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Abstract ticular, P(true) =~ P(false) is such an equivalence, since
P(true) and P(false) differ only in the choice of value for
In the analysis of security protocols, methods and tools the parameter. Both P(true) and P(false) are variants
for reasoning about protocol behaviors have been quite ef- of a process that we may wrife(diff[true, false]); the two
fective. We aim to expand the scope of those methods angariants are obtained by giving different interpretations to
tools. We focus on proving equivalend@s= @ in which diff[true, false], making it select eithetrue or false.
P and @ are two processes that differ only in the choice of  Although the notationliff can be viewed as a simple in-
some terms. These equivalences arise often in applicationsformal abbreviation, we find that there is some value in giv-
We show how to treat them as predicates on the behaviorsing it a formal status. We define a calculus that supptifs
of a process that represenisand @ at the same time. We By carefully defining the operational semantics of this cal-
develop our techniques in the context of the applied pi cal- culus, we can establish the equivalef{grue) ~ P(false)
culus and implement them in the tool ProVerif. by reasoning about behaviors Bfdiff[true, false]).
In this operational semanticg?(diff[true, false]) be-
haves like bothP (true) and P(false) from the point of view
1. Introduction of the attacker, as long as the attacker cannot distinguish
P(true) and P(false). The semantics requires that the re-
Many security properties can be expressed as predicatesults of reducingP(true) and P(false) can be written as a
on system behaviors. These properties include some kindgprocess with subexpressions of the fadiff[M, M>]. On
of secrecy properties (for instance, “the system never broad-the other hand, wheR(true) and P(false) would do some-
casts the key:”). They also include correspondence prop- thing that may differentiate them, the semantics specifies
erties (for instance, “if the system deletes fflethen the  that the execution oP(diff[true, false]) gets stuck. Hence,
administrator must have requested it”"). Such predicates onif no behavior of P(diff[true, false]) ever gets stuck, then
system behaviors are the focus of many successful meth-P(true) ~ P(false). Thus, we can prove equivalences by
ods for security analysis. In recent years, several tools havereasoning about behaviors, though not the behaviors of the
made it possible to prove many such predicates automati-original processes in isolation.
cally or semi-automatically, even for infinite-state systems.  This technique applies not only to an equivalence
Our goal in this work is to expand the scope of those P(true) =~ P(false) that represents the concealment of a
methods and tools. We aim to apply them to important boolean parameter, but to a much broader class of equiv-
security properties that have been hard to prove and thatlences that arise in security analysis and that go beyond
cannot be easily phrased as predicates on system behaviorsecrecy properties. In principle, every equivalence could
Many such properties can be written as equivalences. Forbe rewritten as an equivalence in our class: we might
instance, the secrecy of a boolean parametef a pro- try to prove P ~ (@ by examining the behaviors of
tocol P(x) may be written as the equivalenégtrue) ~ if diff[true, false] = true then P else Q). This observa-
P(false). Similarly, as is common in theoretical cryptogra- tion suggests that we should not expect completeness for an
phy, we may wish to express the correctness of a construc-automatic technique. Accordingly, we are primarily con-
tion P by comparing it to an ideal functionalit, writing cerned with soundness and usefulness, and (in contrast with
P =~ (). Here the relation: represents observational equiv- some related work [5, 14-17, 20]) we emphasize simplicity
alence:P ~ ) means that no context (that is, no attacker) and automation over generality. We believe, however, that
can distinguishP and@. A priori, P =~ @ is not a simple  the use ofliff is not “just a hack”, becaus#ff is amenable
predicate on the behaviors &for Q. to a rigorous treatment and because operators mucHiftke
We focus on proving equivalencé? ~ @ in which P have already proved useful in other contexts—in particular,
andq@ are two variants of the same process obtained by se-in elegant soundness proofs of information-flow type sys-
lecting different terms on the left and on the right. In par- tems [22, 23].



We implement our technique in the tool ProVerif [11]. M, N := terms

This tool is a protocol analyzer for protocols written in %y, 2 variable
the applied pi calculus [4], an extension of the pi calculus a,b,c,k,s name o
with function symbols that may represent cryptographic op- f(My, ..., My) constructor application
erations. Internally, ProVerif translates protocols to Horn ) .. term evaluations
clauses in classical logic, and uses resolution on these  p; term
clauses. We extend the translation into Horn clauses and  oval (D, ..., D,) function evaluation
also the manipulation of these Horn clauses. PO R e
While the implementation in ProVerif requires a non- @ B = processes

. o ) M(z).P input
trivial development of theory and code, it is rather fruitful. M(N).P outout
It enables us to treat, automatically, interesting proofs of 0 ' il P

equivalences. In particular, it does not require that all sys-
tems under consideration be finite-state. We demonstrate o
. o P replication
these points through small examples and larger applications. (va)P restriction
_ SpeC|f|_caIIy, we use ProVerif for an infinite-state analy- let z = D in P else Q term evaluation
sis of the important Encrypted Key Exchange (EKE) proto-
tracted much attention in recent years, partly because of the

difficulty of reasoning about them.) We also use ProVerif clauses. Section 7 describes applications. These applica-
for checking certain equivalences that express authenticitytions constitute a substantial part of our work; the brevity of
properties in an example from the literature [6]. In other ap- their presentation is due only to space constraints. Section 8
plications, automated pI’OOfS of eqUiValenceS serve as Iemmentions other related work and concludes.

mas for manual proofs of other results. We illustrate this ~ An extended version of this paper, the tool ProVerif,

combination by revisiting proofs for the JFK protocol [7]. and the proof scripts for all examples and applications are
The total runtime of all our proof scripts is 45 s on a Pen- ayailable athttp:/www.di.ens.fr/ ~blanchet/

tium M 1.8 GHz. Obsequi/

One of the main features of the approach presented in
this paper is that it is compatible with the inclusion of equa- 2 The process calculus
tional theories on function symbols. We devote consid-
erable attention to their proper, sound integration. Those This section introduces our process calculus, by giving
equational theories serve in modelling properties of the un-its syntax and its operational semantics. This calculus is a
derlying cryptographic operations; they are virtually neces- combination of the original applied pi calculus [4] with one
sary in many applications. For instance, an equational the-of its dialects [13]. This choice of calculus gives us the rich-
ory may describe a decryption function that returns “junk” ness of the original applied pi calculus (in particular, with
when its input is not a ciphertext under the expected key. equational theories) while enabling us to leverage ProVerif.
Without equational theories, we may be able to model de-

cryption only as a destructor that fails when there is a mis- Syntax and informal semantics Figure 1 summarizes the
match between ciphertext and key. Because the failure Ofsyntax of our calculus. It defines a category of terms (data)
decryption would be observable, it can result in false indi- gng processes (programs). It assumes an infinite set of
cations of attacks. Our approach overcomes this problem. names and an infinite set of variablesp, ¢, k, s, and sim-

In contrast, a recent method for proving equivalences jlar identifiers range over names, andy, andz range over
with ProVerif [13] does not address equivalences that de-variables. It also assumes a signathiréa set of function
pend on equational theories. Moreover, that method appliessymbols, with arities and with associated definitions as ex-
only to pairs of processes in which the terms that differ are plained below). We distinguish two categories of function
global constants, not arbitrary terms. In these respects, theymbols: constructors and destructors. We often wyriter
approach presented in this paper constitutes a clear advance: constructorg for a destructor, andl for a constructor or a
It enables significant proofs that were previously beyond the destructor. Constructors are used for building terms. Thus,
reach of automated techniques. the termsM, N, ... are variables, names, and constructor

The next section describes the process calculus thatpplications of the fornf (M, ..., M,).
serves as setting for this work. Section 3 defines and studies As in the applied pi calculus [4], terms are subject to an
observational equivalence. Section 4 contains some examequational theory. Identifying an equational theory with its
ples. Section 5 deals with equational theories. Section 6signatureX, we writeX - M = N for an equality mod-
explains how ProVerif maps protocols withff to Horn ulo the equational theory, ard - M # N an inequal-

PlQ parallel composition



ity modulo the equational theory. (We wrifed = N and My M

M # N for syntactic equality and inequality, respectively.) eval A(D1,...,Dy) o N

The equational theory is defined by a finite set of equations  if 2(N1,...,N,) — N € defs(h),

Y + M; = N;, whereM; and N; are terms that contain ando is such that for alf, D; || M; and¥ = M; = oN;

only constructors and variables. The equational theory is p l0=P p=rp
then obtained from this set of equations by reflexive, sym- p 1Q=Q|P Q=P = P=Q
metric, and transitive closure, closure by substitution (for (P|Q)|R=P|(Q|R) P=Q,Q=R = P=R
any substitutior, if X - M = N thenX + oM = oN), (va)(vb)P = (vb)(va)P P=Q = P|R=Q|R
and closure by context application §if = M = N then (va)(P|Q)=P|(wa)Q P=Q = (va)P = (va)Q
Y+ MA{M/x} = M'{N/xz}, where{M/x} is the substi- if a ¢ fn(P)
tution that replaces with M). We assume that there exist __
M andN such that - M # N. N(M).Q | N'(z).P — Q| P{M/x}

As in [13], destructors are partial, non-deterministic op- if SN =N (Red I/0)
erations on terms that processes can apply. More preciselyjet x = D in P else Q — P{M/x}
the semantics of a destructgrof arity n is given by a fi- if DM (Red Fun 1)
nite setdefx(g) of rewrite rulesg(Mj,...,M)) — M’, let =D in Pelse Q — Q
where M7,..., M/ M’ are terms that contain only con- if there is noM such thatD || M (Red Fun 2)
structors and variables, the variables/df are bound in P — P[P (Red Repl)
Mj, ..., M;, and variables are subject to renaming. Then p _, Q= P|R - Q|R (Red Par)
g(My, ..., M,) is defined if and only if there exists asub- p _, Q = (wa)P — (va)Q (Red Res)
stitution o and a rewrite ruley(M7,..., M) — M’ in P=PP - Q,Q=0Q = P — Q (Red=)
defx(g) such thatM; = oM/ foralli € {1,...,n}, and
in this caseg(M,...,M,) — oM’. In order to make Figure 2. Semantics for terms and processes
function evaluation more uniform, we definkefs(f) as
{f(z1,...szn) — f(z1,...,2,)} When f is a construc-  on channelM/ and then executeB. (We allow to be an
tor of arity n. arbitrary term; we could require that be a name, as is

The processet x = D in P else Q) tries to evaluateD; frequently done, and adapt other definitions accordingly.)
if this succeeds, then is bound to the result an& is exe- The nil proces9) does nothing. The proces® | Q is

cuted, els&) is executed. Here one may ignore the prefix the parallel composition o and@. The replication! P
eval which may occur inD, sinceeval f and f have the represents an unbounded number of copies?ah par-
same semantics whehis a constructor, and destructors are allel. The restriction(va) P creates a new name and
used only witheval. In Section 5, we distinguishval f then execute®’. The syntax does not include the condi-
andf in order to keep track of when terms are evaluated. tionalif M = N then P else (), which can be defined as
Using constructors, destructors, and equations, we canfet © = equals(M, N) in P else Q wherez is a fresh
model various data structures (tuples, lists, ...) and Cryp-variable andequals is a destructor with the rewrite rule
tographic primitives (shared-key encryption, public-key en- equals(z,z) — =.
cryption, signatures, ...). Typically, destructors represent We writefn(P) andfv(P) for the sets of names and vari-
primitives that can visibly succeed or fail, while equations ables free inP, respectively, which are defined as usual. A
apply to primitives that always succeed but may some- process is closed if it has no free variables; it may have
times return “junk”. For instance, suppose that one can de-free names. We identify processes up to renaming of bound
tect whether shared-key decryption succeeds or fails; thernames and variables. An evaluation contéxis a closed
we would use a constructarne, a destructordec, and  context built from[], C' | P, P | C, and(va)C.
the rewrite ruledec(enc(z,y),y) — z. Otherwise, we
would use two constructorsnc and dec, and the equa-  Formal semantics The rules of Figure 2 axiomatize the
tions dec(enc(x,y),y) = = and enc(dec(,y),y) = =. reduction relation for processes:¢), thus defining the op-
(The second equation, which is not standard, aims to pre-erational semantics of our calculus. Auxiliary rules define
vent that the equality testoc(dec(M, N), N) = M reveal  term evaluation () and the structural congruence rela-
that M must be a ciphertext undéf.) We refer to previous  tion (=); this relation is useful for transforming processes
work [4, 13] for additional explanations and examples. so that the reduction rules can be applied. Batand—+,
The rest of the syntax of Figure 1 is fairly standard pi are defined only on closed processes. We writ¢ = for
calculus. The input proces¥ (x).P inputs a message on the reflexive and transitive closure efy, union=. When
channelM, and execute® with  bound to the input mes- X is clear from the context, we abbreviater and|}y, to —
sage. The output proceds(N).P outputs the messagé andl}, respectively.



3. Observational equivalence

In this section we introducgiff formally and establish a

sufficient condition for observational equivalence. We first
recall the standard definition of observational equivalence

from the pi calculus:

Definition 1 (Equivalence) The processP emits on M
(P 1, ifand only if P = C[M'(N).R] for some evalua-
tion contextC that does not bingin (M) and~ - M = M’.
(Strong) observational equivaleneeis the largest symmet-

ric relationR on closed processes such tlaR @ implies
1. if P, then@ |,
2. if P — P'thenQQ — Q' andP’ R @’ for someQ’;
3. C[P] R C[Q] for all evaluation context§’.

Weak observational equivalensgs defined similarly, with
—* | instead of| ,, and—* instead of—.

The semantics for biprocesses is defined as in Figure 2 with
generalized rules for I/O and Fun:
N(M).Q | N'(z).P — Q| P{M/xz} (Red I/O)
if X+ fst(IV) = fst(N') andX - snd(N) = snd(N')
let = D in P else Q — P{diff[My, Ms]/x}
if fst(D) | M; andsnd(D) |} M,
let x =D in P else @ — @
if there is noM; such thafst(D) || M; and
there is nal{, such thasnd(D) || M>

(Red Fun 1)

(Red Fun 2)

Figure 3. Semantics for biprocesses

Theorem 1 Let P, be a closed biprocess. If, for all plain
evaluation context€ and reductionsC[F] —* P, the
biprocess P is uniform, thenP, satisfies observational
equivalence.

Our plan is to establish the hypothesis of Theorem 1
by automatically verifying that all the biprocessBameet

Intuitively, a context may represent an adversary, and two conditions that imply uniformity. The next corollary de-
processes are observationally equivalent when no adversar{2ils those conditions, which guarantee that a communica-

can distinguish them.

tion and an evaluation, respectively, succeefdiitP) if and

Next we introduce a new calculus that can represent pairsOnly if they succeed isnd(P):
of processes that have the same structure and differ only _
by the terms and term evaluations that they contain. WeCorollary 1 Let P, be a closed biprocess. Suppose that,

call such a pair of processed#process The grammar for

for all plain evaluation contexts”, all evaluation con-

the calculus is a simple extension of the grammar of Fig- textsC’, and all reduction<’[Py] —* P,

ure 1, with additional cases so thdiff[M, M'] is a term

anddiff[D, D'] is a term evaluation. We also extend the

definition of contexts to permit the use d@iff, and some-
times refer to contexts withodiff as plain contexts.

Given a biprocess, we define two processdst(P)
andsnd(P), as follows:fst(P) is obtained by replacing all
occurrences ofliff[A, M'] with M and diff[D, D’] with
D in P, and similarly,snd(P) is obtained by replacing
diff[M, M'] with M’ and diff[D, D’] with D’ in P. We
definefst(D), fst(M), snd(D), andsnd (M) similarly. Our
goal is to show that the processes(P) andsnd(P) are
observationally equivalent:

Definition 2 Let P be a closed biprocess. We say tifat
satisfies observational equivalence wife(P) ~ snd(P).

1. if P = C'[N(M).Q | N'(z).R)], thenX I fst(N) =
fst(N') if and only if F snd(N) = snd(N'),

2. if P = C'[let x = D in Q else R], then there exists
M, such thatfst(D) |} M; if and only if there exists
M, such thasnd(D) |} Ms.

ThenP, satisfies observational equivalence.

4. Examples in the applied pi calculus

This section illustrates our approach by revisiting exam-
ples of observational equivalences presented with the ap-
plied pi calculus [4]. Interestingly, all those equivalences
can be formulated using biprocesses, proved via Theorem 1

Figure 3 gives the semantics of biprocesses. Reductiongnd, it turns out, verified automatically by ProVerif. Sec-

for biprocesses bundle those for processe®. i+ @ then
fst(P) — fst(Q) andsnd(P) — snd(Q). Conversely, how-

tion 7 sketches more complex examples.

ever, reductions ifist(P) andsnd(P) need not correspond ~ Example 1 We begin with an equivalence expressed with
to any biprocess reduction, in particular when they do not @ biprocess that performs a single output, of the form

match up. Our first theorem shows that the processes ardvai, - -

equivalent when this does not happen.

Definition 3 We say that the biproceds is uniformwhen
fst(P) — @ implies thatP — @ for some biproces§)
with fst(Q) = Q1, and symmetrically fosnd(P) — Q-.

., ax)¢{M) wherec is a name that does not occur
inay,...,a; orin M. Intuitively, such equivalences state
that no environment can differentiake (M) from snd (M)
without knowing some name i, ..., ax. Such equiva-
lences on terms under restrictions are called static equiva-
lences [4]. They play a central role in the extension of proof



techniques from the pure pi calculus to the applied pi calcu- with no equation fornac, a functionimpl correctly imple-

lus. mentsmac when P satisfies equivalence. With this formu-
This example concerns the Diffie-Hellman computations lation, we can verify the correctness of the second construc-

used in key agreement protocols. These computations cartion considered in [4]impl(k,z) = f(k, f(k,x)) where

be expressed in terms of a constghta binary construc-  f is a keyed hash function with equatigitk, (x,y)) =

tor °, and the equatiofig” z)" vy = (g" y)" z [3,4]. With h(f(k,x),y). We can also confirm that the first construc-

this signature, we verify that tion considered in [4] is subject to an attack.

(vay, az, a3)c((g" a1, 8" az, diff[(g” a1)" az, g” as])) 5. Modelling equations with rewrite rules

satisfies equivalence. This equivalence closely corresponds ] ] ) )

to the Decisional Diffie Hellman assumption often made e handle equations by translating from a signature with
by cryptographers; it is also the main lemma in the proof €quations to a signature without equations. This transla-
of [4, Theorem 3]. Intuitively, even if the environment is  tion is designed to ease implementation: with it, resolution
given access to the exponentigfsa; andg” a,, those val- ~ €&n continue to rely on ordinary syntactic unification, and
ues are (apparently) unrelated to the Diffie-Hellman secret’®mains very efficient. Although our technique is general
(" a1)" as, since the environment cannot distinguish this @nd automatic, it does have limitations: it does not apply to

secret from the exponential of any fresh unrelated vajue ~ SOme equational theories, in particular theories with asso-
ciative symbols such as XOR. (It may be possible to handle

§ some of those theories by shifting from syntactic unification

Example 2 Non-deterministic encryption is a variant o . ' :
to unification modulo the theory in question, at the cost of

public-key encryption that further protects the secrecy of . .
the plaintext by embedding some additional, fresh value increased cpmplexﬁy.) B »

in each encryption. It can be modelled using three e consider an auxiliary rewriting system on ters,
functions for public-key decryption, public-key encryp- that defines partla! nprmal forms. The term; marjlpulated
tion, and public-key derivation, linked by the equation by S do not containdiff, but _they may contain variables.
dec(enc(z, pk(y), 2),y) = x, wherez is the additional T_he ruIes_ofS do not contain names and do not have a
parameter for the encryption. A key property of non- single varlaple. on the left-hand su_je. We say that the set
deterministic encryption is that, without knowledge of the °f termsM is in normal form relatively taS and;, and
decryption key, ciphertexts appear to be unrelated to the'Wt€ nfs (M), if and only if all terms of M are irre-
plaintexts, even if the attacker knows the plaintexts and theducible byS and, for allVy, N, subterms of terms oM,

encryption key. To express this property, we state that if ¥ = Ny = Ny thenN; = Ny. Intuitively, we require
that M use irreducible forms consistently, allowing for the
(vs)(@(pk(s)) | I¢ (z).(va)e(difflenc(z, pk(s), a), a])) possibility that terms may have several irreducible forms

(see Example 5 below). We extend this definition to sets of
satisfies equivalence. This biprocess performs a first outputprocessesnfs s (P) if and only if the set of terms appear-
to reveal the public keyk(s) (but nots!), then repeatedly  ing in processes i is in normal form.
inputs a terme from the environment and either outputs its For a signature?’, we define evaluation on open terms
encryption undepk(s) or outputs a fresh, unrelated name. as a relationD |}’ (M, o), whereo collects instantiations

of D obtained by unification:

Example 3 Biprocesses can also be used for relating an
abstract specification of a cryptographic primitive with its M |} (M, )

implementation in terms of lower-level functions. As an eval h(Dy, ..., Dy) |V (0uN,0y0")

example, we consider the construction of message authen- if (D1,..., D) | ((My,..., M,),0'),

tication codes (MACs) for messages of arbitrary lengths  2(Ni, ..., N,) — N isindefs/ (h) and

from block ciphers, as modelled in the applied pi calculus o is @ most general unifier ¢i\/;, N1), ..., (M, N,)

[4, Section 6]—we refer to that work for additional details (D1, ..., Dn) 4’ ((0n My, ..., 0nMn—1, M), 00)
and discussion. The usage of MACs was captured via a little  if (D1,..., Dp1) IV ((My,..., My _1),0)
protocol that generates MACs on demand and checks them: andoD,, |/ (M, 0,,)

Py = (vk)(I¢ (z).¢(x, mac(k, x)) We letaddeval(M;, ..., M,) be the tuple of term evalua-
le(z,y).if v = mac(k, z) then ¢’ {(z)) tions obtained by addingval before each function symbol
of My, ..., M,. Using these definitions, we describe when

Let P be Py with diffmac(k,z),impl(k,x)] instead of  asignature’ with rewrite rules models another signatiite
the two occurrences ofiac(k,x). For a given signature  with equations:



Definition 4 Let X andY’ be signatures on the same func-
tion symbols. We say that’ modelsY if and only if

1. The equational theory &’ is syntactic equality’ -
M = N ifandonly if M = N.

2. The constructors of’ are the constructors af; their
definitiondefs. (f) contains the rulg (x4, ..., 2,) —
f(z1,...,2,), but perhaps also other rules such that
there exists a rewriting systefhon terms that satisfies
the following properties:

S1. fM — NisinS,thenX - M = N.

S2. For anyfs (M) and termi/, there existdl/’
such that - M’ = M andnfs s;(M U {M'}).

S3. If f(Ny,...,N,) — Nisindefs/(f), thenX -
f(NlaaNn):N
S4. IfX + f(M,y,...,M,) = M andnfs 5 ({M,
..., M,,M}), then there existz and f(Ny,
..y N,) = N indefs/(f) such thatM = oN
andM; =oN, foralli € {1,...,n}.

We have thab’ modelsX. for the rewriting systen® with
rules dec(enc(z,y),y) — = andenc(dec(x,y),y) — =z,
and a single normal form for every term.

Example 5 In order to model the Diffie-Hellman equation
of Example 1, we defin&’ with three rewrite rules:

g—g Ty—ry (gx)y—(gy) e

and use an empt§. Intuitively, applying” to (g” ) andy
yields both possible forms dfg” )" y modulo the equa-
tional theory,(g” «)” y and(g” y)" =. Hence, aternd/ may
have several irreducible forndd’ that satisfynf s x, ({'})
andX - M’ = M.

From this point on, we assume that modelsX. We
extend equality modul& to biprocessest - P = P’ if
and only if P’ can be obtained from®? by replacing some of
its subterms\/ (not containingdiff or eval) with subterms
equal moduloX. We defineP —y/ 5 P’ asP —y P’
except that signatue’ is used for reduction rules (Red 1/0)
and (Red Fun 1)—signatudeis still used for (Red Fun 2).

We say that a biprocesg, is unevaluated when every
term in P, is either a variable aofiff[a, a] for some name.
Hence, every function symbol iRy must be in a term eval-
uation and prefixed byval. For any biproces$, we can
build an unevaluated biprocessaevaluated(P) by intro-
ducing a term evaluation for every non-trivial term and a
diff for every name (withP = unevaluated(P)).

3. The destructors of’ are the destructors of, with
a rewrite ruleg(My,..., M) — M’ in defs/(g)
for eachg(My, ...

,M,) — M in defx(g) and each
addeval(My, ..., M,, M) | (My,...,M],M’"),0).

Properties S1 and S2 concern the definitioo51 guar-
antees that all rewrite rules & are acceptable (that is,
they do not generate terms different modal}, and .82 Lemma 1l Let P, be a closed, unevaluated biprocess. If
guarantees that there are enough normal forms relatively to . , . ,
. " v —y= Pj, ¥ F Pj = P/, andnfsx({P'}), then
S andX. Properties S3 and S4 concern the definition of = . . T
o . o Py =%, = P'. Conversely, i, —3, ,= P’ then there
constructors i’ S3 guarantees that their definition con- . ; , , =T
. : ; . existsP; such that - Pj = P/ and Py —5= F}.
tains only acceptable rewrite rules, and S4 that it contains
enough rewrite rules: essentially, that whef, ..., M,
are in normal form, all normal forms of (M, ..., M,)
can be generated by applying the rewrite rules oh X’
to f(My,..., M,). Hence we deal with any equations on

This lemma gives an operational correspondence between
—y and—sy- 5. A similar lemma holds for processes in-
stead of biprocesses, and can be used for extending previous
proof techniques for secrecy [2] and correspondence [12]
f In X by evaluatingf once inYX’. (We useeval markers properties, so that they apply under equational theories.
in expressions accordinglyval f andf represeny before These extensions are implemented in ProVerif. We do not
and after this evaluation, respectively.) The definition of de- detail them further since we focus on equivalences in this
structors in¥’ is computed by applying the rewrite rules of paper. Using Lemma 1, we obtain:
constructors irt’ to the definition of destructors .

We have designed and implemented semi-algorithms forLemma 2 Let P, be a closed biprocessP; satisfies the
finding a rewriting systens and a signatur&’ such that  conditions of Corollary 1 if and only if, for all plain evalu-
¥’ modelsY. We leave them for the full paper because of ation contexts”, all evaluation context§”, and all reduc-
space constraints. Here we show only two examples thattionsunevaluated(C[Fy]) —3y 5, P, we have
ProVerif handles automatically.

1. if P = C'INM).Q | N'(x).R] and fst(N)
fst(N'), thenX + snd(INV) = snd(N'),

2. if P=C'[let x = D in Q else R] andfst(D) |}y, My
for somel,, thensnd(D) |5, M for someMs,

Example 4 Suppose thatyX has the constructorsnc
and dec with the equationsdec(enc(z,y),y) = z and
enc(dec(z,y),y) = z. In X', we adopt the rewrite rules:

as well as the symmetric properties where we sfsapnd
snd.

enc(z,y) — enc(x,y)
enc(dec(z,y),y) — x

dec(z,y) — dec(z,y)
dec(enc(z,y),y) — x



6. Clause generation input’(p, p’) means that an input may be executed on chan-
nelp in fst(P) and on channel’ in snd(P), thus enabling
Given a closed biproced), our protocol verifier builds  the attacker to infer whether (resp.p’) is equal to an-
a set of Horn clauses. This section explains the generatiorother channel used for outputpunif(p, p’) means thap
of the clauses, substantially extending to biprocesses previ-andp’ cannot be unified modulB by substituting elements
ous work at the level of processes. of G'Var with patterns; finallybad serves in detecting vio-
lations of observational equivalence: whemnl is not deriv-
able, we have observational equivalence.
An evident difference with respect to previous transla-
tions from processes to clauses is that predicates have twice

Patterns and facts In the clauses, the terms of processes
are represented by patterns, with the following grammar:

p = patterns as many arguments: we use the binary predigatanstead
Ty, 2,0 variable of the unary onett and the 4-ary predicaiasg’ instead of
f(p1,-- - pn) constructor application the binary onansg. This extension allows us to represent
alpis ..., pnl name information for both versions of a biprocess.

g element ofG Var The predicatenounif is not defined by clauses, but by

special simplification steps in the solver. These steps are

We assign a distinct, fresh session identifier variable such that, for all closed patternsand p’, nounif(p, p’)
to each replication oF,. (We will use a distinct value far holds if and only if there is no closed substitutiorwith
for each copy of the replicated process.) We assign a patterrdomainG Var such thafs - op = op’.
alps,...,ps) to each name of Py. We treaiz as a function
symbol, and write[p,, ..., p,] rather thama(pi,....pa)  Clauses for the attacker The following clauses represent
only for clarity. We sometimes write for a[]. If aisa  the capabilities of the attacker:
free name, then its pattern ég]. If « is bound by a re-
striction (va)P in Py, then its pattern takes as arguments For each: € fn(F), att’(a[], a[]) (Init)
the terms received as inputs, the results of term evaluations, For some that does not occur i,
and the session identifiers of replications in the context ,
that encloses the restriction. For example, in the process att’ (bla], bla])
I¢/(x).(va) P, each name created lfya) is represented by ~ For each functior, for each pair of rewrite rules
ali, x] wherei is the session identifier for the replication and h(M,...,M,) — M andh(M;,...,M]) — M’
x is the message received as input’ifc). We assume that
each restrictiorfra) P in Py has a different name, distinct
from any free name aof,. Moreover, session identifiers en-

(Rn)

in defyy (h) (after renaming of variables),
att'(My, My) A ... A att' (M, M) — att’(M, M")

able us to distinguish names created in different copies of (R)
processes. Hence, each name created in the process calcunsg’ (z,y, 2", y') A att’(x, 2") — att’(y, ) (RI)
lus is represented by a different pattern in the verifier. att’(z,2') Aatt’(y,y') — msg’(z,y, 7',y (Rs)

Patterns include an infinite set of constafit8ar. These / , . , , .
; . o . att’(z,2") — input'(x, ') (Ri)

constants are basically universally quantified variables, and , , , . o
occur only in arguments of the predicateunif, defined ~ input'(z,2") Amsg'(z, 2,y", 2) A nounif (2", y') — bad

below. We writeG Var (M) for the term obtained from/ (Rcom)
by replacing variables with new constants in the G&ur. For each destructay,
Clauses are built from the following predicates: for each rewrite rulg (M, ..., M,) — M in defs/ (g),
F = facts /\ nounif ((z},...,z.), GVar((Mj,...,M))))
att’(p,p’) attacker knowledge g(My,....,M},)—M' in defs (g)
msg' (p1, P2, P, P2) channel messages Aatt'(My,z)) A ... Aatt!(M,,z!) — bad (Rt)
input’(p, p’) input onp (resp.p’) _ _
nounif (p, p’) impossible unification plus symmetric clauses (Rcom’) and (Rt’) obtained from
bad bad (Rcom) and (Rt) by swapping the first and second argu-

ments ofinput’ andatt’ and the first and third arguments
Informally, att’(p,p’) means that the attacker may ob- of msg’.
tain p in fst(P) and p’ in snd(P) by the same opera- Clause (Ri) means that, if the attacker hagesp.z’),
tions; msg’(p1, p2, P}, p5) Means that message may ap- then it can initiate an input om (resp.z’), thereby testing
pear on channel; in fst(P) and that messagg, may ap- whether it is equal to some other channel used for output.
pear on channeb| in snd(P) after the same reductions; Clauses (Rcom) and (Rcom’) detect when a communication



can be done in one version of the biprocess and not in the [M (N).P]pss'H = [P]pss'H

other: the input and output channels are equal in one ver- {H — msg’(p(M)1, p(N)1, p(M)2, p(N)2)}

sion and different in the other. These clauses check that liet = D in P else Qlpss'H —

condition 1 of Lemma 2 and its symmetric are true.
Clause (Rt) checks that for all applications of a destruc- U{[[P]]((ap) [z — (p,p")])(os,p)(cs’,p')(cH) |

tor g, if this application succeeds fst(P), then it succeeds D D / N o

in snd(P), possibly using another rule. Clause (Rt’) checks (p(D)1, p(D)a) ¥ ((2:7). 0}

/ . .
the converse. These two clauses are essential for obtaining =~ [@Qlpss (H A fails(p(D)1) A fails(p(D ?)
condition 2 of Lemma 2. Consider, for instance, the de- U {oH Afails(op(D)2) — bad | p(D)1 4’ (p, o)}
structorequals. After a minor simplification, clause (Rt) U {oH Afails(op(D)1) — bad | p(D)2 | (p',0)}
becomes wherefails(D) = A\ p y:(y.,) nounif (D, G Var(sD))

att'(z,y) A att’(z,y") A nounif(y, y’) — bad
. In the translation, the environmeptmaps names and
The other clauses are adapted from previous work 2, 12]variables to their corresponding pair of patterns—one pat-

by replacing unary (resp. bingry) predicates with binary tern for each version of the biprocess. The sequences
_(r(_a_sp. 4-ary) ones. Clause (Init) indicates that the attackerand s’ contain all input messages, session identifiers, and
initially has all free names of. Clause (Rn) means that results of term evaluations in the enclosing context—one
the attacker can generate fresh narbjes. _Clause (RM) sequence for each version of the biprocess. They are used
mean that t_he attacker can ap_ply all functions to all terms in the restriction cas@va) P, to build patterna[s] anda[s’]
ithas. In this clause, the rewrite ruleeM,, ..., M) — that correspond to the name The sequencé& contains all

/ !/ !/ i
M a}[nd ?(dﬂ/?,h’]\;[ﬁ) - .Mbl may be d|ﬁ‘er(3nt eltter; ; facts that must be true to run the current process.
ments ofdefs: (h); their variables are renamed so tha The clauses generated are similar to those of [12], but

/ / !/
M, .. ., Mn, M onthe one hand andlf;, ..., M, M’ on clauses are added to indicate which tests the adversary can

the other hand do not share variables. Clause (RI) mean%erform and predicates have twice as many arguments.
that the attacker can listen on all the channels it has, andRepIicat’ion creates a new session identifieadded tos

(Rs) that it can send all the messages it has on all the Chan'ands’. Replication is otherwise ignored, since Horn clauses

nels it has. can be applied any humber of times anyway.
] In the translation of an input, the sequenég is

Clauses for the protocol When a functionp asso-  extended with the input in question and the environ-
ciates a pair of patterns with each name and variable,memp with a binding ofz to a new variabler’ in ver-
and f is a constructor, we extend as a substitution  gjgp 1,z" in version 2. Moreover, a new claugé —
by p(f(My,...; Mp)) = (f(prs--spn), f(P1s--P0))  input!(p(M)1, p(M)s) is added, indicating that when all
where p(M;) = (pi,p;)- We denote byp(M), and  conditions inH are true, an input on channéf may be ex-
p(M), the components of the pajs(M). We define  gcyted. This input may enable the adversary to infer ilfiat
p(diff[M, M) = (p(M)1, p(M")2). _ is equal to some channel used for output; Clauses (Rcom)

The translation P]pss’H of a biprocess” is a set of  or (Rcom’) derivebad when this information may break
clauses, wherg is an environment that associates a pair of gquivalence. The output case adds a clause stating that mes-
patterns with each name and variallands’ are sequences sageN may be sent on channéll. Finally, the clauses
of patterns, and{ is a sequence of facts. The empty se- for 5 term evaluation are the union of clauses for the cases
quence is writterf); the concatenation of a patteprto the  \yhere the term evaluation succeeds on both sides (then we

sequence is written s, p; the concatenation of a faét to executeP), where the term evaluation fails on both sides
the sequencél is written I A F'. (then we executé), and where the term evaluation fails on
[0]pss’H =0 one side and succeeds on the other (then we déeidg.

. . Indeed, in the last case, the adversary may get to know
| ' — /
[Plpss H [[P]]p(s’z)_(s i) H whether the term evaluation succeeds or fails (when the
wherei is a fresh variable code executed in the success case is visibly different from
[P | Q]pss’H = [P]pss'H U [Q]pss'H the code executed in the failure case).
[(va)Plpss'H = [P](pla — (als],als)])ss'H
[M(z).P]pss'H = [P](plz — (', 2")])(s,2")(s", 2") ,
(H Amsg (p(M)1, 2", p(M)2,2")) msg’ (¢, pk(s), ¢, pk(s))
’ ’ ’ / / / /
U {H — input’ (o(M)1, p(M)2)} msg'(¢',2,¢,2") | o
wherez’ andz” are fresh variables — 1msg' (¢, enc(z, pk(s), ali, ]), ¢, ali, 2'))

Example 6 The biprocess of Example 2 yields the clauses:



The first clause corresponds to the output of the public key 7. Applications (summary)

pk(s).
put: if a message (resp.z’) is received on channef,
then the messagec(x, pk(s), afi, x]) in the first version
(resp.afi, 2] in the second version) is sent on channel

Example 7 The process:(x).let y = eval dec(z,a) in

¢(y), wheredec(enc(z,y),y) — z, yields the clauses:
msg’ (¢, enc(y, a), ¢, ') A nounif (2, enc(g,a)) — bad
msg’ (¢, z, ¢, enc(y’,a)) A nounif (x, enc(g, a)) — bad
msg’ (¢, enc(y, a), ¢, enc(y’,a)) — msg' (¢, y, ¢, y)

In the first clause, a message receivedcas of the form
enc(y, a) in the first version but not in the second version;

The second clause corresponds to the other out-

Weak secrets Protocols that use passwords and other low-
entropy secrets may be subject to off-line guessing attacks:
the attacker first interacts with the protocol, then guesses
a password (possibly by enumerating a dictionary), and
checks its guess against the protocol messages, without fur-
ther interaction with the protocol. As we show in the full
paper, the absence of off-line guessing attacks can be de-
fined as an equivalence in a simple extension of our for-
malism that supports several execution stages, and checked
automatically with our technique. Following this approach,
we have proved that four variants of EKE [9, 10] are resis-
tant to off-line guessing attacks. The handling of equational
theories is crucial for this application.

decryption succeeds only in the first version, so the process

is not uniform and we derivbad. The second clause is the

symmetric case. In the third clause, decryption succeeds inAuthenticity  Abadi and Gordon [6] use equivalences for

both versions, and yields an output on channel

Proving equivalences Letp = {a — a[] | a € fn(Py)}.
We define the set of clauses that corresponds to biprdgess
as: Rp, = [unevaluated(Fy)]pd00 U {(Init),(Rn),...,
(Rt), (Rt)}. The following result shows the soundness of
clause generation.

Theorem 2 If bad is not a logical consequence & p,,
then P, satisfies observational equivalence.

To determine whethérad is a logical consequence &p,,
we use a resolution-based solving algorithm, similar to one
in previous work [13]. The main differences are as follows:

¢ Instead ofnounif, that previous work uses a predicate
testunif with a different semantics. We adapt the sim-
plification steps ofestunif accordingly. In particular,
the semantics ofiounif relies on unification modulo
the equational theory of, whereasestunif uses syn-
tactic unification. To unify the patternsandp’ mod-
ulo the equational theory, we apply the rewrite rules
of ¥’ to every function symbol that appears in the pat-
terns, then syntactically unify the results. Formally, the
most general unifiers gfandp’ moduloX: are the sub-
stitutionso,,o such thatddeval(p, p') I ((p1,p}),0)
ando,, is the most general unifier @f andp].

Clauses that contain terms reducible$gan be elim-
inated. (Clauses in normal form relatively & X are
sufficient for not missing derivations obd.)

Whenbad is a logical consequence & p,, the derivation
of bad from R p, can serve for reconstructing a violation
of the hypothesis of Corollary 1, via an extension of recent

techniques for secrecy analysis [8]. However, the transla-

characterizing authenticity properties, and treat a variant of
the Wide-Mouth-Frog protocol as an example. Essentially,
authenticity is defined as an equivalence between the pro-
tocol and a specification. The technique presented in this
paper automatically proves authenticity for the one-session
version of this protocol [6, section 3.2.2], thereby eliminat-
ing the need for a laborious manual proof. It can also be
used for simplifying the proof of authenticity for the multi-
session version. (Authenticity properties are sometimes for-
mulated as correspondence assertions on behaviors, rather
than as equivalences. Previous work shows how to check
those assertions with ProVerif [12].)

Complete sessions in JFK Finally, we show other ways

in which automated proofs of equivalences can contribute
to protocol analyses, specifically studying JFK, a modern
session-establishment protocol for IP security [7].

In recent work [3], we modelled JFK in the applied pi
calculus. We used processes for representing the reachable
states of JFK, for any number of principals and sessions,
and stated security properties as equivalences. Although we
relied on ProVerif for reasoning about behaviors, our main
proofs of equivalences were manual. Applying the tech-
niques of this paper, we can revise and largely automate
those proofs. The resulting proofs rely on equivalences on
biprocesses, verified by ProVerif, composed with standard
pi calculus equivalences that do not depend on the signature
for terms.

In particular, a core property of JFK is that, once a ses-
sion completes, its session key is (apparently) unrelated
to the cryptographic material exchanged during the ses-
sion, and all those values can be replaced by distinct fresh
names [3, Theorem 2]. This property can be stated and
proved in terms of a biprocessthat outputs either the ac-

tion of protocols to Horn clauses performs safe abstractionstual results of JFK computations (fst(.5)) or distinct fresh

that sometimes result in false counterexamples.

names (insnd(S)), in parallel with the rest of the JFK sys-



tem to account for any other sessions. The proof of this [5] M. Abadi and A. D. Gordon. A Bisimulation Method for
property goes as follows. The system is split irffo~ Cryptographic Protocols. Nordic Journal of Computing
C[9’], whereS’ is similar to.S but omits unimportant parts 5(4):267-303, Winter 1998.

of JFK, collected in the evaluation conte%{.]. The proof [6] M. Abadiand A. D.. Gordon. ACaIc.qus for Cryptographic
that S ~ C[] is straightforward; it relies on pi calcu- Protocols: The Spi Calculugnformation and Computatign

. T - . 148(1):1-70, Jan. 1999.
lus equivalences that eliminate communications on private (7] w. Ajello, S. M. Bellovin, M. Blaze, R. Canetti, J. loanni-

channels introduced in the split. ProVerif shows thasat- dis, K. Keromytis, and O. Reingold. Just Fast Keying: Key
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[9] S. M. Bellovin and M. Merritt. Encrypted Key Exchange:
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