
Automated Verification of Selected Equivalences for Security Protocols

Bruno Blanchet
CNRS,École Normale Suṕerieure, Paris

Mart́ın Abadi
University of California, Santa Cruz

Cédric Fournet
Microsoft Research, Cambridge

Abstract

In the analysis of security protocols, methods and tools
for reasoning about protocol behaviors have been quite ef-
fective. We aim to expand the scope of those methods and
tools. We focus on proving equivalencesP ≈ Q in which
P andQ are two processes that differ only in the choice of
some terms. These equivalences arise often in applications.
We show how to treat them as predicates on the behaviors
of a process that representsP andQ at the same time. We
develop our techniques in the context of the applied pi cal-
culus and implement them in the tool ProVerif.

1. Introduction

Many security properties can be expressed as predicates
on system behaviors. These properties include some kinds
of secrecy properties (for instance, “the system never broad-
casts the keyk”). They also include correspondence prop-
erties (for instance, “if the system deletes filef , then the
administrator must have requested it”). Such predicates on
system behaviors are the focus of many successful meth-
ods for security analysis. In recent years, several tools have
made it possible to prove many such predicates automati-
cally or semi-automatically, even for infinite-state systems.

Our goal in this work is to expand the scope of those
methods and tools. We aim to apply them to important
security properties that have been hard to prove and that
cannot be easily phrased as predicates on system behaviors.
Many such properties can be written as equivalences. For
instance, the secrecy of a boolean parameterx of a pro-
tocol P (x) may be written as the equivalenceP (true) ≈
P (false). Similarly, as is common in theoretical cryptogra-
phy, we may wish to express the correctness of a construc-
tion P by comparing it to an ideal functionalityQ, writing
P ≈ Q. Here the relation≈ represents observational equiv-
alence:P ≈ Q means that no context (that is, no attacker)
can distinguishP andQ. A priori, P ≈ Q is not a simple
predicate on the behaviors ofP or Q.

We focus on proving equivalencesP ≈ Q in which P
andQ are two variants of the same process obtained by se-
lecting different terms on the left and on the right. In par-

ticular, P (true) ≈ P (false) is such an equivalence, since
P (true) andP (false) differ only in the choice of value for
the parameterx. Both P (true) andP (false) are variants
of a process that we may writeP (diff[true, false]); the two
variants are obtained by giving different interpretations to
diff[true, false], making it select eithertrue or false.

Although the notationdiff can be viewed as a simple in-
formal abbreviation, we find that there is some value in giv-
ing it a formal status. We define a calculus that supportsdiff.
By carefully defining the operational semantics of this cal-
culus, we can establish the equivalenceP (true) ≈ P (false)
by reasoning about behaviors ofP (diff[true, false]).

In this operational semantics,P (diff[true, false]) be-
haves like bothP (true) andP (false) from the point of view
of the attacker, as long as the attacker cannot distinguish
P (true) andP (false). The semantics requires that the re-
sults of reducingP (true) andP (false) can be written as a
process with subexpressions of the formdiff[M1,M2]. On
the other hand, whenP (true) andP (false) would do some-
thing that may differentiate them, the semantics specifies
that the execution ofP (diff[true, false]) gets stuck. Hence,
if no behavior ofP (diff[true, false]) ever gets stuck, then
P (true) ≈ P (false). Thus, we can prove equivalences by
reasoning about behaviors, though not the behaviors of the
original processes in isolation.

This technique applies not only to an equivalence
P (true) ≈ P (false) that represents the concealment of a
boolean parameter, but to a much broader class of equiv-
alences that arise in security analysis and that go beyond
secrecy properties. In principle, every equivalence could
be rewritten as an equivalence in our class: we might
try to prove P ≈ Q by examining the behaviors of
if diff[true, false] = true then P else Q. This observa-
tion suggests that we should not expect completeness for an
automatic technique. Accordingly, we are primarily con-
cerned with soundness and usefulness, and (in contrast with
some related work [5, 14–17, 20]) we emphasize simplicity
and automation over generality. We believe, however, that
the use ofdiff is not “just a hack”, becausediff is amenable
to a rigorous treatment and because operators much likediff
have already proved useful in other contexts—in particular,
in elegant soundness proofs of information-flow type sys-
tems [22, 23].

We implement our technique in the tool ProVerif [11].
This tool is a protocol analyzer for protocols written in
the applied pi calculus [4], an extension of the pi calculus
with function symbols that may represent cryptographic op-
erations. Internally, ProVerif translates protocols to Horn
clauses in classical logic, and uses resolution on these
clauses. We extend the translation into Horn clauses and
also the manipulation of these Horn clauses.

While the implementation in ProVerif requires a non-
trivial development of theory and code, it is rather fruitful.
It enables us to treat, automatically, interesting proofs of
equivalences. In particular, it does not require that all sys-
tems under consideration be finite-state. We demonstrate
these points through small examples and larger applications.

Specifically, we use ProVerif for an infinite-state analy-
sis of the important Encrypted Key Exchange (EKE) proto-
col [9, 10]. (Password-based protocols such as EKE have at-
tracted much attention in recent years, partly because of the
difficulty of reasoning about them.) We also use ProVerif
for checking certain equivalences that express authenticity
properties in an example from the literature [6]. In other ap-
plications, automated proofs of equivalences serve as lem-
mas for manual proofs of other results. We illustrate this
combination by revisiting proofs for the JFK protocol [7].
The total runtime of all our proof scripts is 45 s on a Pen-
tium M 1.8 GHz.

One of the main features of the approach presented in
this paper is that it is compatible with the inclusion of equa-
tional theories on function symbols. We devote consid-
erable attention to their proper, sound integration. Those
equational theories serve in modelling properties of the un-
derlying cryptographic operations; they are virtually neces-
sary in many applications. For instance, an equational the-
ory may describe a decryption function that returns “junk”
when its input is not a ciphertext under the expected key.
Without equational theories, we may be able to model de-
cryption only as a destructor that fails when there is a mis-
match between ciphertext and key. Because the failure of
decryption would be observable, it can result in false indi-
cations of attacks. Our approach overcomes this problem.

In contrast, a recent method for proving equivalences
with ProVerif [13] does not address equivalences that de-
pend on equational theories. Moreover, that method applies
only to pairs of processes in which the terms that differ are
global constants, not arbitrary terms. In these respects, the
approach presented in this paper constitutes a clear advance.
It enables significant proofs that were previously beyond the
reach of automated techniques.

The next section describes the process calculus that
serves as setting for this work. Section 3 defines and studies
observational equivalence. Section 4 contains some exam-
ples. Section 5 deals with equational theories. Section 6
explains how ProVerif maps protocols withdiff to Horn

M,N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . ,Mn) constructor application

D ::= term evaluations
M term
eval h(D1, . . . , Dn) function evaluation

P,Q,R ::= processes
M(x).P input
M〈N〉.P output
0 nil
P | Q parallel composition
!P replication
(νa)P restriction
let x = D in P else Q term evaluation

Figure 1. Syntax for terms and processes

clauses. Section 7 describes applications. These applica-
tions constitute a substantial part of our work; the brevity of
their presentation is due only to space constraints. Section 8
mentions other related work and concludes.

An extended version of this paper, the tool ProVerif,
and the proof scripts for all examples and applications are
available athttp://www.di.ens.fr/ ∼blanchet/
obsequi/ .

2. The process calculus

This section introduces our process calculus, by giving
its syntax and its operational semantics. This calculus is a
combination of the original applied pi calculus [4] with one
of its dialects [13]. This choice of calculus gives us the rich-
ness of the original applied pi calculus (in particular, with
equational theories) while enabling us to leverage ProVerif.

Syntax and informal semantics Figure 1 summarizes the
syntax of our calculus. It defines a category of terms (data)
and processes (programs). It assumes an infinite set of
names and an infinite set of variables;a, b, c, k, s, and sim-
ilar identifiers range over names, andx, y, andz range over
variables. It also assumes a signatureΣ (a set of function
symbols, with arities and with associated definitions as ex-
plained below). We distinguish two categories of function
symbols: constructors and destructors. We often writef for
a constructor,g for a destructor, andh for a constructor or a
destructor. Constructors are used for building terms. Thus,
the termsM,N, . . . are variables, names, and constructor
applications of the formf(M1, . . . ,Mn).

As in the applied pi calculus [4], terms are subject to an
equational theory. Identifying an equational theory with its
signatureΣ, we writeΣ ` M = N for an equality mod-
ulo the equational theory, andΣ ` M 6= N an inequal-

ity modulo the equational theory. (We writeM = N and
M 6= N for syntactic equality and inequality, respectively.)
The equational theory is defined by a finite set of equations
Σ ` Mi = Ni, whereMi andNi are terms that contain
only constructors and variables. The equational theory is
then obtained from this set of equations by reflexive, sym-
metric, and transitive closure, closure by substitution (for
any substitutionσ, if Σ ` M = N thenΣ ` σM = σN),
and closure by context application (ifΣ ` M = N then
Σ ` M ′{M/x} = M ′{N/x}, where{M/x} is the substi-
tution that replacesx with M). We assume that there exist
M andN such thatΣ ` M 6= N .

As in [13], destructors are partial, non-deterministic op-
erations on terms that processes can apply. More precisely,
the semantics of a destructorg of arity n is given by a fi-
nite setdefΣ(g) of rewrite rulesg(M ′

1, . . . ,M
′
n) → M ′,

whereM ′
1, . . . ,M

′
n,M ′ are terms that contain only con-

structors and variables, the variables ofM ′ are bound in
M ′

1, . . . ,M
′
n, and variables are subject to renaming. Then

g(M1, . . . ,Mn) is defined if and only if there exists a sub-
stitution σ and a rewrite ruleg(M ′

1, . . . ,M
′
n) → M ′ in

defΣ(g) such thatMi = σM ′
i for all i ∈ {1, . . . , n}, and

in this caseg(M1, . . . ,Mn) → σM ′. In order to make
function evaluation more uniform, we definedefΣ(f) as
{f(x1, . . . , xn) → f(x1, . . . , xn)} whenf is a construc-
tor of arityn.

The processlet x = D in P else Q tries to evaluateD;
if this succeeds, thenx is bound to the result andP is exe-
cuted, elseQ is executed. Here one may ignore the prefix
eval which may occur inD, sinceeval f andf have the
same semantics whenf is a constructor, and destructors are
used only witheval. In Section 5, we distinguisheval f
andf in order to keep track of when terms are evaluated.

Using constructors, destructors, and equations, we can
model various data structures (tuples, lists, . . .) and cryp-
tographic primitives (shared-key encryption, public-key en-
cryption, signatures, . . .). Typically, destructors represent
primitives that can visibly succeed or fail, while equations
apply to primitives that always succeed but may some-
times return “junk”. For instance, suppose that one can de-
tect whether shared-key decryption succeeds or fails; then
we would use a constructorenc, a destructordec, and
the rewrite ruledec(enc(x, y), y) → x. Otherwise, we
would use two constructorsenc and dec, and the equa-
tions dec(enc(x, y), y) = x and enc(dec(x, y), y) = x.
(The second equation, which is not standard, aims to pre-
vent that the equality testenc(dec(M,N), N) = M reveal
thatM must be a ciphertext underN .) We refer to previous
work [4, 13] for additional explanations and examples.

The rest of the syntax of Figure 1 is fairly standard pi
calculus. The input processM(x).P inputs a message on
channelM , and executesP with x bound to the input mes-
sage. The output processM〈N〉.P outputs the messageN

M ⇓M
eval h(D1, . . . , Dn)⇓σN

if h(N1, . . . , Nn) → N ∈ defΣ(h),
andσ is such that for alli, Di ⇓Mi andΣ ` Mi = σNi

P | 0 ≡ P
P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)
(νa)(νb)P ≡ (νb)(νa)P
(νa)(P | Q) ≡ P | (νa)Q

if a /∈ fn(P)

P ≡ P
Q ≡ P ⇒ P ≡ Q
P ≡ Q, Q ≡ R ⇒ P ≡ R
P ≡ Q ⇒ P | R ≡ Q | R
P ≡ Q ⇒ (νa)P ≡ (νa)Q

N〈M〉.Q | N ′(x).P → Q | P{M/x}
if Σ ` N = N ′ (Red I/O)

let x = D in P else Q → P{M/x}
if D ⇓M (Red Fun 1)

let x = D in P else Q → Q
if there is noM such thatD ⇓M (Red Fun 2)

!P → P | !P (Red Repl)
P → Q ⇒ P | R → Q | R (Red Par)
P → Q ⇒ (νa)P → (νa)Q (Red Res)
P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′ (Red≡)

Figure 2. Semantics for terms and processes

on channelM and then executesP . (We allowM to be an
arbitrary term; we could require thatM be a name, as is
frequently done, and adapt other definitions accordingly.)
The nil process0 does nothing. The processP | Q is
the parallel composition ofP andQ. The replication!P
represents an unbounded number of copies ofP in par-
allel. The restriction(νa)P creates a new namea, and
then executesP . The syntax does not include the condi-
tional if M = N then P else Q, which can be defined as
let x = equals(M,N) in P else Q wherex is a fresh
variable andequals is a destructor with the rewrite rule
equals(x, x) → x.

We writefn(P) andfv(P) for the sets of names and vari-
ables free inP , respectively, which are defined as usual. A
process is closed if it has no free variables; it may have
free names. We identify processes up to renaming of bound
names and variables. An evaluation contextC is a closed
context built from[], C | P , P | C, and(νa)C.

Formal semantics The rules of Figure 2 axiomatize the
reduction relation for processes (→Σ), thus defining the op-
erational semantics of our calculus. Auxiliary rules define
term evaluation (⇓Σ) and the structural congruence rela-
tion (≡); this relation is useful for transforming processes
so that the reduction rules can be applied. Both≡ and→Σ

are defined only on closed processes. We write→∗
Σ≡ for

the reflexive and transitive closure of→Σ union≡. When
Σ is clear from the context, we abbreviate→Σ and⇓Σ to→
and⇓, respectively.

3. Observational equivalence

In this section we introducediff formally and establish a
sufficient condition for observational equivalence. We first
recall the standard definition of observational equivalence
from the pi calculus:

Definition 1 (Equivalence) The processP emits onM
(P ↓M) if and only if P ≡ C[M ′〈N〉.R] for some evalua-
tion contextC that does not bindfn(M) andΣ ` M = M ′.
(Strong) observational equivalence∼ is the largest symmet-
ric relationR on closed processes such thatP R Q implies

1. if P ↓M thenQ ↓M ;

2. if P → P ′ thenQ → Q′ andP ′ R Q′ for someQ′;

3. C[P] R C[Q] for all evaluation contextsC.

Weak observational equivalence≈ is defined similarly, with
→∗ ↓M instead of↓M and→∗ instead of→.

Intuitively, a context may represent an adversary, and two
processes are observationally equivalent when no adversary
can distinguish them.

Next we introduce a new calculus that can represent pairs
of processes that have the same structure and differ only
by the terms and term evaluations that they contain. We
call such a pair of processes abiprocess. The grammar for
the calculus is a simple extension of the grammar of Fig-
ure 1, with additional cases so thatdiff[M,M ′] is a term
and diff[D,D′] is a term evaluation. We also extend the
definition of contexts to permit the use ofdiff, and some-
times refer to contexts withoutdiff as plain contexts.

Given a biprocessP , we define two processesfst(P)
andsnd(P), as follows:fst(P) is obtained by replacing all
occurrences ofdiff[M,M ′] with M and diff[D,D′] with
D in P , and similarly, snd(P) is obtained by replacing
diff[M,M ′] with M ′ and diff[D,D′] with D′ in P . We
definefst(D), fst(M), snd(D), andsnd(M) similarly. Our
goal is to show that the processesfst(P) and snd(P) are
observationally equivalent:

Definition 2 Let P be a closed biprocess. We say thatP
satisfies observational equivalence whenfst(P) ∼ snd(P).

Figure 3 gives the semantics of biprocesses. Reductions
for biprocesses bundle those for processes: ifP → Q then
fst(P) → fst(Q) andsnd(P) → snd(Q). Conversely, how-
ever, reductions infst(P) andsnd(P) need not correspond
to any biprocess reduction, in particular when they do not
match up. Our first theorem shows that the processes are
equivalent when this does not happen.

Definition 3 We say that the biprocessP is uniformwhen
fst(P) → Q1 implies thatP → Q for some biprocessQ
with fst(Q) ≡ Q1, and symmetrically forsnd(P) → Q2.

The semantics for biprocesses is defined as in Figure 2 with
generalized rules for I/O and Fun:

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if Σ ` fst(N) = fst(N ′) andΣ ` snd(N) = snd(N ′)

let x = D in P else Q → P{diff[M1,M2]/x}
if fst(D)⇓M1 andsnd(D)⇓M2 (Red Fun 1)

let x = D in P else Q → Q
if there is noM1 such thatfst(D)⇓M1 and
there is noM2 such thatsnd(D)⇓M2 (Red Fun 2)

Figure 3. Semantics for biprocesses

Theorem 1 Let P0 be a closed biprocess. If, for all plain
evaluation contextsC and reductionsC[P0] →∗ P , the
biprocessP is uniform, thenP0 satisfies observational
equivalence.

Our plan is to establish the hypothesis of Theorem 1
by automatically verifying that all the biprocessesP meet
conditions that imply uniformity. The next corollary de-
tails those conditions, which guarantee that a communica-
tion and an evaluation, respectively, succeed infst(P) if and
only if they succeed insnd(P):

Corollary 1 Let P0 be a closed biprocess. Suppose that,
for all plain evaluation contextsC, all evaluation con-
textsC ′, and all reductionsC[P0] →∗ P ,

1. if P ≡ C ′[N〈M〉.Q | N ′(x).R], thenΣ ` fst(N) =
fst(N ′) if and only ifΣ ` snd(N) = snd(N ′),

2. if P ≡ C ′[let x = D in Q else R], then there exists
M1 such thatfst(D)⇓M1 if and only if there exists
M2 such thatsnd(D)⇓M2.

ThenP0 satisfies observational equivalence.

4. Examples in the applied pi calculus

This section illustrates our approach by revisiting exam-
ples of observational equivalences presented with the ap-
plied pi calculus [4]. Interestingly, all those equivalences
can be formulated using biprocesses, proved via Theorem 1
and, it turns out, verified automatically by ProVerif. Sec-
tion 7 sketches more complex examples.

Example 1 We begin with an equivalence expressed with
a biprocess that performs a single output, of the form
(νa1, . . . , ak)c〈M〉 wherec is a name that does not occur
in a1, . . . , ak or in M . Intuitively, such equivalences state
that no environment can differentiatefst(M) from snd(M)
without knowing some name ina1, . . . , ak. Such equiva-
lences on terms under restrictions are called static equiva-
lences [4]. They play a central role in the extension of proof

techniques from the pure pi calculus to the applied pi calcu-
lus.

This example concerns the Diffie-Hellman computations
used in key agreement protocols. These computations can
be expressed in terms of a constantg, a binary construc-
tor ˆ , and the equation(gˆ x)ˆ y = (gˆ y)ˆ x [3, 4]. With
this signature, we verify that

(νa1, a2, a3)c〈(gˆ a1, gˆ a2, diff[(gˆ a1)ˆ a2, gˆ a3])〉

satisfies equivalence. This equivalence closely corresponds
to the Decisional Diffie Hellman assumption often made
by cryptographers; it is also the main lemma in the proof
of [4, Theorem 3]. Intuitively, even if the environment is
given access to the exponentialsgˆ a1 andgˆ a2, those val-
ues are (apparently) unrelated to the Diffie-Hellman secret
(gˆ a1)ˆ a2, since the environment cannot distinguish this
secret from the exponential of any fresh unrelated valuea3.

Example 2 Non-deterministic encryption is a variant of
public-key encryption that further protects the secrecy of
the plaintext by embedding some additional, fresh value
in each encryption. It can be modelled using three
functions for public-key decryption, public-key encryp-
tion, and public-key derivation, linked by the equation
dec(enc(x, pk(y), z), y) = x, wherez is the additional
parameter for the encryption. A key property of non-
deterministic encryption is that, without knowledge of the
decryption key, ciphertexts appear to be unrelated to the
plaintexts, even if the attacker knows the plaintexts and the
encryption key. To express this property, we state that

(νs)(c〈pk(s)〉 | !c′(x).(νa)c〈diff[enc(x, pk(s), a), a]〉)

satisfies equivalence. This biprocess performs a first output
to reveal the public keypk(s) (but nots!), then repeatedly
inputs a termx from the environment and either outputs its
encryption underpk(s) or outputs a fresh, unrelated name.

Example 3 Biprocesses can also be used for relating an
abstract specification of a cryptographic primitive with its
implementation in terms of lower-level functions. As an
example, we consider the construction of message authen-
tication codes (MACs) for messages of arbitrary lengths
from block ciphers, as modelled in the applied pi calculus
[4, Section 6]—we refer to that work for additional details
and discussion. The usage of MACs was captured via a little
protocol that generates MACs on demand and checks them:

P0 = (νk)(!c′(x).c〈x,mac(k, x)〉
|c(x, y).if y = mac(k, x) then c′′〈x〉)

Let P be P0 with diff[mac(k, x), impl(k, x)] instead of
the two occurrences ofmac(k, x). For a given signature

with no equation formac, a functionimpl correctly imple-
mentsmac whenP satisfies equivalence. With this formu-
lation, we can verify the correctness of the second construc-
tion considered in [4],impl(k, x) = f(k, f(k, x)) where
f is a keyed hash function with equationf(k, (x, y)) =
h(f(k, x), y). We can also confirm that the first construc-
tion considered in [4] is subject to an attack.

5. Modelling equations with rewrite rules

We handle equations by translating from a signature with
equations to a signature without equations. This transla-
tion is designed to ease implementation: with it, resolution
can continue to rely on ordinary syntactic unification, and
remains very efficient. Although our technique is general
and automatic, it does have limitations: it does not apply to
some equational theories, in particular theories with asso-
ciative symbols such as XOR. (It may be possible to handle
some of those theories by shifting from syntactic unification
to unification modulo the theory in question, at the cost of
increased complexity.)

We consider an auxiliary rewriting system on terms,S,
that defines partial normal forms. The terms manipulated
by S do not containdiff, but they may contain variables.
The rules ofS do not contain names and do not have a
single variable on the left-hand side. We say that the set
of termsM is in normal form relatively toS andΣ, and
write nfS,Σ(M), if and only if all terms ofM are irre-
ducible byS and, for allN1, N2 subterms of terms ofM,
if Σ ` N1 = N2 thenN1 = N2. Intuitively, we require
thatM use irreducible forms consistently, allowing for the
possibility that terms may have several irreducible forms
(see Example 5 below). We extend this definition to sets of
processes:nfS,Σ(P) if and only if the set of terms appear-
ing in processes inP is in normal form.

For a signatureΣ′, we define evaluation on open terms
as a relationD ⇓′ (M,σ), whereσ collects instantiations
of D obtained by unification:

M ⇓′ (M, ∅)
eval h(D1, . . . , Dn) ⇓′ (σuN,σuσ′)

if (D1, . . . , Dn) ⇓′ ((M1, . . . ,Mn), σ′),
h(N1, . . . , Nn) → N is in defΣ′(h) and
σu is a most general unifier of(M1, N1), . . . ,(Mn, Nn)

(D1, . . . , Dn) ⇓′ ((σnM1, . . . , σnMn−1,Mn), σnσ)
if (D1, . . . , Dn−1) ⇓′ ((M1, . . . ,Mn−1), σ)
andσDn ⇓′ (Mn, σn)

We letaddeval(M1, . . . ,Mn) be the tuple of term evalua-
tions obtained by addingeval before each function symbol
of M1, . . . ,Mn. Using these definitions, we describe when
a signatureΣ′ with rewrite rules models another signatureΣ
with equations:

Definition 4 Let Σ andΣ′ be signatures on the same func-
tion symbols. We say thatΣ′ modelsΣ if and only if

1. The equational theory ofΣ′ is syntactic equality:Σ′ `
M = N if and only if M = N .

2. The constructors ofΣ′ are the constructors ofΣ; their
definitiondefΣ′(f) contains the rulef(x1, . . . , xn) →
f(x1, . . . , xn), but perhaps also other rules such that
there exists a rewriting systemS on terms that satisfies
the following properties:

S1. If M → N is in S, thenΣ ` M = N .

S2. For anynfS,Σ(M) and termM , there existsM ′

such thatΣ ` M ′ = M andnfS,Σ(M∪ {M ′}).
S3. If f(N1, . . . , Nn) → N is in defΣ′(f), thenΣ `

f(N1, . . . , Nn) = N .

S4. If Σ ` f(M1, . . . ,Mn) = M andnfS,Σ({M1,
. . . , Mn,M}), then there existσ and f(N1,
. . . , Nn) → N in defΣ′(f) such thatM = σN
andMi = σNi for all i ∈ {1, . . . , n}.

3. The destructors ofΣ′ are the destructors ofΣ, with
a rewrite ruleg(M ′

1, . . . ,M
′
n) → M ′ in defΣ′(g)

for eachg(M1, . . . ,Mn) → M in defΣ(g) and each
addeval(M1, . . . ,Mn,M) ⇓′ ((M ′

1, . . . ,M
′
n,M ′), σ).

Properties S1 and S2 concern the definition ofS: S1 guar-
antees that all rewrite rules ofS are acceptable (that is,
they do not generate terms different moduloΣ), and S2
guarantees that there are enough normal forms relatively to
S andΣ. Properties S3 and S4 concern the definition of
constructors inΣ′: S3 guarantees that their definition con-
tains only acceptable rewrite rules, and S4 that it contains
enough rewrite rules: essentially, that whenM1, . . . ,Mn

are in normal form, all normal forms off(M1, . . . ,Mn)
can be generated by applying the rewrite rules off in Σ′

to f(M1, . . . ,Mn). Hence we deal with any equations on
f in Σ by evaluatingf once inΣ′. (We useeval markers
in expressions accordingly:eval f andf representf before
and after this evaluation, respectively.) The definition of de-
structors inΣ′ is computed by applying the rewrite rules of
constructors inΣ′ to the definition of destructors inΣ.

We have designed and implemented semi-algorithms for
finding a rewriting systemS and a signatureΣ′ such that
Σ′ modelsΣ. We leave them for the full paper because of
space constraints. Here we show only two examples that
ProVerif handles automatically.

Example 4 Suppose thatΣ has the constructorsenc
and dec with the equationsdec(enc(x, y), y) = x and
enc(dec(x, y), y) = x. In Σ′, we adopt the rewrite rules:

dec(x, y) → dec(x, y) enc(x, y) → enc(x, y)
dec(enc(x, y), y) → x enc(dec(x, y), y) → x

We have thatΣ′ modelsΣ for the rewriting systemS with
rulesdec(enc(x, y), y) → x andenc(dec(x, y), y) → x,
and a single normal form for every term.

Example 5 In order to model the Diffie-Hellman equation
of Example 1, we defineΣ′ with three rewrite rules:

g→ g xˆ y → xˆ y (gˆ x)ˆ y → (gˆ y)ˆ x

and use an emptyS. Intuitively, applyingˆ to (gˆ x) andy
yields both possible forms of(gˆ x)ˆ y modulo the equa-
tional theory,(gˆ x)ˆ y and(gˆ y)ˆ x. Hence, a termM may
have several irreducible formsM ′ that satisfynfS,Σ({M ′})
andΣ ` M ′ = M .

From this point on, we assume thatΣ′ modelsΣ. We
extend equality moduloΣ to biprocesses:Σ ` P = P ′ if
and only ifP ′ can be obtained fromP by replacing some of
its subtermsM (not containingdiff or eval) with subterms
equal moduloΣ. We defineP →Σ′,Σ P ′ asP →Σ P ′

except that signatureΣ′ is used for reduction rules (Red I/O)
and (Red Fun 1)—signatureΣ is still used for (Red Fun 2).

We say that a biprocessP0 is unevaluated when every
term inP0 is either a variable ordiff[a, a] for some namea.
Hence, every function symbol inP0 must be in a term eval-
uation and prefixed byeval. For any biprocessP , we can
build an unevaluated biprocessunevaluated(P) by intro-
ducing a term evaluation for every non-trivial term and a
diff for every name (withP ≈ unevaluated(P)).

Lemma 1 Let P0 be a closed, unevaluated biprocess. If
P0 →∗

Σ≡ P ′
0, Σ ` P ′

0 = P ′, and nfS,Σ({P ′}), then
P0 →∗

Σ′,Σ≡ P ′. Conversely, ifP0 →∗
Σ′,Σ≡ P ′ then there

existsP ′
0 such thatΣ ` P ′

0 = P ′ andP0 →∗
Σ≡ P ′

0.

This lemma gives an operational correspondence between
→Σ and→Σ′,Σ. A similar lemma holds for processes in-
stead of biprocesses, and can be used for extending previous
proof techniques for secrecy [2] and correspondence [12]
properties, so that they apply under equational theories.
These extensions are implemented in ProVerif. We do not
detail them further since we focus on equivalences in this
paper. Using Lemma 1, we obtain:

Lemma 2 Let P0 be a closed biprocess.P0 satisfies the
conditions of Corollary 1 if and only if, for all plain evalu-
ation contextsC, all evaluation contextsC ′, and all reduc-
tionsunevaluated(C[P0]) →∗

Σ′,Σ P , we have

1. if P ≡ C ′[N〈M〉.Q | N ′(x).R] and fst(N) =
fst(N ′), thenΣ ` snd(N) = snd(N ′),

2. if P ≡ C ′[let x = D in Q else R] andfst(D)⇓Σ′ M1

for someM1, thensnd(D)⇓Σ M2 for someM2,

as well as the symmetric properties where we swapfst and
snd.

6. Clause generation

Given a closed biprocessP0, our protocol verifier builds
a set of Horn clauses. This section explains the generation
of the clauses, substantially extending to biprocesses previ-
ous work at the level of processes.

Patterns and facts In the clauses, the terms of processes
are represented by patterns, with the following grammar:

p ::= patterns
x, y, z, i variable
f(p1, . . . , pn) constructor application
a[p1, . . . , pn] name
g element ofGVar

We assign a distinct, fresh session identifier variablei
to each replication ofP0. (We will use a distinct value fori
for each copy of the replicated process.) We assign a pattern
a[p1, . . . , pn] to each namea of P0. We treata as a function
symbol, and writea[p1, . . . , pn] rather thana(p1, . . . , pn)
only for clarity. We sometimes writea for a[]. If a is a
free name, then its pattern isa[]. If a is bound by a re-
striction (νa)P in P0, then its pattern takes as arguments
the terms received as inputs, the results of term evaluations,
and the session identifiers of replications in the context
that encloses the restriction. For example, in the process
!c′(x).(νa)P , each name created by(νa) is represented by
a[i, x] wherei is the session identifier for the replication and
x is the message received as input inc′(x). We assume that
each restriction(νa)P in P0 has a different namea, distinct
from any free name ofP0. Moreover, session identifiers en-
able us to distinguish names created in different copies of
processes. Hence, each name created in the process calcu-
lus is represented by a different pattern in the verifier.

Patterns include an infinite set of constantsGVar . These
constants are basically universally quantified variables, and
occur only in arguments of the predicatenounif, defined
below. We writeGVar(M) for the term obtained fromM
by replacing variables with new constants in the setGVar .

Clauses are built from the following predicates:

F ::= facts
att′(p, p′) attacker knowledge
msg′(p1, p2, p

′
1, p

′
2) channel messages

input′(p, p′) input onp (resp.p′)
nounif(p, p′) impossible unification
bad bad

Informally, att′(p, p′) means that the attacker may ob-
tain p in fst(P) and p′ in snd(P) by the same opera-
tions; msg′(p1, p2, p

′
1, p

′
2) means that messagep2 may ap-

pear on channelp1 in fst(P) and that messagep′2 may ap-
pear on channelp′1 in snd(P) after the same reductions;

input′(p, p′) means that an input may be executed on chan-
nel p in fst(P) and on channelp′ in snd(P), thus enabling
the attacker to infer whetherp (resp.p′) is equal to an-
other channel used for output;nounif(p, p′) means thatp
andp′ cannot be unified moduloΣ by substituting elements
of GVar with patterns; finally,bad serves in detecting vio-
lations of observational equivalence: whenbad is not deriv-
able, we have observational equivalence.

An evident difference with respect to previous transla-
tions from processes to clauses is that predicates have twice
as many arguments: we use the binary predicateatt′ instead
of the unary oneatt and the 4-ary predicatemsg′ instead of
the binary onemsg. This extension allows us to represent
information for both versions of a biprocess.

The predicatenounif is not defined by clauses, but by
special simplification steps in the solver. These steps are
such that, for all closed patternsp and p′, nounif(p, p′)
holds if and only if there is no closed substitutionσ with
domainGVar such thatΣ ` σp = σp′.

Clauses for the attacker The following clauses represent
the capabilities of the attacker:

For eacha ∈ fn(P0), att′(a[], a[]) (Init)

For someb that does not occur inP0,

att′(b[x], b[x])
(Rn)

For each functionh, for each pair of rewrite rules

h(M1, . . . ,Mn) → M andh(M ′
1, . . . ,M

′
n) → M ′

in defΣ′(h) (after renaming of variables),

att′(M1,M
′
1) ∧ . . . ∧ att′(Mn,M ′

n) → att′(M,M ′)
(Rf)

msg′(x, y, x′, y′) ∧ att′(x, x′) → att′(y, y′) (Rl)

att′(x, x′) ∧ att′(y, y′) → msg′(x, y, x′, y′) (Rs)

att′(x, x′) → input′(x, x′) (Ri)

input′(x, x′) ∧msg′(x, z, y′, z′) ∧ nounif(x′, y′) → bad
(Rcom)

For each destructorg,
for each rewrite ruleg(M1, . . . ,Mn) → M in defΣ′(g),∧

g(M ′
1,...,M ′

n)→M ′ in defΣ′ (g)

nounif((x′1, . . . , x
′
n),GVar((M ′

1, . . . ,M
′
n)))

∧ att′(M1, x
′
1) ∧ . . . ∧ att′(Mn, x′n) → bad (Rt)

plus symmetric clauses (Rcom’) and (Rt’) obtained from
(Rcom) and (Rt) by swapping the first and second argu-
ments ofinput′ andatt′ and the first and third arguments
of msg′.

Clause (Ri) means that, if the attacker hasx (resp.x′),
then it can initiate an input onx (resp.x′), thereby testing
whether it is equal to some other channel used for output.
Clauses (Rcom) and (Rcom’) detect when a communication

can be done in one version of the biprocess and not in the
other: the input and output channels are equal in one ver-
sion and different in the other. These clauses check that
condition 1 of Lemma 2 and its symmetric are true.

Clause (Rt) checks that for all applications of a destruc-
tor g, if this application succeeds infst(P), then it succeeds
in snd(P), possibly using another rule. Clause (Rt’) checks
the converse. These two clauses are essential for obtaining
condition 2 of Lemma 2. Consider, for instance, the de-
structorequals. After a minor simplification, clause (Rt)
becomes

att′(x, y) ∧ att′(x, y′) ∧ nounif(y, y′) → bad

The other clauses are adapted from previous work [2, 12]
by replacing unary (resp. binary) predicates with binary
(resp. 4-ary) ones. Clause (Init) indicates that the attacker
initially has all free names ofP0. Clause (Rn) means that
the attacker can generate fresh namesb[x]. Clause (Rf)
mean that the attacker can apply all functions to all terms
it has. In this clause, the rewrite rulesh(M1, . . . ,Mn) →
M and h(M ′

1, . . . ,M
′
n) → M ′ may be different ele-

ments of defΣ′(h); their variables are renamed so that
M1, . . . ,Mn,M on the one hand andM ′

1, . . . ,M
′
n,M ′ on

the other hand do not share variables. Clause (Rl) means
that the attacker can listen on all the channels it has, and
(Rs) that it can send all the messages it has on all the chan-
nels it has.

Clauses for the protocol When a functionρ asso-
ciates a pair of patterns with each name and variable,
and f is a constructor, we extendρ as a substitution
by ρ(f(M1, . . . ,Mn)) = (f(p1, . . . , pn), f(p′1, . . . , p

′
n))

where ρ(Mi) = (pi, p
′
i). We denote byρ(M)1 and

ρ(M)2 the components of the pairρ(M). We define
ρ(diff[M,M ′]) = (ρ(M)1, ρ(M ′)2).

The translation[[P]]ρss′H of a biprocessP is a set of
clauses, whereρ is an environment that associates a pair of
patterns with each name and variable,s ands′ are sequences
of patterns, andH is a sequence of facts. The empty se-
quence is written∅; the concatenation of a patternp to the
sequences is writtens, p; the concatenation of a factF to
the sequenceH is writtenH ∧ F .

[[0]]ρss′H = ∅
[[!P]]ρss′H = [[P]]ρ(s, i)(s′, i)H

wherei is a fresh variable

[[P | Q]]ρss′H = [[P]]ρss′H ∪ [[Q]]ρss′H

[[(νa)P]]ρss′H = [[P]](ρ[a 7→ (a[s], a[s′])])ss′H

[[M(x).P]]ρss′H = [[P]](ρ[x 7→ (x′, x′′)])(s, x′)(s′, x′′)
(H ∧msg′(ρ(M)1, x′, ρ(M)2, x′′))

∪ {H → input′(ρ(M)1, ρ(M)2)}
wherex′ andx′′ are fresh variables

[[M〈N〉.P]]ρss′H = [[P]]ρss′H

∪ {H → msg′(ρ(M)1, ρ(N)1, ρ(M)2, ρ(N)2)}
[[let x = D in P else Q]]ρss′H =⋃

{[[P]]((σρ)[x 7→ (p, p′)])(σs, p)(σs′, p′)(σH) |
(ρ(D)1, ρ(D)2) ⇓′ ((p, p′), σ)}

∪ [[Q]]ρss′(H ∧ fails(ρ(D)1) ∧ fails(ρ(D)2)
∪ {σH ∧ fails(σρ(D)2) → bad | ρ(D)1 ⇓′ (p, σ)}
∪ {σH ∧ fails(σρ(D)1) → bad | ρ(D)2 ⇓′ (p′, σ)}
wherefails(D) =

∧
σ|D ⇓′(p,σ) nounif(D,GVar(σD))

In the translation, the environmentρ maps names and
variables to their corresponding pair of patterns—one pat-
tern for each version of the biprocess. The sequencess
ands′ contain all input messages, session identifiers, and
results of term evaluations in the enclosing context—one
sequence for each version of the biprocess. They are used
in the restriction case(νa)P , to build patternsa[s] anda[s′]
that correspond to the namea. The sequenceH contains all
facts that must be true to run the current process.

The clauses generated are similar to those of [12], but
clauses are added to indicate which tests the adversary can
perform, and predicates have twice as many arguments.
Replication creates a new session identifieri, added tos
ands′. Replication is otherwise ignored, since Horn clauses
can be applied any number of times anyway.

In the translation of an input, the sequenceH is
extended with the input in question and the environ-
ment ρ with a binding ofx to a new variablex′ in ver-
sion 1, x′′ in version 2. Moreover, a new clauseH →
input′(ρ(M)1, ρ(M)2) is added, indicating that when all
conditions inH are true, an input on channelM may be ex-
ecuted. This input may enable the adversary to infer thatM
is equal to some channel used for output; Clauses (Rcom)
or (Rcom’) derivebad when this information may break
equivalence. The output case adds a clause stating that mes-
sageN may be sent on channelM . Finally, the clauses
for a term evaluation are the union of clauses for the cases
where the term evaluation succeeds on both sides (then we
executeP), where the term evaluation fails on both sides
(then we executeQ), and where the term evaluation fails on
one side and succeeds on the other (then we derivebad).
Indeed, in the last case, the adversary may get to know
whether the term evaluation succeeds or fails (when the
code executed in the success case is visibly different from
the code executed in the failure case).

Example 6 The biprocess of Example 2 yields the clauses:

msg′(c, pk(s), c, pk(s))

msg′(c′, x, c′, x′)
→ msg′(c, enc(x, pk(s), a[i, x]), c, a[i, x′])

The first clause corresponds to the output of the public key
pk(s). The second clause corresponds to the other out-
put: if a messagex (resp.x′) is received on channelc′,
then the messageenc(x, pk(s), a[i, x]) in the first version
(resp.a[i, x′] in the second version) is sent on channelc.

Example 7 The processc(x).let y = eval dec(x, a) in
c〈y〉, wheredec(enc(x, y), y) → x, yields the clauses:

msg′(c, enc(y, a), c, x′) ∧ nounif(x′, enc(g, a)) → bad
msg′(c, x, c, enc(y′, a)) ∧ nounif(x, enc(g, a)) → bad
msg′(c, enc(y, a), c, enc(y′, a)) → msg′(c, y, c, y′)

In the first clause, a message received onc is of the form
enc(y, a) in the first version but not in the second version;
decryption succeeds only in the first version, so the process
is not uniform and we derivebad. The second clause is the
symmetric case. In the third clause, decryption succeeds in
both versions, and yields an output on channelc.

Proving equivalences Let ρ = {a 7→ a[] | a ∈ fn(P0)}.
We define the set of clauses that corresponds to biprocessP0

as: RP0 = [[unevaluated(P0)]]ρ∅∅∅ ∪ {(Init), (Rn), . . . ,
(Rt), (Rt’)}. The following result shows the soundness of
clause generation.

Theorem 2 If bad is not a logical consequence ofRP0 ,
thenP0 satisfies observational equivalence.

To determine whetherbad is a logical consequence ofRP0 ,
we use a resolution-based solving algorithm, similar to one
in previous work [13]. The main differences are as follows:

• Instead ofnounif, that previous work uses a predicate
testunif with a different semantics. We adapt the sim-
plification steps oftestunif accordingly. In particular,
the semantics ofnounif relies on unification modulo
the equational theory ofΣ, whereastestunif uses syn-
tactic unification. To unify the patternsp andp′ mod-
ulo the equational theory, we apply the rewrite rules
of Σ′ to every function symbol that appears in the pat-
terns, then syntactically unify the results. Formally, the
most general unifiers ofp andp′ moduloΣ are the sub-
stitutionsσuσ such thataddeval(p, p′) ⇓′ ((p1, p

′
1), σ)

andσu is the most general unifier ofp1 andp′1.

• Clauses that contain terms reducible byS can be elim-
inated. (Clauses in normal form relatively toS,Σ are
sufficient for not missing derivations ofbad.)

Whenbad is a logical consequence ofRP0 , the derivation
of bad from RP0 can serve for reconstructing a violation
of the hypothesis of Corollary 1, via an extension of recent
techniques for secrecy analysis [8]. However, the transla-
tion of protocols to Horn clauses performs safe abstractions
that sometimes result in false counterexamples.

7. Applications (summary)

Weak secrets Protocols that use passwords and other low-
entropy secrets may be subject to off-line guessing attacks:
the attacker first interacts with the protocol, then guesses
a password (possibly by enumerating a dictionary), and
checks its guess against the protocol messages, without fur-
ther interaction with the protocol. As we show in the full
paper, the absence of off-line guessing attacks can be de-
fined as an equivalence in a simple extension of our for-
malism that supports several execution stages, and checked
automatically with our technique. Following this approach,
we have proved that four variants of EKE [9, 10] are resis-
tant to off-line guessing attacks. The handling of equational
theories is crucial for this application.

Authenticity Abadi and Gordon [6] use equivalences for
characterizing authenticity properties, and treat a variant of
the Wide-Mouth-Frog protocol as an example. Essentially,
authenticity is defined as an equivalence between the pro-
tocol and a specification. The technique presented in this
paper automatically proves authenticity for the one-session
version of this protocol [6, section 3.2.2], thereby eliminat-
ing the need for a laborious manual proof. It can also be
used for simplifying the proof of authenticity for the multi-
session version. (Authenticity properties are sometimes for-
mulated as correspondence assertions on behaviors, rather
than as equivalences. Previous work shows how to check
those assertions with ProVerif [12].)

Complete sessions in JFK Finally, we show other ways
in which automated proofs of equivalences can contribute
to protocol analyses, specifically studying JFK, a modern
session-establishment protocol for IP security [7].

In recent work [3], we modelled JFK in the applied pi
calculus. We used processes for representing the reachable
states of JFK, for any number of principals and sessions,
and stated security properties as equivalences. Although we
relied on ProVerif for reasoning about behaviors, our main
proofs of equivalences were manual. Applying the tech-
niques of this paper, we can revise and largely automate
those proofs. The resulting proofs rely on equivalences on
biprocesses, verified by ProVerif, composed with standard
pi calculus equivalences that do not depend on the signature
for terms.

In particular, a core property of JFK is that, once a ses-
sion completes, its session key is (apparently) unrelated
to the cryptographic material exchanged during the ses-
sion, and all those values can be replaced by distinct fresh
names [3, Theorem 2]. This property can be stated and
proved in terms of a biprocessS that outputs either the ac-
tual results of JFK computations (infst(S)) or distinct fresh
names (insnd(S)), in parallel with the rest of the JFK sys-

tem to account for any other sessions. The proof of this
property goes as follows. The system is split intoS ≈
C[S′], whereS′ is similar toS but omits unimportant parts
of JFK, collected in the evaluation contextC[]. The proof
that S ≈ C[S′] is straightforward; it relies on pi calcu-
lus equivalences that eliminate communications on private
channels introduced in the split. ProVerif shows thatS′ sat-
isfies equivalence. Using the contextual property of equiva-
lence,C[S′] satisfies equivalence, hencefst(S) ≈ snd(S).

8. Conclusion

In the last decade, there has been substantial research on
other proof methods for security protocols. While many of
those proof methods have focused on predicates on behav-
iors, others have addressed equivalences between systems
(e.g., [1, 4–6, 14–21, 24]). Much of this research is con-
cerned with obtaining sound and complete proof systems,
often via sophisticated bisimulations, and eventually deci-
sion algorithms for restricted cases. In our opinion, these
are important goals, and the results to date are significant.

In the present paper, we aim to contribute to this
body of research with a different approach. We do not
emphasize the development of bisimulation techniques.
Rather, we leverage behavior-oriented techniques and tools
(ProVerif, in particular) for equivalence proofs. We show
how to derive equivalences by reasoning about behaviors—
specifically, by reasoning about behaviors of applied pi cal-
culus biprocesses. We also show how to translate those
biprocesses to Horn clauses and how to reason about their
behaviors by resolution. The resulting proof method is
sound, although that is not simple to establish. We demon-
strate the usefulness of the method through automated anal-
yses of interesting, infinite-state systems.

Acknowledgments Mart́ın Abadi’s work was partly done
at Microsoft Research, Silicon Valley, and also partly sup-
ported by the National Science Foundation under Grants
CCR-0204162 and CCR-0208800. Bruno Blanchet’s work
was partly done at Max-Planck-Institut für Informatik,
Saarbr̈ucken. We are grateful to Harald Ganzinger for help-
ful discussions on the treatment of equational theories.

References

[1] M. Abadi. Secrecy by Typing in Security Protocols.Journal
of the ACM, 46(5):749–786, Sept. 1999.

[2] M. Abadi and B. Blanchet. Analyzing Security Protocols
with Secrecy Types and Logic Programs.Journal of the
ACM, 52(1):102–146, Jan. 2005.

[3] M. Abadi, B. Blanchet, and C. Fournet. Just Fast Keying in
the Pi Calculus. InESOP’04, volume 2986 ofLNCS, pages
340–354. Springer, Mar. 2004.

[4] M. Abadi and C. Fournet. Mobile Values, New Names, and
Secure Communication. InPOPL’01, pages 104–115. ACM
Press, Jan. 2001.

[5] M. Abadi and A. D. Gordon. A Bisimulation Method for
Cryptographic Protocols. Nordic Journal of Computing,
5(4):267–303, Winter 1998.

[6] M. Abadi and A. D. Gordon. A Calculus for Cryptographic
Protocols: The Spi Calculus.Information and Computation,
148(1):1–70, Jan. 1999.

[7] W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioanni-
dis, K. Keromytis, and O. Reingold. Just Fast Keying: Key
Agreement in a Hostile Internet.ACM TISSEC, 7(2):242–
273, May 2004.

[8] X. Allamigeon and B. Blanchet. Reconstruction of Attacks
against Cryptographic Protocols. InCSFW-18, June 2005.

[9] S. M. Bellovin and M. Merritt. Encrypted Key Exchange:
Password-Based Protocols Secure Against Dictionary At-
tacks. InSecurity and Privacy, pages 72–84, May 1992.

[10] S. M. Bellovin and M. Merritt. Augmented Encrypted Key
Exchange: a Password-Based Protocol Secure Against Dic-
tionary Attacks and Password File Compromise. InCCS’93,
pages 244–250, Nov. 1993.

[11] B. Blanchet. An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules. InCSFW-14, pages 82–96, June
2001.

[12] B. Blanchet. From Secrecy to Authenticity in Security Pro-
tocols. InSAS’02, volume 2477 ofLNCS, pages 342–359.
Springer, Sept. 2002.

[13] B. Blanchet. Automatic Proof of Strong Secrecy for Secu-
rity Protocols. InSecurity and Privacy, pages 86–100, May
2004.

[14] M. Boreale, R. De Nicola, and R. Pugliese. Proof Tech-
niques for Cryptographic Processes.SIAM Journal on Com-
puting, 31(3):947–986, 2002.

[15] J. Borgstr̈om, S. Briais, and U. Nestmann. Symbolic Bisim-
ulation in the Spi Calculus. InCONCUR 2004, volume 3170
of LNCS, pages 161–176. Springer, Aug. 2004.

[16] J. Borgstr̈om and U. Nestmann. On Bisimulations for the
Spi Calculus. InAMAST 2002, volume 2422 ofLNCS, pages
287–303. Springer, Sept. 2002.

[17] V. Cortier. Vérification Automatique des Protocoles Cryp-
tographiques. PhD thesis, ENS de Cachan, Mar. 2003.

[18] L. Durante, R. Sisto, and A. Valenzano. Automatic Test-
ing Equivalence Verification of Spi Calculus Specifications.
ACM TOSEM, 12(2):222–284, Apr. 2003.

[19] R. Focardi and R. Gorrieri. The Compositional Security
Checker: A Tool for the Verification of Information Flow
Security Properties.IEEE Transactions on Software Engi-
neering, 23(9):550–571, Sept. 1997.

[20] H. Hüttel. Deciding Framed Bisimilarity. InINFINITY’02,
pages 1–20, Aug. 2002.

[21] P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Sce-
drov. Probabilistic Polynomial-time Equivalence and Se-
curity Protocols. InFM’99, volume 1708 ofLNCS, pages
776–793. Springer, Sept. 1999.

[22] F. Pottier. A Simple View of Type-Secure Information Flow
in theπ-Calculus. InCSFW-15, pages 320–330, June 2002.

[23] F. Pottier and V. Simonet. Information Flow Inference for
ML. In POPL’02, pages 319–330, Jan. 2002.

[24] A. Ramanathan, J. Mitchell, A. Scedrov, and V. Teague.
Probabilistic Bisimulation and Equivalence for Security
Analysis of Network Protocols. InFOSSACS 2004, volume
2987 ofLNCS, pages 468–483. Springer, Mar. 2004.

