofheinz, D., and Unruh, D. 2009. Cosp: a general framework for computational

soundness proofs. In 16th ACM Conference on Computer and Communications Security. 66–

78.

Barrantes, E. G., Ackley, D. H., Forrest, S., and Stefanović, D. 2005. Randomized in-
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Appendix

We present the proofs of the main theorems and preliminary results needed for
those proofs. We often omit or abbreviate proofs when they are routine.

A. THE FATAL-ERROR MODEL

A.1 The high-level language

There is a small-step subject-reduction theorem for the high-level semantics:

Lemma A.1. For any configuration (s,M), with M :σ, one of the following three
mutually exclusive statements holds:

—M is a value,

—(s,M) −→ (s′,M ′) for some uniquely determined s′ and M ′ :σ, or

—(s,M) ↓error.

This lemma yields a big-step subject-reduction theorem:

Lemma A.2. For any configuration (s,M), with M :σ, one of the following three
mutually exclusive statements holds:

—(s,M) =⇒ (s′, V ) for a unique s′ and V :σ,

—(s,M) ⇓error, or

—(s,M) ⇑.
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A.2 The low-level language

The small-step subject-reduction theorem for the low-level language is as follows:

Lemma A.3. For any memory layout w and configuration (m,M), with M : σ,
one of the following four mutually exclusive statements holds:

— M is a value,

— w |= (m,M) −→ (m′,M ′) for some uniquely determined m′ and M ′ :σ, and
if m has the form sw, so does m′,

— w |= (m,M) ↓error, or

— w |= (m,M) ↓aerror for some uniquely determined a.

The corresponding big-step subject-reduction theorem is:

Lemma A.4. For any memory layout w and configuration (m,M), with M : σ,
one of the following four mutually exclusive statements holds:

— w |= (m,M) =⇒ (m′, V ) for a unique m′ and V : σ, and if m has the form
sw, so does m′,

— w |= (m,M) ⇓error,
— w |= (m,M) ⇓aerror, for some uniquely determined a, or

— w |= (m,M) ⇑.

A.3 The instrumented high-level language

For the analogue to Lemma A.1, one adds one more possibility to the list of mutually
exclusive possibilities:

—(s,M) ↓aerror for some uniquely determined a.

and, for the analogue of Lemma A.2 one adds the following possibility to the list
of mutually exclusive possibilities:

—(s,M) ⇓aerror for some unique a.

A.3.1 Translating instrumented high-level to high-level. The translation is cor-
rect for the small-step semantics, in the following sense (where (s,M) ↓uerror holds
if, and only if, either (s,M) ↓error or (s,M) ↓aerror, for some a):

Lemma A.5. Let M be a well-typed term of the instrumented high-level language.
Then:

(1 ) If M is a value then so is M↑.

(2 ) If (s,M) −→ (s′,M ′) then (s,M↑) −→∗ (s′, (M ′)↑).

(3 ) If (s,M) ↓uerror then (s,M↑) −→∗ (s,M ′) ↓error, for some M ′.

Proof. Part 1 follows by inspection. For part 2, one shows first that, for any
redex R, if (s,R) −→ (s′,M ′) then (s,R↑) −→∗ (s′, (M ′)↑). One shows next
that, if E is an evaluation context, then E↑ is too (taking [−]↑ = [−], etc.) and
E[M ]↑ = E↑[M↑]. Part 2 then follows. For part 3, one shows first that, for any
redex R, if (s,R) ↓uerror then (s,R↑) −→∗ (s,M ′) ↓error, for some M ′, and then
applies the previous remark on evaluation contexts.

Proposition 4.1, the corresponding translation-correctness result for the big-step
semantics, is an immediate consequence of this lemma.
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A.3.2 Translating instrumented high-level to low-level. A series of lemmas leads
to the main simulation results. The first lemma concerns values.

Lemma A.6. Suppose that V ↘w N for a well-typed value V . Then for some
V ′ with V ↘w V

′ we have, for any m, w |= (m,N) −→∗ (m,V ′).

The second lemma concerns redexes.

Lemma A.7. Suppose that R↘w N and that (s,R) −→ (s′,M ′). Then for some
N ′ with M ′ ↘w N

′ we have w |= (sw, N) −→∗ (s′w, N
′).

Proof. The proof is straightforward. The case where R −→ M ′ makes use of
Lemma A.6. For example, suppose that R is fst (V, V ′). Then N has the form
fst (N1, N

′
1) where V ↘w N1 and V ′ ↘w N

′
1. Applying Lemma A.6 twice, we then

have that:

(sw, fst (N1, N
′
1)) −→ (sw, fst (V1, V

′
1)) −→ (sw, V1)

for some values V1, V ′1 with V ↘w V1 and V ′ ↘w V
′
1 .

The third lemma concerns evaluation contexts. The simulation relation is ex-
tended in an evident way to evaluation contexts, taking, [−] ↘w [−], etc. One
easily sees that if E ↘w E

′ and M ↘w N then E[M ]↘w E
′[N ].

Lemma A.8. Suppose that E[R] ↘w N . Then N has the form E′[N1] where
E ↘w E

′ and R↘w N1.

We now have a small-step simulation lemma:

Lemma A.9. Suppose that M ↘w N for a well-typed terms M of the instru-
mented high-level language and N of the low-level language. Then:

(1 ) If M is a value, then there is a V ′, with M ↘w V ′, such that for any m,
w |= (m,N) −→∗ (m,V ′).

(2 ) If (s,M) −→ (s′,M ′), then there is an N ′, with M ′ ↘w N ′, such that
w |= (sw, N) −→∗ (s′w, N

′).

(3 ) If (s,M) ↓error then w |= (sw, N) ↓error.
(4 ) If (s,M) ↓aerror then, if a /∈ Ran(w), w |= (sw, N) ↓aerror.

Proof. The first part is an immediate consequence of Lemma A.6, as is the
second part of Lemmas A.7 and A.8. For the third and fourth parts, one verifies
the assertions when M is a redex, and then applies Lemma A.8.

Proposition 4.2, the corresponding big-step simulation result, is an immediate
consequence of this lemma.

A.4 High and low-level attackers.

Proof of Theorem 4.3. That these are all the possibilities is simply because
CM is a high-level term. That the statements concerning these possibilities hold is
an immediate consequence of Proposition 4.2. (Note that, for any value V :bool, if
V ↘w V

′ then V ′ = V .)
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Proof of Theorem 4.5. First note that (CM)↑ = C↑M↑ = C↑M (as M↑ =
M) and also that (CM)↓ = C↓M↓ = CM↓ (as C↓ = C). The proof now proceeds
by considering the big-step behavior of (s, CM). There are four mutually exclusive
possibilities: we consider each of them in turn.

(1) In the first case we have (s, CM) =⇒ (s′, V ) for some s′ and V . We then have
(s, C↑M) =⇒ (s′, V ), by part 1 of Proposition 4.1. Using part 1 of Proposition 4.2,
we also have, for any w that w |= (sw, CM

↓) =⇒ (s′w, V
′), for some V ′ with

V ↘w V
′; as V is a boolean value, we then have that V and V ′ are identical.

(2) In the second case we have (s, CM) ⇓error, so, arguing as above but here
using the second parts of the propositions, (s, C↑M) ⇓error and, for any w, w |=
(s, CM↓) ⇓error (as M ↘w M

↓). We therefore have:

P(w |= (sw, CM
↓) ⇓uerror) ≥ P(w |= (sw, CM

↓) ⇓error) = 1 ≥ δ1
(3) In the third case we have (s, CM) ⇓aerror, for some a ≥ 0 with a /∈ Ran(wp).

So, again arguing as above, but here using the second and third parts of the
propositions, respectively, we have that (s, C↑M) ⇓aerror, and that, for any w with
a /∈ Ran(w), w |= (sw, CM

↓) ⇓error. It follows that:

P(w |= (sw, CM
↓) ⇓aerror) ≥ P(w#{a}) ≥ δ1

(4) The fourth case is similar to the first case, but uses the third and fourth
parts of the respective propositions.

Note how, in this proof, the behavior of a term CM of the instrumented high-
level language is used to coordinate the behaviors of terms C↑M and CM↓ of the
high- and low-level languages, respectively.

A.5 Equivalences

Proof of Theorem 4.7. In one direction, we assume that σ is loc-free, so that
σ↓ = σ, and M ≈h,p N , and then consider a public low-level term C : σ → bool

in order to show CM↓ ∼l,p CN↓. Choose a store s. From the assumption that
M ≈h,p N we then obtain Eval(C↑M, s) =p Eval(C↑N, s) , and three cases arise.

In the first case we have that (s, C↑M) ⇒ (s′, V ), (s, C↑N) ⇒ (s′′, V ), and
s′ � PubLoc = s′′ � PubLoc, for some s′, s′′ and V . Applying Theorem 4.5, we
obtain that w |= (sw, CM

↓) ⇒ (s′w, V ) and w |= (sw, CM
↓) ⇒ (s′′w, V ), for any w,

which concludes this case.
In the second case we have (s, C↑M) ⇓error and (s, C↑N) ⇓error. Then, by The-

orem 4.5, P(w |= (sw, C
↑M) ⇓uerror) ≥ δ1 and P(w |= (sw, C

↑N) ⇓uerror) ≥ δ1. The
third case is similar to the first two.

For the converse, we assume M↓ ≈l,p N↓ and consider a public high-level term
C : σ → bool in order to show that Eval(CM, s) =p Eval(CN, s), for any given
store s. We know that C↓M↓ ∼l,p C↓N↓, and also, by Proposition 4.4, that, for all
w, Eval(CM, s)w = Evalw(C↓M↓, sw) and Eval(CN, s)w = Evalw(C↓N↓, sw).

The definition of ∼l,p then yields three cases, of which the first and third are
immediate. For the second, as δ1 > 0, we have w1 |= (sw1

, C↓M↓) ⇓uerror and
w2 |= (sw2

, C↓N↓) ⇓uerror, for some w1 and w2, and the conclusion follows.
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B. THE RECOVERABLE-ERROR MODEL

B.1 The high-level language

The small-step subject-reduction theorem is:

Lemma B.1. For any configuration (s,M), with M :σ, one of the following two
mutually exclusive statements holds:

—M is a value, or

—(s,M) −→ (s′,M ′) for some uniquely determined s′ and M ′ :σ.

and the big-step subject-reduction theorem is:

Lemma B.2. For any configuration (s,M), with M :σ, one of the following two
mutually exclusive statements holds:

—(s,M) =⇒ (s′, V ) for a unique s′ and V :σ, or

—(s,M) ⇑.

B.2 The low-level language

Here the small-step subject-reduction theorem is:

Lemma B.3. For any memory layout w and configuration (m,M), with M : σ,
one of the following three mutually exclusive statements holds:

— M is a value,

— w |= (m,M) −→ (m′,M ′) for some uniquely determined m′ and M ′ :σ, and
if m has the form sw, so does m′, or

— w |= (m,M)
a−→ (m′,M ′) for some uniquely determined a, m′, and M ′ : σ,

and if m has the form sw, so does m′.

and the big-step subject-reduction theorem is:

Lemma B.4. For any configuration (m,M), with M :σ, one of the following two
mutually exclusive statements holds:

— w |= (m,M)
A

=⇒ (m′, V ) for a unique m′, V :σ, and A ⊆ N, and if m has the
form sw, so does m′, or

— w |= (m,M) ⇑A for a unique A ⊆ N.

B.3 The instrumented high-level language

For the analogue to Lemma B.1, one adds one more possibility to the list of mutually
exclusive possibilities:

—(s,M)
a−→ (s′,M ′) for some unique a, s′, and M ′.

The big-step subject-reduction theorem is then:

Lemma B.5. For any configuration (s,M), with M :σ, one of the following two
mutually exclusive statements holds:

—(s,M)
A

=⇒ (s′, V ) for a unique s′, V :σ, and A ⊆ N, or

—(s,M) ⇑A for a unique A ⊆ N.
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B.3.1 Translating instrumented high-level to high-level. Proposition 5.1 follows
from the following small-step translation correctness result:

Lemma B.6. Let M be a well-typed term of the instrumented high-level language.
Then:

(1 ) If M is a value then so is M↑.

(2 ) If (s,M)
A−→ (s′,M ′) then (s,M↑) −→∗ (s′, (M ′)↑).

Proof. Part 1 follows by inspection. For part 2, one shows first that, for any

redex R, if (s,R)
A−→ (s′,M ′) then (s,R↑) −→∗ (s′, (M ′)↑). One shows next that

if E is an evaluation context, then E↑ is too (taking [−]↑ = [−], etc.) and that
E[M ]↑ = E↑[M↑]. Part 2 then follows.

B.3.2 Translating instrumented high-level to low-level. As above, a series of lem-
mas leads to the main simulation results.

Lemma B.7. Suppose that V ↘w N for a well-typed value V . Then for some
V ′ with V ↘w V

′ we have, for any m, w |= (m,N) −→∗ (m,V ′).

The second lemma concerns redexes.

Lemma B.8. (1 ) Suppose that R ↘w N and that (s,R) −→ (s′,M ′). Then
we have w |= (sw, N) −→∗ (s′w, N

′) for some N ′ with M ′ ↘w N
′.

(2 ) Suppose that R ↘w N and that (s,R)
a−→ (s′,M ′) for some a not in

Ran(w)\Ran(wp). Then we have w |= (sw, N)
a−→ (s′w, N

′) for some N ′ with
M ′ ↘w N

′.

The third lemma concerns evaluation contexts. The simulation relation is again
extended in the evident way to evaluation contexts, taking [−] ↘w [−], etc. One
easily sees that if E ↘w E

′ and M ↘w N then E[M ]↘w E
′[N ].

Lemma B.9. Suppose that E[R] ↘w N . Then N has the form E′[N1] where
E ↘w E

′ and R↘w N1.

Using these results, one obtains a small-step simulation lemma, Lemma 5.3,
which, in its turn, yields Proposition 5.4, the big-step simulation result.

B.4 High- and low-level attackers

Proof of Theorem 5.7. Fix M , C, and s. The proof proceeds by cases on
whether or not |Acc(CM, s)| ≤ b. Suppose first that |Acc(CM, s)| ≤ b. Take a w
such that w#Acc(CM, s). Then, by Proposition 5.4, Acc(CM, s) = Accw(CM↓, sw)
and Eval(CM, s)w = Evalw(CM↓, sw), as CM ↘w (CM)↓ = CM↓. By Proposi-
tion 5.1 we also have that Eval(C↑M, s) = Eval(CM, s).

We therefore have:

δb ≤ δ|Acc(CM,s)|
≤ P(w#Acc(CM, s))
≤ P(|Accw(CM↓, sw)| ≤ b and Eval(C↑M, s)w = Evalw(CM↓, sw))

which is the second alternative.
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Otherwise we have |Acc(CM, s)| > b. So, as (s, CM)
A

=⇒ (s′,M ′) for some s′,

M ′, and A with Acc(CM, s) = A ∩ {0, . . . , c}, we have (s, CM)
A′

=⇒ (s′′,M ′′) for
some s′′, M ′′, and A′, where, setting A′′ = A′ ∩ {0, . . . , c}, |A′′| = b+ 1.

Now, take a w such that w#A′′. Then, as CM ↘w CM
↓, Lemma 5.3 implies

that w |= (sw, CM
↓)

A′

=⇒ (s′′w, N), for some N , and so Accw(CM↓, sw) ⊇ A′′ and
|Accw(CM↓, sw)| > b. We therefore have:

δb+1 ≤ P(w#A′′)
≤ P(|Accw(CM↓, sw)| > b)

which is the first alternative.

B.5 Equivalences

Proof of Theorem 5.8. In one direction, we assume thatM ≈h,p N , and then
consider a public low-level term C :σ → bool in order to show that CM↓ ∼bl,p CN↓.
Choose a store s. Applying Theorem 5.7 to M and N , four cases arise.

(1) In the first case we have:

P(|Accw(CM↓, sw)| > b) ≥ δb+1 and P(|Accw(CN↓, sw)| > b) ≥ δb+1

But then

P(Evalbw(CM↓, sw) = Ω) ≥ δb+1 and [P(Evalbw(CN↓, sw) = Ω) ≥ δb+1

concluding this case.

(2) In the second case we have:

P

(
|Accw(CM↓, sw)| ≤ b and
Eval(C↑M, s)w = Evalw(CM↓, sw)

)
≥ δb

and

P

(
|Accw(CN↓, sw)| ≤ b and
Eval(C↑N, s)w = Evalw(CN↓, sw)

)
≥ δb

By assumption we have Eval(C↑M, s) =p Eval(C↑N, s) so there are two subcases.
(a) In the first, there are s′, s′′, and V such that s′ � PubLoc = s′′ � PubLoc,
Eval(C↑M, s) = (s′, V ), and Eval(C↑N, s) = (s′′, V ). But then we have:

P(Evalbw(CM↓, sw) = (s′w, V )) ≥ δb and P(Evalbw(CN↓, sw) = (s′′w, V )) ≥ δb
concluding this subcase.
(b) In the second, Eval(C↑M, s) = Eval(C↑N, s) = Ω, and we obtain:

P(Evalbw(CM↓, sw) = Ω) ≥ δb and P(Evalbw(CN↓, sw) = Ω) ≥ δb
concluding this subcase.

(3) In the third case we have:

P(|Accw(CM↓, sw)| > b) ≥ δb+1

and

P

(
|Accw(CN↓, sw)| ≤ b and
Eval(C↑N, s)w = Evalw(CN↓, sw)

)
≥ δb
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There are again two subcases.

(a) In the first, Eval(C↑N, s) has the form (s′, V ) for some s′ and V . So we have

(s, CN)
A′

=⇒ (s′, V ) for some A′ with A′ ∩ {0, . . . , c} = Acc(CN, s), as otherwise
(i.e., if (s, CN)⇑A′′

, for some A′′), by Proposition 5.1 we would have a contradiction
with the form of Eval(C↑N, s).
By the remark after Theorem 5.7, and since the alternatives there are mutually
exclusive, we have, using the assumptions of this case, that |Acc(CM, s)| > b; we
similarly have that |Acc(CN, s)| ≤ b. So Acc(CM, s)\Acc(CN, s) is non-empty,
and we choose an element a of it; note that a /∈ Ran(wp).

We know that (s, CN)
A′

=⇒ (s′, V ). So, as (CN)↑a = C↑aN , by Proposition 5.2
we have (s, C↑aN) ⇒ (s′, V ). However, we have (s, C↑aM) ⇑ by parts 3 and 4 of
Proposition 5.2. This contradicts the assumption that M ≈h,p N .
(b) In the second, Eval(C↑N, s) = Ω. But then we have

P(Evalbw(CM↓, sw) = Ω) ≥ δb+1 and P(Evalbw(CN↓, sw) = Ω) ≥ δb ≥ δb+1

concluding this subcase.

(4) The fourth case is similar to the third.

In the other direction, assume that M↓ ≈bl,p N↓ and then consider a pub-
lic high-level term C : σ → bool in order to show, for a given store s, that
Eval(CM, s) =p Eval(CN, s). We know that C↓M↓ ∼bl,p C↓N↓. For any w we

also know by Proposition 5.5 that Accw(C↓M↓, sw) = ∅, so, by Corollary 5.6 and
the definition of Evalbw, that

Eval(CM, s)w = Evalw(C↓M↓, sw) = Evalbw(C↓M↓, sw)

The same holds for N .
The definition of ∼bl,p then yields two cases.

(1) In the first case we have:

P(Evalbw(C↓M↓, sw) = (s′w, V )) ≥ δb

and

P(Evalbw(C↓N↓, sw) = (s′′w, V )) ≥ δb
for some s′�PubLoc = s′′�PubLoc and V . As δb > 0, Evalbw′(C↓M↓, sw′) = (s′w′ , V )

and Evalbw′′(C↓N↓, sw′′) = (s′′w′′ , V ), for some w′ and w′′. So,

Eval(CM, s)w′ = Evalbw′(C↓M↓, sw′) = (s′w′ , V )

and

Eval(CN, s)w′′ = Evalbw′′(C↓N↓, sw′′) = (s′′w′′ , V )

As the map s 7→ sw is injective, Eval(CM, s) = (s′, V ) and Eval(CN, s) = (s′′, V ).
Therefore, Eval(CM, s) =p Eval(CN, s), concluding this case.

(2) In the second case we have:

P(Evalbw(C↓M↓, sw) = Ω) ≥ δb+1 and P(Evalbw(C↓N↓, sw) = Ω) ≥ δb+1

ACM Journal Name, Vol. V, No. N, Month 20YY.



On Protection by Layout Randomization · App–9

As δb+1 > 0 there are w′ and w′′ such that

Evalw′(C↓M↓, sw′) = Evalw′′(C↓N↓, sw′′) = Ω

So Eval(CM, s) = Eval(CN, s) = Ω concluding the proof.
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