
Timely Rollback: Specification and Verification

Mart́ın Abadi1 and Michael Isard2

1 University of California at Santa Cruz
2 Microsoft Research?

Abstract. This paper presents a formal description and analysis of a
technique for distributed rollback recovery. The setting for this work is a
model for data-parallel computation with a notion of virtual time. The
technique allows the selective undo of work at particular virtual times.
A refinement theorem ensures the consistency of rollbacks.

1 Introduction

Rollback recovery plays an important role in ensuring fault-tolerance in many
distributed systems [7]. In this paper we initiate the development and study of
a rollback technique for distributed data-parallel computing. This technique re-
lies on the timely-dataflow model [11], in which computations are organized as
dataflow graphs (e.g., [9]) and events are associated with virtual times [8] in a
partial order. The technique guarantees consistency and transparency to appli-
cations while allowing the selective undo of work that corresponds to particular
virtual times. For example, if a system has processed messages associated with
virtual times t1 and t2, with t2 6≤ t1, the work for time t1 may be preserved while
that for time t2 may be undone, independently of the order in which the work
was originally performed.

More generally, each node p in a dataflow graph may roll back to a set of times
f(p). This set is not necessarily the same for all nodes, but consistency constrains
its choice. For example, virtual times for which a node p has produced visible
external output cannot, in general, be outside f(p): the output represents a
commitment. Despite such constraints, the flexibility of not having the same f(p)
for all nodes is attractive in practice. In particular, choosing a particular f(p)
may imply the availability of corresponding logs or checkpoints, and allowing
f(p) to vary means that subsystems may adopt their own policies for logging
and checkpointing.

The goal of this paper is to describe the design of our technique abstractly,
and to present specifications and proofs that have been essential for this design.
These specifications and proofs, which require a non-trivial use of prophecy vari-
ables [4], go beyond the analysis of internal dependencies (cf., e.g., [6]) to ensure
that rollbacks are observationally correct in the sense that every execution with
rollbacks is externally indistinguishable from an execution without rollbacks. We

? Most of this work was done at Microsoft Research. M. Abadi is now at Google.

are implementing the design in the context of the Naiad system [11]; we hope to
report on this implementation in the future.

The next section reviews the framework that we use for specifications and the
model of computation. Section 3 motivates an assumption on buffering external
outputs. Section 4 introduces auxiliary concepts and notations needed for the
specification of rollback and the corresponding proofs. That specification is the
subject of Section 5. Section 6 outlines the main steps of our proof that the model
of Section 5, which includes rollback, is a correct refinement of the high-level
model of Section 2.3. Section 7 briefly suggests four further elaborations of the
rollback mechanism. Finally, Section 8 concludes, and in particular comments
on the broader applicability of our ideas and results. An appendix contains
additional definitions and proofs.

2 Model of computation

This section describes our model of computation; it is based on another paper [2],
which provides further details.

2.1 Basics of specifications and implementations

In this work, as in much work based on temporal logic (e.g., [4, 10]), specifications
describe allowed behaviors, which are sequences of states. Each of the sequences
starts in an initial state, and every pair of consecutive states is either identical
(a “stutter”) or related by a step of computation. Formally, a specification is
a state machine, that is, a triple (Σ,F,N) where the state space Σ is a subset
of the product of a fixed set ΣE of externally visible states with a set ΣI of
internal states; the set F of initial states is a subset of Σ; and the next-state
relation N is a subset of Σ × Σ. The complete property generated by a state
machine (Σ,F,N) consists of all infinite sequences 〈〈s0, s1, . . .〉〉 such that s0 ∈ F
and, for all i ≥ 0, either 〈si, si+1〉 ∈ N or si = si+1. This set is closed under
stuttering and is a safety property. (We omit fairness conditions, for simplicity.)
The externally visible property generated by a state machine is the externally
visible property induced by its complete property via projection onto ΣE and
closure under stuttering. It need not be a safety property. A state machine S
implements a state machine S′ if and only if the externally visible property
generated by S is a subset of the externally visible property generated by S′.

2.2 Basics of timely dataflow

A system is a directed graph (possibly with cycles), in which nodes do the
processing and messages are communicated on edges. We write P for the set of
nodes. The set of edges is partitioned into input edges I, internal edges E, and
output edges O. Edges have sources and destinations (but not always both): for
each i ∈ I, dst(i) ∈ P , and src(i) is undefined; for each e ∈ E, src(e), dst(e) ∈ P ,
and we require that they are distinct; for each o ∈ O, src(o) ∈ P , and dst(o) is

2

undefined. We refer to nodes and edges as locations. We write M for the set of
messages, and M∗ for the set of finite sequences of messages.

We assume a partial order of virtual times (T,≤), and a function time from
M to T (independent of the order of processing of messages). Each node can
request to be notified when it has received all messages for a given virtual time.
We allow T to include multiple time domains, that is, subsets that may use
different coordinate systems or express different concerns. For example, inside
loops, virtual times may be tuples with coordinates that represent iteration
counters. Therefore, it is not always meaningful to compare virtual times at
different graph locations. For simplicity, we assume that all inputs, notifications,
and notification requests (but not outputs) at each node are in the same time
domain; if inputs in different time domains are desired, auxiliary relay nodes can
translate across time domains.

The state of a system consists of a mapping from nodes to their local states
and outstanding notification requests plus a mapping from edges to their con-
tents. We write LocState(p) for the local state of node p, and ΣLoc for the set of
local states; NotRequests(p) for p’s outstanding notification requests, which are
elements of T ; and Q(e) for the finite sequence of messages on edge e.

A local history for a node p is a finite sequence that starts with an initial local
state that satisfies a given predicate Initial(p), and a set N of initial notification
requests, and is followed by events of the forms t and (e,m); these events indicate
the received notifications and the received messages with corresponding edges.
We write Histories(p) for the set of local histories of p.

We assume that initially, in every behavior of a system, each node p is in a
local state that satisfies Initial(p), and p has some set of notification requests;
and for each edge i ∈ I we let Q(i) contain an arbitrary finite sequence of
messages, and for each edge e ∈ E ∪O we let Q(e) be empty. Thereafter, in the
absence of rollback, at each step of computation (atomically, for simplicity), a
node consumes a notification or a message, and produces notification requests
and places messages on its outgoing edges.

The processing of events is defined by a function g1(p) for each node p, which
is applied to p’s local state s and to an event x (either a time t or a pair (e,m)),
and which produces a new state s′, a set of times N , and finite sequences of
messages µ1, . . . , µk on p’s outgoing edges e1, . . . , ek, respectively. We write:

g1(p)(s, x) = (s′, N, 〈e1 7→µ1, . . . , ek 7→µk〉)

where 〈e1 7→µ1, . . . , ek 7→µk〉 is the function that maps e1 to µ1, . . . , ek to µk.
Iterating g1(p), we obtain a function g(p) which takes as input a local history h
and produces a new state s′ and the resulting cumulative notification requests
and sequences of messages µ1, . . . , µk:

g(p)(h) = (s′, N, 〈e1 7→µ1, . . . , ek 7→µk〉)

We let ΠLoc(s
′, N, 〈e1 7→µ1, . . . , ek 7→µk〉) = s′, ΠNR(s′, N, 〈e1 7→µ1, . . . , ek 7→µk〉)

= N , and Πei(s
′, N, 〈e1 7→µ1, . . . , ek 7→µk〉) = µi for i = i . . . k.

3

When one event at a given virtual time t and location l in a dataflow graph
can potentially result in another event at a virtual time t′ and location l′ in
the same graph, we say that (l, t) could-result-in (l′, t′), and write (l, t) (l′, t′).
For example, when a node p forwards on an outgoing edge e all the messages
that it receives on an incoming edge d, we have that (d, t) (e, t) for all t. The
could-result-in relation enables an implementation of timely dataflow to support
completion notifications, which tell a node when it will no longer see messages
for a given time, and also to reclaim resources that correspond to pairs (l, t) at
which no more events are possible. Another paper [2] gives a precise definition of
 and of the assumptions and properties on which we base our proofs. These
include, in particular, that is reflexive and transitive.

A set S ⊆ ((I ∪E ∪O) ∪ P)× T is upward closed if and only if, for all (l, t)
and (l′, t′), (l, t) ∈ S and (l, t) (l′, t′) imply (l′, t′) ∈ S. We write Close↑(S) for
the least upward closed set that contains S. Since is reflexive and transitive,
Close↑(S) consists of the pairs (l′, t′) such that (l, t) (l′, t′) for some (l, t) ∈ S.

2.3 High-level specification

Throughout this paper, each element of ΣE is an assignment of a value to Q(e)
for each e ∈ I ∪ O (that is, to Q�(I ∪ O), where the symbol � denotes function
restriction). In other words, the externally visible state consists of the contents
of input and output channels. In the high-level specification, each element of ΣI

is an assignment of a value to LocState(p) and NotRequests(p) for each p ∈ P ,
and to Q(e) for each e ∈ E (that is, to Q�E). In our lower-level specifications,
below, each element of ΣI has additional components.

Loosely adopting the TLA [10] approach, we define a high-level specifica-
tion SpecR in Figure 1. We use the following TLA notations. A primed state
function (for example, Q′) in an action refers to the value of the state function
in the “next” state (the state after the action); is the temporal-logic opera-
tor “always”; given an action N and a list of expressions v1, . . . , vk, [N]v1,...,vk
abbreviates N ∨((v′1 = v1)∧ . . .∧(v′k = vk)). Internal state functions are existen-
tially quantified. We also write v for the list of the state components LocState,
NotRequests, and Q, and use the auxiliary state function Clock which indicates
pairs of a location and a time for which events may remain:

Clock = Close↑

{(e, time(m)) | e ∈ I ∪ E ∪O,m ∈ Q(e)}
∪

{(p, t) | p ∈ P, t ∈ NotRequests(p)}


The predicate InitProp defines the initial states of a state machine, while the
action MessR ∨ Not ∨ Inp ∨ Outp defines its next-state relation. The disjuncts
MessR, Not , Inp, and Outp correspond, respectively, to processing messages,
processing notification requests, external changes to input edges, and external
changes to output edges. Action Inp could be further constrained to ensure that
it only shrinks Clock or leaves it unchanged. Importantly, MessR does not strictly
require FIFO behavior. Given a queue Q(e), a node may process any message

4

InitProp =

(
∀e ∈ E ∪O.Q(e) = ∅ ∧ ∀i ∈ I.Q(i) ∈M∗
∧∀p ∈ P.(LocState(p),NotRequests(p)) ∈ Initial(p)

)
MessR = ∃p ∈ P.MessR1 (p)

MessR1 (p) =

∃e ∈ I ∪ E.p = dst(e) ∧ ∃m ∈M.∃u, v ∈M∗.
Q(e) = u·m·v ∧Q′(e) = u·v ∧ ∀n ∈ u.time(n) 6≤ time(m)
∧Mess2 (p, e,m)



Mess2 (p, e,m) =



let {e1, . . . , ek} = {d ∈ E ∪O | src(d) = p},
s = LocState(p),
(s′, {t1, . . . , tn}, 〈e1 7→µ1, . . . , ek 7→µk〉) = g1(p)(s, (e,m))
in LocState ′(p) = s′

∧ NotRequests ′(p) = NotRequests(p) ∪ {t1, . . . , tn}
∧ Q′(e1) = Q(e1)·µ1 . . . Q

′(ek) = Q(ek)·µk

∧ ∀q ∈ P 6= p.LocState ′(q) = LocState(q)
∧ ∀q ∈ P 6= p.NotRequests ′(q) = NotRequests(q)
∧ ∀d ∈ I ∪ E ∪O − {e, e1, . . . , ek}.Q′(d) = Q(d)


Not = ∃p ∈ P.Not1 (p)

Not1 (p) = ∃t ∈ NotRequests(p).

∀e ∈ I ∪ E such that dst(e) = p.(e, t) 6∈ Clock ∧Not2 (p, t)

Not2 (p, t) =



let {e1, . . . , ek} = {d ∈ E ∪O | src(d) = p},
s = LocState(p),
(s′, {t1, . . . , tn}, 〈e1 7→µ1, . . . , ek 7→µk〉) = g1(p)(s, t)
in LocState ′(p) = s′

∧ NotRequests ′(p) = NotRequests(p)− {t} ∪ {t1, . . . , tn}
∧ Q′(e1) = Q(e1)·µ1 . . . Q

′(ek) = Q(ek)·µk

∧ ∀q ∈ P 6= p.LocState ′(q) = LocState(q)
∧ ∀q ∈ P 6= p.NotRequests ′(q) = NotRequests(q)
∧ ∀d ∈ I ∪ E ∪O − {e1, . . . , ek}.Q′(d) = Q(d)



Inp =


∀p ∈ P.LocState ′(p) = LocState(p)
∧ ∀p ∈ P.NotRequests ′(p) = NotRequests(p)
∧ ∀i ∈ I.Q(i) is a subsequence of Q′(i)
∧ ∀d ∈ E ∪O.Q′(d) = Q(d)



Outp =


∀p ∈ P.LocState ′(p) = LocState(p)
∧ ∀p ∈ P.NotRequests ′(p) = NotRequests(p)
∧ ∀o ∈ O.Q′(o) is a subsequence of Q(o)
∧ ∀d ∈ I ∪ E.Q′(d) = Q(d)


SpecR = ∃LocState,NotRequests, Q�E.

InitProp ∧ [MessR ∨Not ∨ Inp ∨Outp]v

Fig. 1. High-level specification

5

m such that there is no message n ahead of m with time(n) ≤ time(m). This
relaxation has various benefits, for example in supporting optimizations. For our
purposes, it is crucial for obtaining a flexible and correct rollback technique. For
example, suppose that a node receives a message for time 2 and then a message
for time 1. We would like to be able to undo the work for time 2 while preserving
the work for time 1. The system will then behave as though the message for time
1 had overtaken the message for time 2. Therefore, our high-level specification
should enable such overtaking.

3 An assumption on external outputs

The model of Section 2.2 allows each node to consume and produce multiple
events in one atomic action. While such behavior does not pose problems when
it is limited to internal edges, it complicates selective rollback when it becomes
visible on output edges, as the following example illustrates.

Example 1. Suppose that q has an outgoing edge o ∈ O. Suppose that t1 and
t2 are incomparable times, and t3 is greater than both. As long as q receives
messages only for time t1, it forwards them, outputting them on o, with the
same “payload” but at time t3. As soon as q receives a notification for time t2, it
stops doing any forwarding. Suppose that in a run q has received a notification
for time t2 followed by 50 messages for time t1, so q has not output anything
on o. Suppose that we wish to roll back to a state where q has received the
messages for time t1 but not the notification for time t2. Consistency requires
that there should be 50 messages on o. But a rollback action cannot put them
there all atomically, since in a run without the notification for time t2 they would
have appeared one after another, not all at once.

This example suggests that rollback can benefit from buffering external out-
puts. Buffering may be “a simple matter of programming”. Alternatively, we
can achieve it “for free” by adding buffer nodes (between q and o in the ex-
ample). More generally, buffer nodes can support asynchronous behavior (see,
e.g., [12]). Formally, we say that p ∈ P is a buffer node if there exists exactly
one e1 ∈ I ∪ E such that dst(e1) = p; there exists exactly one e2 ∈ E ∪ O such
that src(e2) = p; for this e2, g1(p)(s, t) = (s, ∅, 〈e2 7→∅〉); and for this e1 and e2,
g1(p)(s, (e1,m)) = (s, ∅, 〈e2 7→〈〈m〉〉〉). Such a node p is simply a relay between
queues. We assume:

Condition 1 If o ∈ O and src(o) = p then p is a buffer node.

4 Auxiliary concepts

This section reviews a few auxiliary concepts and corresponding notations (in-
troduced in the study of information-flow security properties [3]).

6

4.1 Sequences, frontiers, filtering, and reordering

We write ∅ for the empty sequence, 〈〈a0, a1, . . .〉〉 for a sequence that contains
a0, a1, . . . (as above), and use · both for adding elements to sequences and for
appending sequences. We define subtraction for sequences, inductively, by:

u− ∅ = u ∅ −m = ∅
u−m·v = (u−m)− v (m·u−m) = u

(n·u−m) = n·(u−m) for n 6= m

A subset S of T is downward closed if and only if, for all t and t′, t ∈ S and
t′ ≤ t imply t′ ∈ S. We call such a subset a frontier , and write F for the set of
frontiers; we often let f range over frontiers. (In the parlance of mathematics, a
frontier might be called an ideal; in that of distributed systems, frontiers resemble
consistent cuts.) When S ⊆ T , we write Close↓(S) for the downward closure of
S (the least frontier that contains S).

Filtering operations on histories and on sequences of messages keep or re-
move elements in a given frontier. Given a local history h = 〈〈(s,N), x1, . . . , xk〉〉
and a frontier f , where each xi is of the form ti or (di,mi), we write h@f for
the subsequence of h obtained by removing all ti 6∈ f and all (di,mi) such that
time(mi) 6∈ f . When u is a sequence of messages, we write u@f for the subse-
quence obtained by removing those messages whose times are not in f . Finally,
given a sequence of messages u and a frontier f , we write u\@f for the subsequence
of u consisting only of messages whose times are not in f .

The reordering relation ↪→ on finite sequences of messages is the least re-
flexive and transitive relation such that, for u, v ∈ M∗ and m1,m2 ∈ M , if
time(m1) 6≤ time(m2) then u·m1·m2·v ↪→u·m2·m1·v. This relation models the
reordering that happens in message processing according to action MessR, so
serves in reasoning with this action.

4.2 Expressing dependencies

Rollback can exploit information on whether a history or a part of a history at
a node suffices for determining a notification request or message generated by
the node. For example, if we know that p’s outputs up to time 1 are determined
entirely by its history up to time 1, and a rollback does not affect p’s history up
to time 1, then the outputs up to time 1 and their consequences downstream do
not need to be retracted. Here we consider how to capture such information.

We simply assume that every node’s notification requests up to time t are
determined by its local history up to time t, for all t. For messages, on the other
hand, many useful nodes do not satisfy an analogous property (for example,
because of the use of different time domains for inputs and outputs) or satisfy
stronger properties that we would want to leverage (as is the case for nodes that
increment loop counters). Therefore, we make a more flexible hypothesis: for
each edge e ∈ E ∪ O, we assume a function φ(e) from frontiers to frontiers (a
frontier transformer) such that h gives rise to a message on e in φ(e)(f) if and
only if so does h@f , and with messages in the same order and multiplicity:

7

Condition 2 For all f ∈ F , if g(p)(h) = (. . . , N, 〈. . . ei 7→µi . . .〉) and g(p)(h@f)
= (. . . , N ′, 〈. . . ei 7→µ′i . . .〉) then N@f = N ′@f and µi@φ(ei)(f) = µ′i@φ(ei)(f).

For example, when e is the output edge of a buffer node, we can let φ(e)(f) =
f for all f , that is, let φ(e) be the identity function. More generally, φ(e) may
be the identity function for many other edges, but this is not required. Neither
is it required that φ(e) be as precise as possible, though a more precise φ(e)
will generally be more useful. In this paper, we do not investigate how to check
that Condition 2 holds for a given φ: we simply posit that we can find a correct,
useful φ. Our experience indicates that this assumption is reasonable.

Additionally, we require that φ satisfy the following properties:

Condition 3 For all e ∈ E ∪O:

1. φ(e)(f1) ∩ φ(e)(f2) ⊆ φ(e)(f1 ∩ f2) for all f1, f2 ∈ F ,
2. φ(e)(T) = T ,
3. φ(e) is monotonic.

Conditions 3(1) and 3(3) imply that φ(e)(f1) ∩ φ(e)(f2) = φ(e)(f1 ∩ f2). In
combination with Condition 3(2), they say that φ(e) distributes over all finite
intersections, including the empty intersection that yields T . (We can justify a
stronger property, namely that φ(e) distributes over arbitrary intersections [3].)

5 Low-level specification (with rollback)

The low-level specification, which permits rollback, has the same state compo-
nents as the high-level specification plus an internal variable H that maps each
p ∈ P to a local history in Histories(p). The resulting state space is ΣLow.
Figure 2 defines the specification. There, we write v for the list of the state
components LocState, NotRequests, Q, and H.

The main novelties are in the action RollbackL. This action creates a global
state from local histories filtered down to frontiers f(p) by applying the function
g(p), for each node p. Among other things, for each outgoing internal edge ei
this function yields messages µi, from which messages in φ(ei)(f(p))∩f(dst(ei))
are expunged, intuitively because ei’s destination should already have them.

Crucially, the global state is completely determined by the local histories,
since g(p) is a function. So we are not concerned with recording non-deterministic
choices, other than those encoded in local histories, in order to ensure consistency
(for example, in order to ensure that any internal choices revealed by external
outputs are made in the same way at each rollback). As discussed in Section 7.2,
the creation of the global state may be accelerated by precomputation; the spec-
ification is silent on such implementation matters.

The choice of the frontiers f(p) is subject to several constraints. (Section 7.3
briefly considers how to pick frontiers that satisfy these constraints.) A guard
in RollbackL2 (f, p) requires that f(p) cannot contain times for which there are
messages in transit towards p on internal edges, basically because, in practice,

8

InitPropL = InitProp ∧ ∀p ∈ P.H(p) = 〈〈(LocState(p),NotRequests(p))〉〉

MessL = ∃p ∈ P.
MessR1 (p) ∧H ′(p) = H(p)·(e,m) ∧ ∀q ∈ P 6= p.H ′(q) = H(q)

NotL = ∃p ∈ P.NotL1 (p)

NotL1 (p) = ∃t ∈ NotRequests(p).∀e ∈ I ∪ E such that dst(e) = p.(e, t) 6∈ Clock
∧ Not2 (p, t)
∧ H ′(p) = H(p)·t ∧ ∀q ∈ P 6= p.H ′(q) = H(q)


InpL = Inp ∧ ∀p ∈ P.H ′(p) = H(p)

OutpL = Outp ∧ ∀p ∈ P.H ′(p) = H(p)

RollbackL = ∃f ∈ P→F.RollbackL1 (f)

RollbackL1 (f) =



∀p ∈ P, i ∈ I such that dst(i) = p.
{time(m) | (i,m) ∈ H(p)} ⊆ f(p)
∧ ∀p ∈ P, o ∈ O such that src(o) = p.
{time(m) | ∃e.(e,m) ∈ H(p)} ⊆ f(p)
∧ ∀p, q ∈ P, e ∈ E such that src(e) = p ∧ dst(e) = q.
{time(m) | (e,m) ∈ H(q)} ∩ f(q) ⊆ φ(e)(f(p))
∧ ∀p, q ∈ P, e1, e2 ∈ E such that src(e1) = p ∧ dst(e2) = q,
t1 ∈ T, t2 ∈ H(q)@f(q).
if (e1, t1) (e2, t2) then t1 ∈ φ(e1)(f(p))
∧ ∀e ∈ I ∪O.Q′(e) = Q(e)
∧ ∀p ∈ P.RollbackL2 (f, p)



RollbackL2 (f, p) =



f(p) ∩ {time(m) | ∃e ∈ E,m ∈M.dst(e) = p ∧m ∈ Q(e)} = ∅
∧
let {e1, . . . , ek} = {d ∈ E ∪O | src(d) = p},
h = H(p)@f(p),
(s′, {t1, . . . , tn}, 〈e1 7→µ1, . . . , ek 7→µk〉) = g(p)(h)
in
∀i ∈ 1 . . . k. if ei ∈ E

then Q′(ei) = µi\@(φ(ei)(f(p)) ∩ f(dst(ei)))
∧ LocState ′(p) = s′

∧ NotRequests ′(p) = {t1, . . . , tn}
∧ H ′(p) = h


SpecL = ∃LocState,NotRequests, H,Q�E.

InitPropL ∧ [MessL ∨NotL ∨ InpL ∨OutpL ∨ RollbackL]v

Fig. 2. Low-level specification

9

{𝑡𝑖𝑚𝑒(𝑚)} ∩ 𝑓(𝑞) ⊆ 𝜙(𝑒)(𝑓 𝑝)

𝑞 has consumed message 𝑚

3. Edge 𝑒 condition

𝑞
𝑚

𝑝
𝑒

𝑡𝑖𝑚𝑒 𝑚 ∈ 𝑓 𝑝

𝑝 has consumed message 𝑚

1. Input edge 𝑖 condition

𝑝
𝑚

𝑖

𝑡𝑖𝑚𝑒 𝑚 ∈ 𝜙(𝑜)(𝑓 𝑝) = 𝑓(𝑝)

𝑝 has consumed and relayed message 𝑚

2. Output edge 𝑜 condition

𝑝
𝑚 𝑚

𝑞
𝑜

𝑡2 ∈ 𝑓 𝑞 ∧ 𝑒1, 𝑡1 ⇝ 𝑒2, 𝑡2 ⇒ 𝑡1 ∈ 𝜙(𝑒1)(𝑓 𝑝)

𝑞 has received a notification at 𝑡2

4. Notification condition

𝑞𝑝
𝑒2𝑒1 …

Fig. 3. The guards in RollbackL1 (f)

any messages in transit on internal edges may be lost during the failures that
cause rollbacks. One way to ensure that this guard holds is to pick f(p) so that
it contains only times t for which (p, t) 6∈ Clock . In addition, while the frontiers
need not be the same at all nodes, guards in RollbackL1 (f) ensure that they are
chosen to be consistent with one another and with external inputs and outputs:

1. For each node p connected to an input edge i ∈ I, f(p) must contain the
times of all messages that p has consumed: we do not assume any external
mechanism for replaying those messages after a rollback, so p should not
forget them, in general. (Optimizations may however allow p to forget many
messages in practice.)

2. For each node p connected to an output edge o ∈ O, which must be a buffer
node, f(p) must contain the times of all messages that p has consumed and
therefore relayed: they cannot be retracted.

3. For each pair of nodes p and q and edge e from p to q, φ(e)(f(p)) must
contain the times of all the messages that q has consumed and that are in
f(q): since q keeps those messages, p must keep the part of its local history
that determines them.

4. Finally, an analogous but more complicated guard refers to notifications. It
ensures that if a node q has received a notification for a time t2 ∈ f(q), then
every node p that might cause events at t2 at q keeps the part of its local
history that would determine those events.
Below, in Section 7.4, we develop a refinement of SpecL that simplifies the
treatment of this guard.

Figure 3 summarizes these four guards; when a message m is shown under an
edge, it means that m has been transmitted on that edge (not that it is currently

10

in transit). The following two examples illustrate the role of guards (3) and (4),
respectively.

Example 2. Suppose that p has incoming edges d0 and d1 and outgoing edges
e0 and e1 to q0 and q1, respectively; and that q0 and q1 are buffer nodes, with
respective output edges o0 and o1. Suppose that p forwards all messages from d0
on e0 or from d1 on e1, but not both, depending on whether it reads first from d0
or from d1. For simplicity, initially, we let φ(e) be the identity function for every
edge e. Assume that, in a particular run, a message with time 0 has travelled
from d0 to o0 via p, e0, and q0. Upon a rollback, let 0 ∈ f(q0), as suggested by
guard (2). Guard (3) then dictates that 0 ∈ f(p). If instead we had f(p) = ∅,
and upon recovery p first reads from d1, it would cause an output on o1, which
is inconsistent with the previous output on o0.

As a variant, suppose that p increments all virtual times, so the message from
d0 yields an output on o0 with time 1. We take φ(e0)(f) = {0} ∪ {t+ 1 | t ∈ f}.
Upon a rollback, we should have 1 ∈ f(q0), but we do not need to impose that
1 ∈ f(p): the application of φ(e0) implies that 0 ∈ f(p) suffices.

Example 3. Suppose that p0 and p1 each send a message to p2, with times 0 and
1 respectively. Suppose further that, when it receives a message with time 0, p2
forwards its “payload” with time 1 to p3 on an edge e, but only if it has not
yet processed a message with time 1. Therefore, we have that (p2, 0) (p3, 1)
but not (p2, 1) (p3, 1), and we can let φ(e) be the identity function. Assume
that, in a particular run, p2 hears from p1 first, then from p0, so p2 never sends
anything to p3; then p3 receives a completion notification for time 1; and then
a rollback takes place with f(p2) = {0}. Upon recovery, it appears to p2 that
it heard from p0 first, so it should send a message at time 1 to p2. As this
message would contradict the completion notification for time 1, we cannot have
1 ∈ f(p3). Guard (4) prevents it.

As mentioned in Section 4.2, we need not have the most accurate function φ.
Since the occurrences of φ in the guards for RollbackL are all in positive positions,
using a more informative φ makes rollbacks more liberal. On the other hand,
using a less informative φ (obtained by some under-approximation) does not
compromise soundness. Section 7.1 discusses other approximations that may be
attractive in practice.

6 Refinement theorem

Our main result is that the low-level specification SpecL implements the high-
level specification SpecR. In other words, the behaviors in the externally visible
property of the system with rollback are all in the externally visible property of
the system without rollback; so, externally, one cannot tell whether a behavior
includes rollback transitions.

For safety properties, we can prove implementation relations by reasoning
only about finite prefixes of behaviors: when Spec is a safety property, if every

11

prefix of a behavior in Spec′ is the prefix of a behavior in Spec then Spec′ imple-
ments Spec. While such reasoning may not be easy, it can avoid complications
related to liveness properties, such as finiteness requirements on prophecy vari-
ables [4]. Unfortunately, although SpecR’s body (InitProp ∧ [MessR ∨ Not ∨
Inp ∨Outp]v) is clearly a safety property, SpecR itself need not be one, because
safety properties are not closed under existential quantification. Therefore, our
proof does have to address those complications.

The proof is rather long, so we cannot present it in full detail, but we hope
to convey its main elements.

Invariant As in many refinement proofs, the first step is to establish an induc-
tive invariant of the low-level specification. In this case, the invariant, which we
call Inv , relates the function g to elements of the state, at each node and edge.
It is the conjunction of the following formulas:

∀p ∈ P.ΠLocg(p)(H(p)) = LocState(p)

∀p ∈ P.ΠNRg(p)(H(p)) = NotRequests(p)

∀p, q ∈ P, e ∈ E such that src(e) = p ∧ dst(e) = q.
Πeg(p)(H(p)) ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e))

Prophecy variable Constructing a refinement mapping is a sound method
for proving an implementation relation. Unfortunately, it is not complete on its
own [4]. Auxiliary variables are often required to complement refinement map-
pings. In our case, we cannot find a refinement mapping basically because we
cannot predict the effects of future rollbacks, but the addition of a prophecy vari-
able to the low-level specification can provide the required, missing information.
(Another paper [1] explains this situation in detail with much smaller examples,
not tied to timely dataflow.) Specifically, we add an auxiliary variable D that
maps each node p to a frontier. Intuitively, D(p) consists of times not affected
by future rollbacks at p. Formally, D(p) is subject to a number of constraints,
imposed via the definition of an enriched state space ΣP

Low:

Construction 1 The enriched state space ΣP
Low consists of pairs of a state from

ΣLow (with components LocState, NotRequests, Q, and H) and a function D
from P to F such that:

1. ∀p ∈ P,∀i ∈ I such that dst(i) = p.{time(m) | (i,m) ∈ H(p)} ⊆ D(p),
2. ∀p ∈ P,∀o ∈ O such that src(o) = p.{time(m) | ∃e.(e,m) ∈ H(p)} ⊆ D(p),
3. ∀p, q ∈ P,∀e ∈ E such that src(e) = p, dst(e) = q,∀m ∈ M such that m ∈

Q(e) ∨ (e,m) ∈ H(q).if time(m) ∈ D(q) then time(m) ∈ φ(e)(D(p)),
4. ∀p, q ∈ P,∀e1, e2 ∈ E such that src(e1) = p, dst(e2) = q,∀t1 ∈ T, t2 ∈

H(q)@D(q). if (e1, t1) (e2, t2) then t1 ∈ φ(e1)(D(p)).

These conditions are analogous to those in the definition of the action RollbackL.
However, they apply at all times, not just during rollbacks. This distinction
largely accounts for the small differences between them.

12

The following specification extends SpecL with conjuncts that describe the
changes in D. Here, v is the list of all previous state components plus D.

InitPropP = InitPropL

MessP = MessL ∧D = D′

NotP = NotL ∧D = D′

InpP = InpL ∧D = D′

OutpP = OutpL ∧D = D′

RollbackP = ∃f ∈ P→F.RollbackL1 (f) ∧D = (D′ ∩ f)

SpecP = ∃LocState,NotRequests, H,Q�E,D as per Construction 1.

InitPropP ∧ [MessP ∨NotP ∨ InpP ∨OutpP ∨ RollbackP]v

Most transitions are such that D = D′. The exception is in rollbacks, where
we have D = D′ ∩ f . In other words, at each node p, the times D(p) that will
survive future rollbacks, starting from before a particular rollback to f(p), are
those in f(p) that will survive future rollbacks after the transition, that is, those
in D′(p)∩ f(p). Characteristically, the current value D of the prophecy variable
is defined from its next value D′.

There are standard conditions on what it means to be a prophecy variable.
Unfortunately, D, as we have defined it, does not quite satisfy them, because each
state in ΣLow may yield infinitely many states in ΣP

Low. We address this difficulty
by quotienting by the equivalence relation Q such that (s1, D1)Q(s2, D2) if and
only if s1 = s2 and D1 and D2 coincide on the finite set of times ITimes(H),
where H is the history component of s1 and s2, and ITimes(H) consists of all
t ∈ T such that, for some p, time(m) = t for some (e,m) ∈ H(p) or t ∈ H(p).
Intuitively, ITimes(H) consists of the “interesting” times given H. For each s ∈
ΣLow, the set of equivalence classes {(s,D) ∈ ΣP

Low}/Q is finite. The soundness
of prophecy variables yields that SpecL implements the quotient of SpecP by Q,
which we call SpecP/Q.

Refinement mapping Using the invariant Inv and the auxiliary variable D,
we construct a refinement mapping from the low-level specification to the high-
level specification. This mapping is a function from ΣP

Low to ΣHigh that preserves
externally visible state components, maps initial states to initial states, and maps
steps to steps or to stutters. Basically, it maps a low-level state to a high-level
state by pretending that each node p did not process any events with times
outside D(p). Formally, it is defined by the following state functions:

HLocState(p) = ΠLocg(p)(H(p)@D(p))

HNotRequests(p) = ΠNRg(p)(H(p)@D(p))

HQ(e) = Q(e) for e ∈ I ∪O

HQ(e) = Πeg(p)(H(p)@D(p))− 〈m | m ∈M, (e,m) ∈ H(q)〉@D(q)

where p = src(e) and q = dst(e), for e ∈ E

13

Thus, for each node p, HLocState(p) and HNotRequests(p) are obtained by ap-
plying g(p) to p’s filtered local history. Similarly, for an internal edge e from
a node p to a node q, HQ(e) is obtained by applying g(p) to p’s filtered local
history, but subtracting messages that q has consumed according to its filtered
local history. When e is an input or an output edge, HQ(e) simply equals Q(e),
since Q(e) is externally visible.

This refinement mapping respects the equivalence relation Q. In other words,
it maps equivalent low-level states to the same high-level state. Therefore, the
refinement mapping from ΣP

Low induces a refinement mapping from Q’s equiv-
alence classes, and the soundness of refinement mappings yields that SpecP/Q
implements SpecR. By transitivity, we conclude:

Theorem 1. SpecL implements SpecR.

7 Further refinements

In this section we consider several further refinements of the low-level specifi-
cation. Our main goal is to provide evidence that the low-level specification is
a useful step towards concrete, correct implementations, and to indicate some
possible features of those implementations.

7.1 Approximating the clock and the could-result-in relation

The low-level specification mentions the state function Clock and also refers to
the relation directly. Both of these may be hard to calculate precisely and
efficiently. Fortunately, it is sound to replace Clock with any over-approximation.
Using a bigger state function will mean that fewer notifications may be delivered
at any point, so may result in a smaller set of behaviors. Similarly, it is sound
to over-approximate the relation in its other use in the specification (since
it is in a negative position).

7.2 Precomputations

While the specification of RollbackL suggests that a new state can be com-
puted by applying the function g to filtered local histories, this computation
may be expensive, and there is no requirement that an implementation per-
form it naively and on the fly. In particular, an implementation may com-
pute and store the values of g(p)(h) for certain local histories h, as it runs.
For this purpose, an implementation might leverage commutativity properties
that could require careful analysis. In any case, much like traditional check-
points, these values can later facilitate rollback. Formally, the precomputation
simply provides an efficient way of satisfying the equations h = H(p)@f(p) and
(s′, {t1, . . . , tn}, 〈e1 7→µ1, . . . , ek 7→µk〉) = g(p)(h) in RollbackL.

14

7.3 Choosing frontiers

The specification of RollbackL does not describe how to find a function f that sat-
isfies its constraints. A possible refinement consists in specifying that it chooses
the largest solution (the function that yields the largest frontiers), which is the
one that entails the least rollback. A largest solution exists because the set of
functions that satisfy the constraints is closed under arbitrary unions. A further
refinement consists in specifying that it chooses the largest solution that has
some additional properties. For example, each processor may be willing to roll
back only to some subset of “available” frontiers (possibly ones for which it has
checkpoints, or ones that do not contain times of events deemed problematic for
whatever reason). A largest solution will still exist as long as the set of “avail-
able” frontiers is closed under unions. We are currently exploring whether and
how finding largest solutions can be practical, at least in special cases.

7.4 Implementing the guard on notifications

One of the guards in RollbackL (guard (4)) includes a relatively complex condi-
tion that refers to the relation and potentially requires some checking for all
pairs of edges. We can replace that condition with one that necessitates only sim-
pler checks. For this purpose, we introduce an additional function fc. For all p,
fc(p) is a subset of f(p) and, intuitively, represents those times for which events
must be preserved in order to respect notifications. The specification SpecS is
obtained from SpecL by replacing that guard with the requirement that, for some
fc : P→F :

1. ∀p ∈ P.fc(p) ⊆ f(p),
2. ∀p ∈ P, t ∈ T. if t ∈ H(p)@f(p) then t ∈ fc(p), and
3. ∀p, q ∈ P, e ∈ E such that src(e) = p ∧ dst(e) = q.fc(q) ⊆ φ(e)(fc(p)).

We can prove that these conditions are sufficient (but not necessary). We obtain:

Theorem 2. SpecS implies SpecL.

8 Conclusion

This paper describes and studies, formally, the design of a technique for rollback
recovery. This technique is delicate, so its rigorous development has been benefi-
cial. The required proofs have been challenging but, in our opinion, interesting,
in particular because of the advanced application of prophecy variables.

The main motivation for our work has been fault-tolerance in the timely-
dataflow model of computation. However, some of the machinery that we have
developed is more broadly applicable. In particular, rollbacks may arise not
only because of failures but also, for example, to undo speculative computations
or to revert the effects of attacks. Moreover, the use of functions on frontiers
for expressing dependencies and some of the corresponding end-to-end results

15

may be valuable even for systems without rollback. (Some of the proofs in our
work on information-flow security properties [3] resemble those of this paper,
but they are considerably simpler, and in particular do not include prophecy
variables.) Finally, some of the ideas developed here may help explain, in a
common framework, specific schemes for recovery in models less general than
timely dataflow (e.g., [5]).

Acknowledgments We are grateful to our coauthors in work on Naiad for
discussions that led to this paper.

References

1. Abadi, M.: The prophecy of undo. In: Egyed, A., Schaefer, I. (eds.) Proceedings of
the 18th International Conference on Fundamental Approaches to Software Engi-
neering. Springer (2015), to appear.

2. Abadi, M., Isard, M.: Timely dataflow: A model (2014), in preparation, draft avail-
able at https://users.soe.ucsc.edu/~abadi/allpapers-chron.html.

3. Abadi, M., Isard, M.: On the flow of data, information, and time. In: Focardi, R.,
Myers, A. (eds.) Proceedings of the 4th Conference on Principles of Security and
Trust. Springer (2015), to appear.

4. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Com-
puter Science 82(2), 253–284 (1991)

5. Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman, J., Lax, R.,
McVeety, S., Mills, D., Nordstrom, P., Whittle, S.: MillWheel: Fault-tolerant
stream processing at Internet scale. Proceedings of the VLDB Endowment 6(11)
(Aug 2013)

6. Alvisi, L., Marzullo, K.: Message logging: Pessimistic, optimistic, causal, and op-
timal. IEEE Transactions on Software Engineering 24(2), 149–159 (1998)

7. Elnozahy, E.N., Alvisi, L., Wang, Y., Johnson, D.B.: A survey of rollback-recovery
protocols in message-passing systems. ACM Computing Surveys 34(3), 375–408
(2002)

8. Jefferson, D.R.: Virtual time. ACM Transactions on Programming Languages and
Systems 7(3), 404–425 (Jul 1985)

9. Kahn, G.: The semantics of simple language for parallel programming. In: IFIP
Congress. pp. 471–475 (1974)

10. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

11. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad: a
timely dataflow system. In: ACM SIGOPS 24th Symposium on Operating Systems
Principles. pp. 439–455 (2013)

12. Selinger, P.: First-order axioms for asynchrony. In: Mazurkiewicz, A.W., Win-
kowski, J. (eds.) CONCUR ’97: Concurrency Theory, 8th International Conference.
vol. 1243, pp. 376–390. Springer (1997)

16

Appendix

This appendix contains additional definitions and proofs. Some of them, in par-
ticular basic ones about the model of computation, are from other papers; we
include them here for the convenience of readers. The proofs of the main results
of this paper are of course new.

Proof techniques

The following results (from [4, 1]) provide basic proof techniques. We state them
without justification.

Proposition 1 (Soundness of refinement mappings). If there exists a re-
finement mapping from S to S′, then S implements S′.

We say that SP = (ΣP , FP , NP) is obtained from S = (Σ,F,N) by adding
a very simple prophecy variable when the following conditions are satisfied:

P1. ΣP ⊆ Σ ×ΣP for some set ΣP .
P2′. FP = {(s, p) ∈ ΣP | s ∈ F}.
P4′. If 〈s, s′〉 ∈ N and (s′, p′) ∈ ΣP

then there exists (s, p) ∈ ΣP such that 〈(s, p), (s′, p′)〉 ∈ NP .
P6. For all s ∈ Σ, the set {(s, p) ∈ ΣP } is finite and nonempty.

We say that SP = (ΣP , FP , NP) is obtained from S = (Σ,F,N) almost by
adding a very simple prophecy when the usual conditions P1, P2′, and P4′ hold,
and instead of P6 we have only part of it:

P6′. For all s ∈ Σ, the set {(s, p) ∈ ΣP } is nonempty.

Proposition 2 (Soundness of very simple prophecy variables). If SP is
obtained from S by adding a very simple prophecy variable, then S implements
SP.

When Q is an equivalence relation on Σ, the quotient of the state machine
S = (Σ,F,N) by Q is the state machine S/Q = (Σ/Q, F/Q, N/Q) such that:

Q1. Σ/Q = Σ/Q (the set of equivalence classes of states from Σ).
Q2. For s ∈ Σ/Q, s ∈ F/Q if and only if there exists s′ ∈ s such that s′ ∈ F .
Q3. For s, t ∈ Σ/Q, 〈s, t〉 ∈ N/Q if and only if

there exist s′ ∈ s and t′ ∈ t such that 〈s′, t′〉 ∈ N .

We represent each equivalence class in Σ/Q by an arbitrary member (say,
the smallest in a fixed ordering of Σ), so that Σ/Q ⊆ Σ and Σ/Q ⊆ ΣE × ΣI

for some set ΣI . We write [s] for s’s equivalence class.
We say that a function f with domain Σ respects the equivalence relation Q

on Σ when, for all s, t ∈ Σ, if sQt then f(s) = f(t).

17

Proposition 3. Let S = (Σ,F,N) and S′ = (Σ′, F ′, N ′), and let S/Q be the
quotient of S by an equivalence relation Q on Σ. Assume that:

– f is a refinement mapping from S to S′,

– f respects Q.

Let f/Q : Σ/Q → Σ′ be such that, for all s ∈ Σ/Q, f/Q(s) = f(s). Then f/Q is
a refinement mapping from S/Q to S′.

Proposition 4. Let S = (Σ,F,N) and SP = (ΣP , FP , NP), and let SP
/Q =

(ΣP
/Q, F

P
/Q, N

P
/Q) be the quotient of SP by the equivalence relation Q on ΣP .

Assume that:

1. SP is obtained from S almost by adding a very simple prophecy variable,

2. for all (s1, p1), (s2, p2) ∈ ΣP , if (s1, p1)Q(s2, p2) then s1 = s2 (in other
words, projecting to the first component respects Q),

3. for all s ∈ Σ, the set {(s, p) ∈ ΣP }/Q is finite.

Then SP
/Q is obtained from S by adding a very simple prophecy variable.

We say that Inv is an inductive invariant of the state machine S = (Σ,F,N)
if Inv ⊆ Σ, F ⊆ Inv , and, for all s, t ∈ Σ, if 〈s, t〉 ∈ N and s ∈ Inv then t ∈ Inv .
We sometimes refer to inductive invariants as invariants, for short, but there is
a distinction between the two in the literature.

Given a subset Inv of Σ and an equivalence relation Q on Σ, we write Inv/Q
for the subset of Σ/Q such that s ∈ Inv/Q if and only if there exists s′ ∈ s such
that s′ ∈ Inv . (This notation generalizes the definition of F/Q.)

We say that Inv respects the equivalence relation Q when, for all s, t ∈ Σ, if
sQt and s ∈ Inv then t ∈ Inv .

Proposition 5. Assume that:

– Inv is an inductive invariant of S = (Σ,F,N),

– Inv respects the equivalence relation Q on Σ.

Then Inv/Q is an inductive invariant of S/Q = (Σ/Q, F/Q, N/Q).

Given a specification S = (Σ,F,N) and a subset Inv of Σ, we write S + Inv
for (Σ,F,N ∩ (Inv ×Σ)).

Proposition 6. Assume that Inv is an inductive invariant of S = (Σ,F,N).
Then S and S + Inv generate the same complete property.

Proposition 7. Assume that Inv respects Q. Then the complete property that
S/Q + Inv/Q generates is included in that of (S + Inv)/Q.

18

Review of the could-result-in relation

We review the definition of the could-result-in relation and some of its properties.
Some of this material is from a paper on the computational model [2].

A pointstamp is a pair (x, t) of a location x (node or edge) in a graph and
a time t. Thus, the set of pointstamps is ((I ∪ E ∪ O) ∪ P) × T . We say that
pointstamp (x, t) could-result-in pointstamp (x′, t′), and write (x, t) (x′, t′),
if a message or notification at location x and time t may lead to a message or
notification at location x′ and time t′. We define via an auxiliary relation
 1 that reflects one step of computation.

Definition 1. (p, t) 1 (d, t′) if and only if src(d) = p and there exists a history
h for p and a state s such that

g(p)(h) = (s, . . .)

and an event x such that either x = t or x = (e,m) for some e and m such that
t = time(m), and

g1(p)(s, x) = (. . . , 〈. . . d7→µ . . .〉)

where some element of µ has time t′.

Definition 2. (x, t) (x′, t′) if and only if

– x = x′ and t ≤ t′, or
– there exist k > 1, distinct xi for i = 1 . . . k, and (not necessarily distinct) ti

for i = 1 . . . k, such that x = x1, x′ = xk, t ≤ t1, and tk ≤ t′, and for all
i = 1 . . . k − 1:

• xi ∈ I ∪ E, xi+1 ∈ P , dst(xi) = xi+1, and ti = ti+1, or
• xi ∈ P , xi+1 ∈ E ∪ O, src(xi+1) = xi, and there exist t′i ≥ ti and
t′′i ≤ ti+1 such that (xi, t

′
i)

1 (xi+1, t
′′
i).

In the first case, we say that the proof of (x, t) (x′, t′) has length 1; in the
second, that it has length k. (These lengths are helpful in inductive arguments.
Despite the informal wording, we do not need proofs to be unique.)

Proposition 8.

1. If (p, t1) (e, t2) then there are e′ ∈ E ∪O and t′ ∈ T such that src(e′) = p,
(p, t1) (e′, t′) and (e′, t′) (e, t2).
Moreover, the proof of (e′, t′) (e, t2) is strictly shorter than that of (p, t1)
 (e, t2).

2. If (e1, t1) (e2, t2), where e1 and e2 are different, and dst(e1) = p, then
(p, t1) (e2, t2).
Moreover, the proof of (p, t1) (e2, t2) is strictly shorter than that of (e1, t1)
 (e2, t2).

3. If (x, t1) (x, t2) then t1 ≤ t2.

19

4. If (p, t1) (e, t2) and src(e) = p then there exist a history h for p and a
state s such that

g(p)(h) = (s, . . .)

and an event t′ for some t′ such that t1 ≤ t′ or x = (d,m) for some d and
m such that t1 ≤ time(m), and

g1(p)(s, x) = (. . . , 〈. . . e 7→µ . . .〉)

where some element of µ has time ≤ t2.
5. If (x, t1) (i, t2) for i ∈ I, then x = i.
6. If (o, t1) (x, t2) for o ∈ O, then x = o.
7. If (x1, t1) (x2, t2), t′1 ≤ t1, and t2 ≤ t′2, then (x1, t

′
1) (x2, t

′
2).

Proof:

1. Suppose that (p, t) (e, t′). Since p and e are different, by the definition of
 there exist distinct xi for i = 1 . . . k, ti for i = 1 . . . k such that p = x1,
e = xk, t ≤ t1 and tk ≤ t′, and for all i = 1 . . . k − 1,
(a) if xi is an edge e′ ∈ I ∪E, then xi+1 is a node in P , dst(e′) = xi+1, and

ti = ti+1,
(b) if xi is a node p′ ∈ P , then xi+1 is some edge e′ ∈ E∪O, and src(e′) = p′,

and there exists a history h for p′ and a state s such that

g(p′)(h) = (s, . . .)

and an event t′ for some t′ such that ti ≤ t′ or x = (d,m) for some d
and m such that ti ≤ time(m), and

g1(p′)(s, x) = (. . . , 〈. . . e′ 7→µ . . .〉)

where some element of µ has time ≤ ti+1,
In particular, x1 = p, and x2 is some edge e′ ∈ E ∪O, and src(e′) = p, and
there exists a history h for p and a state s such that the above property
holds, namely,

g(p)(h) = (s, . . .)

and an event t” for some t” such that t ≤ t” or x = (d,m) for some d and
m such that t ≤ time(m), and

g1(p)(s, x) = (. . . , 〈. . . e′ 7→µ . . .〉)

where some element of µ has time ≤ t2.
We obtain (p, t) (e′, t2). If e = e′, then the distinctness requirement implies
k = 2 and t2 ≤ t′, and we obtain (e, t2) (e, t′). If e and e′ are different, the
cases above yield (e, t2) (e, t′).
In all cases, the proof of (e, t2) (e, t′) is shorter than that of (p, t) (e, t′).

2. Suppose that (e, t) could-result in (e′, t′), where e and e′ are different. Then
there exist xi, etc., with x2 = dst(e), t2 = t1, and (p, t1) (e′, t′), as in (1).
The proof of (p, t1) (e′, t′) is shorter than that of (e, t) (e′, t′).

20

3. If (x, t) (x, t′), the distinctness requirement in the definition of could-
result-in implies that we are in the first case (that of x = x′), where t ≤ t′.

4. If (p, t) (e, t′) and src(e) = p, the definition of could-result-in (in partic-
ular, the distinctness requirement) imply that we are in the case k = 2; in
that case, there exist t1 ≥ t and t2 ≤ t′ and a history h for p and a state s
such that

g(p)(h) = (s, . . .)

and an event t” for some t” such that t1 ≤ t”, and therefore t ≤ t′, or x =
(d,m) for some d and m such that t1 ≤ time(m), and therefore t ≤ time(m),
and

g1(p)(s, x) = (. . . , 〈. . . e 7→µ . . .〉)

where some element of µ has time ≤ t2, and therefore ≤ t′.
5. Suppose that (x, t1) (i, t2) for i ∈ I. We assume that x is not i, in order

to obtain a contradiction. Since x and i are different, by the definition of
could-result-in, there exists a sequence of distinct nodes and edges from x to
i, where the next-to-last element is a node p with src(i) = p. But no such p
exists.

6. Suppose that (o, t1) (x, t2) for o ∈ O. We assume that x is not o, in order
to obtain a contradiction. Since x and o are different, by the definition of
could-result-in, there exists a sequence of distinct nodes and edges from o
to x, where the second element is a node p with dst(o) = p. But no such p
exists.

7. We argue by cases on the proof of (x1, t1) (x2, t2). Both cases are trivial.

We assume the following condition:

Condition 4 For all p ∈ P , e ∈ E with dst(e) = p, and t, t′ ∈ T , if (p, t)
(e, t′) then t ≤ t′.

It is equivalent to transitivity:

Theorem 3. The relation is transitive if and only if Condition 4 holds.

We omit the proof of this theorem since, for the present purposes, we may
as well assume transitivity.

Proposition 9. Close↑(S) = {(x′, t′) | ∃(x, t) ∈ S.(x, t) (x′, t′)}.

Proof: By the reflexivity and transitivity (Condition 4 and Theorem 3) of the
could-result-in relation.

Proposition 10. Suppose src(e) = p and (p, t1) (e, t2). Then, for all f , if
t2 ∈ φ(e)(f) then t1 ∈ f .

21

Proof: Suppose src(e) = p, (p, t1) (e, t2), and t2 ∈ φ(e)(f). By Proposi-
tion 8(4), there is a history h = h1·x for p that ends with an event x at
some time t′ ≥ t1 that results in an output on e at a time t3 ≤ t2. Let µ
be Πeg(p)(h), and µ1 be Πeg(p)(h1). Because the output is at time t3 ≤ t2, and
t2 ∈ φ(e)(f), we have t3 ∈ φ(e)(f), so µ@φ(e)(f) 6= µ1@φ(e)(f). By Condition 2,
µ@φ(e)(f) = Πeg(p)(h@f)@φ(e)(f) and µ1@φ(e)(f) = Πeg(p)(h1@f)@φ(e)(f).
If t1 were not in f , then t′ would not be in f either, and we have h@f = h1@f ,
so

Πeg(p)(h@f)@φ(e)(f) = Πeg(p)(h1@f)@φ(e)(f)

and by transitivity we would obtain that µ@φ(e)(f) = µ1@φ(e)(f), which is a
contradiction.

Proposition 11. Let G be any function from P to F . Suppose that p ∈ P ,
t ∈ T , and and, for all p0 ∈ P , e0, e ∈ E such that src(e0) = p0 and dst(e) = p,
and all t0 ∈ T , if (e0, t0) (e, t) then t0 ∈ φ(e0)(G(p0)). Then for all p0 ∈ P ,
e ∈ E such that dst(e) = p, and all t0 ∈ T , if (p0, t0) (e, t) then t0 ∈ G(p0).

Proof: Suppose that p0 ∈ P , e ∈ E, dst(e) = p, t0 ∈ T , and (p0, t0) (e, t).
Proposition 8(1) says that there exists (e′, t′) such that src(e′) = p0, (p0, t0)
 (e′, t′) and (e′, t′) (e, t). Obviously it cannot be the case that e′ ∈ I, since
src(e′) = p0. In case e′ ∈ E, we obtain t′ ∈ φ(e′)(G(p0)), by the hypothesis, and
then that t0 ∈ G(p0), by Proposition 10. In case e′ ∈ O, Proposition 8(6) yields
that e ∈ O, contradicting that dst(e) = p.

Properties of filtering and reordering

We establish a few simple properties of operations such as filtering and reorder-
ing. Throughout, f , f1, f2, f3 range over frontiers; u, v, w range over message
sequences; h ranges over histories. Some of this basic material is also needed for
our work on security, and included in the corresponding paper [3].

Proposition 12. If f1 = f2 ∩ f3 then h@f1 = h@f2@f3.

Proof: By a trivial induction.

Proposition 13. u ↪→u@f ·u\@f .

Proof: Suppose that m1 is a message in u@f and m2 is a message in u\@f .
Because f is downward closed, it cannot be the case that time(m2) ≤ time(m1).
So each such m1 in u (starting with the leftmost one) can be moved left past
each such m2.

Proposition 14. If u ↪→ v then u@f ↪→ v@f .

Proof: The proof is by induction on the derivation of u ↪→ v. The cases of
reflexivity and transitivity are trivial. The base case u·m1·m2·v ↪→u·m2·m1·v
breaks down into subcases depending on whether m1 and m2 are in f , but each
is trivial too, using that (u1·u2)@f = u1@f ·u2@f .

22

Proposition 15. If u ↪→ v then (u− w) ↪→ (v − w).

Proof: By induction on the derivation of u ↪→ v. If u = v this is obvious. If
u ↪→ v follows by transitivity from u ↪→u1 ↪→ v then (u−w) ↪→ (u1−w) ↪→ (v−w),
by induction hypothesis. If u·m1·m2·v ↪→u·m2·m1·v with time(m1) 6≤ time(m2),
then (u·m1·m2·v − w) ↪→ (u·m2·m1·v − w), possibly by reflexivity if subtracting
w removes m1 or m2.

Proposition 16. If u ↪→ v·w then (u− v@f) ↪→ v\@f ·w.

Proof: By Proposition 15, (u− v@f) ↪→ (v·w − v@f) = v\@f ·w.

Proposition 17. If m is in (u− v@f) and u ↪→ v·w and time(m) ∈ f , then m
is in w.

Proof: By Proposition 16, u ↪→ v·w implies (u− v@f) ↪→ v\@f ·w. Since m is in
(u− v@f), m is in v\@f ·w. Since time(m) ∈ f , we obtain that m is in w.

Proposition 18. If u@f = v@f , m is in u − w, and time(m) ∈ f , then m is
in v − w.

Proof: If m is in u−w and time(m) ∈ f , then m is in u@f −w. If in addition
u@f = v@f , we obtain that m is in v@f −w. Therefore, m is in v−w, because,
for all v′, if m is in v′ − w and v′ is a subsequence of v then m is in v − w.

Proposition 19. If u ↪→u′, u′ = v′·m·w′, and time(n) 6≤ time(m) for all n in
v′, then there exist v and w such that u = v·m·w, and time(n) 6≤ time(m) for
all n in v.

Proof: The proof is by induction on the derivation of u ↪→u′. The cases of
reflexivity and transitivity are trivial. The base case

. . . ·m1·m2· . . . ↪→ . . . ·m2·m1· . . .

is also trivial when (the leftmost occurrence of) m is not m1 or m2. Otherwise,
if m = m1, the desired conclusion follows from the hypothesis that time(n) 6≤
time(m) for all n in v′; if m = m2, the desired conclusion follows from that
hypothesis plus time(m1) 6≤ time(m2), which is required for the reordering.

Proposition 20. If u@f = u′@f , u′ = v′·m·w′, time(m) ∈ f , and time(n) 6≤
time(m) for all n in v′, then there exist v and w such that u = v·m·w, and
time(n) 6≤ time(m) for all n in v.

Proof: Since time(m) ∈ f , u@f = u′@f , and m occurs in u′, we have that m
occurs in u as well. Let v be the prefix of u to the left of the leftmost occurrence
of m. Let v′′ be the prefix of u′ to the left of the leftmost occurrence of m; it is
a prefix of v′.

Since time(m) ∈ f and u@f = u′@f , v and v′′ may differ only by elements
with times not in f . None of those elements can have a time ≤ time(m), since
time(m) ∈ f and f is a frontier. Therefore, since time(n) 6≤ time(m) for all n in
v′, we obtain time(n) 6≤ time(m) for all n in v.

23

Proposition 21. If u@f = u′@f , then (u− v@f)@f = (u′ − v@f)@f .

Proof: u@f = u′@f implies (u@f−v@f) = (u′@f−v@f), and (u−v@f)@f =
(u@f−v@f) and (u′−v@f)@f = (u′@f−v@f) by the distributivity of filtering
over subtraction and the idempotence of filtering.

Proofs on prophecy variables

Lemma 1. SpecP is obtained from SpecL almost by adding a very simple proph-
ecy variable.

Proof: We need to show that D satisfies conditions P1, P2’, P4’, and P6’.
P1 holds because the enriched state space is included in the original state

space times the domain of prophecy variables.
P2’ is InitPropP = InitPropL.
P4′ concerns backward steps. We wish to show that if s→s′ is a state transi-

tion of SpecL and (s′, D′) is an enriched state then there exists an enriched state
(s,D) such that (s,D)→(s′, D′) in SpecP .

– For transitions where LocState, NotRequests, H, and Q are unchanged, we
let D = D′.

– For MessL, NotL, InpL, and OutpL transitions, we let D = D′, as suggested
by the definitions of MessP , NotP , InpP , and OutpP .

– For RollbackL, we let (D = D′ ∩ f), as suggested by the definition of
RollbackP .

As defined, D(p) is a frontier for all p. In the case of RollbackL, this property
follows from the fact that downward closure is closed by intersection.

The rest of the proof of P4′ is by cases on the type of the transition s→s′.

– When the state transition leaves LocState, NotRequests, H, and Q un-
changed, if (s′, D′) is an enriched state, then so is (s,D), trivially.

– When the state transition s→s′ satisfies MessL or NotL, we argue that if
(s′, D′) is an enriched state then so is (s,D) as follows:
• ∀p ∈ P,∀i ∈ I such that dst(i) = p.{time(m) | (i,m) ∈ H(p)} ⊆ D(p):

For p ∈ P and i ∈ I with dst(i) = p, MessL and NotL imply that
H(p) = H ′(p) or H ′(p) extends H(p), so {time(m) | (i,m) ∈ H(p)} is a
subset of {time(m) | (i,m) ∈ H ′(p)}. We have assumed that {time(m) |
(i,m) ∈ H ′(p)} is included in D′(p). Since D = D′ in these cases, we
obtain that {time(m) | (i,m) ∈ H(p)} is included in D(p).

• ∀p ∈ P,∀o ∈ O such that src(o) = p.{time(m) | ∃e.(e,m) ∈ H(p)} ⊆
D(p):
Similarly, for p ∈ P and o ∈ O with src(o) = p, MessL and NotL imply
that H(p) = H ′(p) or H ′(p) extends H(p), so {time(m) | ∃e.(e,m) ∈
H(p)} is a subset of {time(m) | ∃e.(e,m) ∈ H ′(p)}. We have assumed
that {time(m) | ∃e.(e,m) ∈ H ′(p)} is included in D′(p). Since D = D′

in these cases, we obtain that {time(m) | ∃e.(e,m) ∈ H ′(p)} is included
in D(p).

24

• ∀p, q ∈ P,∀e ∈ E such that src(e) = p, dst(e) = q,∀m ∈ M such that m
∈ Q(e) ∨ (e,m) ∈ H(q).if time(m) ∈ D(q) then time(m) ∈ φ(e)(D(p)):
For any p, q ∈ P , and e ∈ E such that src(e) = p, and dst(e) = q, MessL
and NotL only leave unchanged or extend {m | m ∈ Q(e) ∨ (e,m) ∈
H(q)}. So any m such that m ∈ Q(e) or (e,m) ∈ H(q) is also such that
m ∈ Q′(e) or (e,m) ∈ H ′(q), and if time(m) ∈ D′(q) then time(m) ∈
φ(e)(D′(p)) implies if time(m) ∈ D(q) then time(m) ∈ φ(e)(D(p)).

• ∀p, q ∈ P,∀e1, e2 ∈ E such that src(e1) = p, dst(e2) = q,∀t1 ∈ T, t2 ∈
H(q)@D(q). if (e1, t1) (e2, t2) then t1 ∈ φ(e1)(D(p)):
For each q, MessL and NotL only leave unchanged or extend {t | t ∈
H(q)}, while D′ = D. So any t2 such that t2 ∈ H(q)@D(q) is also such
that t2 ∈ H ′(q)@D′(q), and if (e1, t1) (e2, t2) then t1 ∈ φ(e1)(D′(p))
implies if (e1, t1) (e2, t2) then t1 ∈ φ(e1)(D(p)).

– When the state transition s→s′ satisfies InpL or OutpL, if (s′, D′) is an
enriched state, then so is (s,D), because being an enriched state space does
not depend on Q(d) for d ∈ I ∪O, and because InpL and OutpL both imply
that all other state components are unchanged.

– When the state transition s→s′ satisfies RollbackL, we argue that if (s′, D′)
is an enriched state then so is (s,D) as follows:

• ∀p ∈ P,∀i ∈ I such that dst(i) = p.{time(m) | (i,m) ∈ H(p)} ⊆ D(p):
For p ∈ P and i ∈ I with dst(i) = p, the definition of RollbackL implies
for all (i,m) ∈ H(p), time(m) ∈ f(p). We have assumed that for all
(i,m) ∈ H ′(p), time(m) ∈ D′(p). Since RollbackL implies that H ′(p) =
H(p)@f(p), we obtain that for all (i,m) ∈ H(p), time(m) ∈ D′(p). The
definition of D as the intersection of f and D′ then yields that for all
(i,m) ∈ H(p), time(m) ∈ D(p).

• ∀p ∈ P,∀o ∈ O such that src(o) = p.{time(m) | ∃e.(e,m) ∈ H(p)} ⊆
D(p):
Similarly, for p ∈ P and o ∈ O with src(o) = p, the definition of RollbackL
implies that for all (e,m) ∈ H(p), time(m) ∈ f(p). We have assumed that
for all (e,m) ∈ H ′(p), time(m) ∈ D′(p). Since RollbackL implies that
H ′(p) = H(p)@f(p), we obtain that for all (e,m) ∈ H(p), time(m) ∈
D′(p). The definition of D as the intersection of f and D′ then yields
that for all (e,m) ∈ H(p), time(m) ∈ D(p).

• ∀p, q ∈ P,∀e ∈ E such that src(e) = p, dst(e) = q,∀m ∈ M such that m
∈ Q(e) ∨ (e,m) ∈ H(q).if time(m) ∈ D(q) then time(m) ∈ φ(e)(D(p)):
Consider any p, q ∈ P , and e ∈ E such that src(e) = p, and dst(e) =
q, and a message m, with m ∈ Q(e) or (e,m) ∈ H(q). Suppose that
time(m) ∈ D(q). Therefore, time(m) ∈ f(q) and D′(q).
In casem ∈ Q(e), we have obtained a contradiction with the precondition
of RollbackL for e ∈ E that implies that f(q) does not intersect {t | ∃m ∈
M.m ∈ Q(e) ∧ time(m) = t}.
So we proceed only with the case of (e,m) ∈ H(q). Since time(m) ∈ f(q),
and H ′(q) = H(q)@f(q), we obtain (e,m) ∈ H ′(q). From time(m) ∈
D′(q) we then obtain time(m) ∈ φ(e)(D′(p)). To conclude that time(m)
∈ φ(e)(D(p)), we use that D(p) is the intersection of D′(p) with f(p),

25

that by Condition 3(1) φ(e)(D(p)) includes φ(e)(D′(p))∩φ(e)(f(p)), and
that RollbackL implies that if (e,m) ∈ H(q) and time(m) ∈ f(q) then
time(m) ∈ φ(e)(f(p)).

• ∀p, q ∈ P,∀e1, e2 ∈ E such that src(e1) = p, dst(e2) = q,∀t1 ∈ T, t2 ∈
H(q)@D(q). if (e1, t1) (e2, t2) then t1 ∈ φ(e1)(D(p)):
In the case of RollbackL, we have assumed that, for all p, q ∈ P , for
all e1, e2 ∈ E such that src(e1) = p and dst(e2) = q, t1 ∈ T , t2 ∈
H ′(q)@D′(q), we have that if (e1, t1) (e2, t2) then t1 in φ(e1)(D′(p)).
The definitions of D and H ′ in RollbackP and Proposition 12 imply
H ′(q)@D′(q) = H(q)@f(q)@D′(q) = H(q)@D(q), so if t2 ∈ H(q)@D(q)
and (e1, t1) (e2, t2) then t1 ∈ φ(e1)(D′(p)).
RollbackL also implies that if t2 ∈ H(q)@f(q) and (e1, t1) (e2, t2) then
t1 ∈ φ(e1)(f(p)). Since D ⊆ f , it follows that if t2 ∈ H(q)@D(q) and
(e1, t1) (e2, t2) then t1 ∈ φ(e1)(f(p)).
Putting these facts together, we have that if t2 ∈ H(q)@D(q) and
(e1, t1) (e2, t2) then t1 ∈ φ(e1)(D′(p)) ∩ φ(e1)(f(p)), and hence, by
Condition 3(1), t1 ∈ φ(e1)(D′(p) ∩ f(p)), that is, t1 ∈ φ(e1)(D(p)), as
desired.

P6’ says that for every (LocState,NotRequests, H,Q) there exists D such that
(LocState,NotRequests, H,Q,D) in the enriched state space. We can simply take
D(p) = T for all p. The correctness of this choice requires Condition 3(2).

Proposition 22. The set {(LocState,NotRequests, H,Q,D) ∈ ΣP
Low}/Q is fi-

nite for each (LocState,NotRequests, H,Q).

Proof: For each (LocState,NotRequests, H,Q), there is at most one equivalence
class of (LocState,NotRequests, H,Q,D) for each function in

P→(ITimes(H)→2)

Since H(p) is finite for each p, and P is finite as well, the set ITimes(H) is finite.

Lemma 2. SpecP/Q is obtained from SpecL by adding a very simple prophecy
variable.

Proof: SpecP is obtained from SpecL almost by adding a very simple prophecy
variable, by Lemma 1. In addition,

(LocState1,NotRequests1, H1, Q1, D1)
Q

(LocState2,NotRequests2, H2, Q2, D2)

trivially implies

(LocState1,NotRequests1, H1, Q1) = (LocState2,NotRequests2, H2, Q2)

26

Finally, by Proposition 22, for all (LocState1,NotRequests1, H1, Q1), the set

{(LocState1,NotRequests1, H1, Q1, D) ∈ ΣP
Low}/Q

is finite. So we can apply Proposition 4, and obtain that SpecP/Q is obtained by
adding a very simple prophecy variable.

Proposition 23. SpecL implements SpecP/Q.

Proof: This follows immediately from Lemma 2 and the soundness of very
simple prophecy variables (Proposition 2).

Proofs of main invariants and refinement

This section contains proofs of our main invariants and of the refinement theo-
rem. In some cases, analogous but not identical arguments are needed for work
on security [3]. Importantly, however, that work does not require a prophecy
variable, nor does it cover notifications, the clock, input and output edges, and
related concepts.

We introduce names for Inv ’s conjuncts:

– Let Inv1 be
∀p.ΠLocg(p)(H(p)) = LocState(p)

– Let Inv2 be
∀p.ΠNRg(p)(H(p)) = NotRequests(p)

– Let Inv3 be:

∀p, q ∈ P, e ∈ E such that src(e) = p ∧ dst(e) = q.
Πeg(p)(H(p)) ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e))

Lemma 3. Inv is an inductive invariant of SpecL and SpecP.

Proof: We do the proof for SpecL, but the same argument applies to SpecP .
InitPropL implies that initially H(p) is a sequence of the form

〈〈(LocState(p),NotRequests(p))〉〉

for all p ∈ P , and that Q(e) is empty for all e ∈ E. The definition of g then
yields the desired properties.

For showing that Inv is preserved by steps, we treat the three conjuncts
separately, using the first conjunct in the arguments for the subsequent ones.

1. For showing that Inv1 is preserved by steps, suppose that

ΠLocg(p)(H(p)) = LocState(p)

for all p, in order to show that

ΠLocg(p)(H ′(p)) = LocState ′(p)

for a particular p. We consider MessL, NotL, InpL, OutpL, and RollbackL
transitions.

27

– MessL at p implies H ′(p) = H(p)·(e,m); and both ΠLocg(p)(H ′(p))
and LocState ′(p) are obtained from g(p)(H(p)) by applying g1(p) to
LocState(p) and (e,m), then taking the state component of the result.
MessL at other nodes q leaves H(p) and LocState(p) unchanged.

– Similarly, NotL at p implies H ′(p) = H(p)·t; and both ΠLocg(p)(H ′(p))
and LocState ′(p) are obtained from g(p)(H(p)) by applying g1(p) to
LocState(p) and t, then taking the state component of the result.
NotL at other nodes q leaves H(p) and LocState(p) unchanged.

– InpL and OutpL both imply LocState ′(p) = LocState(p) and H ′(p) =
H(p) for all p, so these cases are trivial.

– In RollbackL, LocState ′(p) is obtained by applying g(p) to H(p)@f(p)
which equals H ′(p), for all p.

2. For showing that Inv2 is preserved by steps, suppose that

ΠNRg(p)(H(p)) = NotRequests(p)

for all p, in order to show that

ΠNRg(p)(H ′(p)) = NotRequests ′(p)

for a particular p. We consider MessL, NotL, InpL, OutpL, and RollbackL
transitions.
– MessL at p implies H ′(p) = H(p)·(e,m). We have:

NotRequests ′(p) = NotRequests(p) ∪ (ΠNRg1(p)(LocState(p), (e,m)))

We also have:

(ΠNRg(p)(H ′(p)))
= (ΠNRg(p)(H(p))) ∪ (ΠNRg1(p)((ΠLocg(p)(H(p))), (e,m)))
= NotRequests(p) ∪ (ΠNRg1(p)(LocState(p), (e,m))

by induction hypothesis and Inv1. So they are equal.
MessL at other nodes q leaves H(p) and NotRequests(p) unchanged.

– NotL at p implies H ′(p) = H(p)·t. We have:

NotRequests ′(p) = NotRequests(p)−{t}∪(ΠNRg1(p)(LocState(p), (e,m)))

We also have:

(ΠNRg(p)(H ′(p)))
= (ΠNRg(p)(H(p)))− {t} ∪ (ΠNRg1(p)((ΠLocg(p)(H(p))), (e,m)))
= NotRequests(p)− {t} ∪ (ΠNRg1(p)(LocState(p), (e,m)))

by induction hypothesis and Inv1. So they are equal.
NotL at other nodes q leaves H(p) and NotRequests(p) unchanged.

– InpL and OutpL both imply NotRequests ′(p) = NotRequests(p) and
H ′(p) = H(p) for all p, so these cases are trivial.

28

– Finally, in RollbackL,

NotRequests ′(p) = ΠNRg(p)(H(p)@f(p))

which is the same as ΠNRg(p)(H ′(p)) since H(p)@f(p) = H ′(p), for all p.

3. For showing that Inv3 is preserved by steps, suppose that, for all p, q, and
e with src(e) = p and dst(e) = q, we have

Πeg(p)(H(p)) ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e))

in order to show that

Πeg(p)(H ′(p)) ↪→ (〈m | (e,m) ∈ H ′(q)〉·Q′(e))

for particular p, q, and e. We consider MessL, NotL, InpL, OutpL, and
RollbackL transitions.

– MessL at p implies H ′(p) = H(p)·(e0,m0). Let

µ = Πeg1(p)(LocState(p), (e0,m0))

Then Q′(e) = Q(e)·µ. Moreover H ′(q) = H(q) (by the assumption that
edge source and destination are always different), so

〈m | (e,m) ∈ H ′(q)〉 = 〈m | (e,m) ∈ H(q)〉

By Inv1, LocState(p) = ΠLocg(p)(H(p)), so

Πeg(p)(H ′(p)) = (Πeg(p)(H(p)))·µ

Moreover,

Πeg(p)(H(p)) ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e))

by induction hypothesis, so

(Πeg(p)(H(p)))·µ ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e))·µ

Πeg(p)(H ′(p)) ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e)·µ)

and finally

Πeg(p)(H ′(p)) ↪→ (〈m | (e,m) ∈ H ′(q)〉·Q′(e))

MessL at q implies H ′(q) = H(q)·(e1,m1) and H ′(p) = H(p). If e1 6= e,
then Q′(e) = Q(e) and 〈m | (e,m) ∈ H ′(q)〉 = 〈m | (e,m) ∈ H(q)〉,
so we are done by induction hypothesis. If e1 = e, then there exist
u, v ∈ M∗ such that Q(e) = u·m1·v, Q′(e) = u·v, time(n) 6≤ time(m1)

29

for all n ∈ u, and H ′(q) = H(q)·(e,m1). Since H ′(p) = H(p), we have
g(p)(H ′(p)) = g(p)(H(p)). So,

Πeg(p)(H ′(p)) = Πeg(p)(H(p))
↪→ (〈m | (e,m) ∈ H(q)〉·Q(e)) by induction hypothesis
= (〈m | (e,m) ∈ H(q)〉·u·m1·v)
↪→ (〈m | (e,m) ∈ H(q)〉·m1·u·v)
= (〈m | (e,m) ∈ H(q)〉·m1·Q′(e))
= (〈m | (e,m) ∈ H ′(q)〉·Q′(e))

MessL elsewhere (not at p or q) does not affect H(p), H(q), or Q(e), so
the induction hypothesis immediately implies the desired conclusion.

– NotL at p does not affect 〈m | (e,m) ∈ H(q)〉, and extends Q(e) and
Πeg(p)(H(p)) in the same way, since Inv1 says that ΠLocg(p)(H(p)) =
LocState(p).
NotL at q does not affect H(p) or Q(e), nor 〈m | (e,m) ∈ H(q)〉 (since
it adds only a notification to H(q)), so the induction hypothesis imme-
diately implies the desired conclusion.
NotL elsewhere (not at p or q) does not affect H(p), H(q), or Q(e), so
the induction hypothesis immediately implies the desired conclusion.

– InpL and OutpL both implyQ′(e) = Q(e) for all e ∈ E andH ′(p) = H(p)
for all p, so these cases are trivial.

– Finally, in RollbackL, with a frontier f , H ′(p) = H(p)@f(p) and H ′(q) =
H(q)@f(q), so

Πeg(p)(H ′(p)) = Πeg(p)(H(p)@f(p))

and

〈m | (e,m) ∈ H ′(q)〉 = 〈m | (e,m) ∈ H(q)@f(q)〉

In addition,

Q′(e) = Πeg(p)(H(p)@f(p))\@(φ(e)(f(p)) ∩ f(q))

The induction hypothesis says that

Πeg(p)(H(p)) ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e))

It follows that

Πeg(p)(H(p))@(φ(e)(f(p)) ∩ f(q))
↪→ (〈m | (e,m) ∈ H(q)〉·Q(e))@(φ(e)(f(p)) ∩ f(q))

by Proposition 14. Since, for e ∈ E, the definition of RollbackL implies
that if m ∈ Q(e) and time(m) = t then t 6∈ f(q), we obtain

Πeg(p)(H(p))@(φ(e)(f(p)) ∩ f(q))
↪→〈m | (e,m) ∈ H(q)〉@(φ(e)(f(p)) ∩ f(q))

30

Since

Πeg(p)(H(p))@φ(e)(f(p)) = Πeg(p)(H(p)@f(p))@φ(e)(f(p))

by Condition 2, we obtain

Πeg(p)(H(p))@(φ(e)(f(p)) ∩ f(q))
= Πeg(p)(H(p)@f(p))@(φ(e)(f(p)) ∩ f(q))

It follows that

Πeg(p)(H(p)@f(p))@(φ(e)(f(p)) ∩ f(q))
↪→〈m | (e,m) ∈ H(q)〉@(φ(e)(f(p)) ∩ f(q))

and thereforeΠeg(p)(H(p)@f(p))@(φ(e)(f(p)) ∩ f(q))
·

Πeg(p)(H(p)@f(p))\@(φ(e)(f(p)) ∩ f(q))


↪→ 〈m | (e,m) ∈ H(q)〉@(φ(e)(f(p)) ∩ f(q))
·

Πeg(p)(H(p)@f(p))\@(φ(e)(f(p)) ∩ f(q))


and thus, by Proposition 13,

Πeg(p)(H(p)@f(p))
↪→ 〈m | (e,m) ∈ H(q)〉@(φ(e)(f(p)) ∩ f(q))
·

Πeg(p)(H(p)@f(p))\@(φ(e)(f(p)) ∩ f(q))


Since by the definition of RollbackL,

{time(m) | (e,m) ∈ H(q)} ∩ f(q) ⊆ φ(e)(f(p))

we have

〈m | (e,m) ∈ H(q)〉@f(q) = 〈m | (e,m) ∈ H(q)〉@(φ(e)(f(p)) ∩ f(q))

so

Πeg(p)(H(p)@f(p))
↪→〈m | (e,m) ∈ H(q)〉@f(q)·Πeg(p)(H(p)@f(p))\@(φ(e)(f(p)) ∩ f(q))

that is,
Πeg(p)(H ′(p)) ↪→〈m | (e,m) ∈ H ′(q)〉·Q′(e)

as desired.

31

Proposition 24. Let µ = Πeg(p)(H(p)@D(p)) and ν = 〈m | m ∈ M, (e,m) ∈
H(q)〉. Then Inv implies that µ·u− ν@D(q) = (µ− ν@D(q))·u, for all u.

Proof: Inv implies that

Πeg(p)(H(p)) ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e))

that is,
Πeg(p)(H(p)) ↪→ ν·Q(e)

So Condition 2 and Proposition 14 imply that

Πeg(p)(H(p)@D(p))@φ(e)(D(p)) ↪→ ν@φ(e)(D(p))·Q(e)@φ(e)(D(p))

that is,
µ@φ(e)(D(p)) ↪→ ν@φ(e)(D(p))·Q(e)@φ(e)(D(p))

So µ@φ(e)(D(p)) and a fortiori µ include every element of ν@φ(e)(D(p)), and
with at least the same multiplicity. By the construction of the enriched state
space (which implies that for (e,m) ∈ H(q), if time(m) ∈ D(q) then time(m) ∈
φ(e)(D(p)), in Construction 1(3)), we have that ν@D(q) is a subsequence of
ν@φ(e)(D(p)). So µ includes every element of ν@D(q), and with at least the
same multiplicity. It follows that µ·u− ν@D(q) = (µ− ν@D(q))·u, for all u.

The definitions of HQ and HNotRequests induce a definition for a state func-
tion HClock :

HClock = Close↑

{(e, time(m)) | e ∈ I ∪ E ∪O,m ∈ HQ(e)}
∪

{(p, t) | p ∈ P, t ∈ HNotRequests(p)}


Propositions 25 and 26 relate HClock to Clock .

Proposition 25. For all t ∈ T , i ∈ I, if (i, t) ∈ HClock then (i, t) ∈ Clock.

Proof: Suppose that i ∈ I and (i, t) ∈ HClock . By Proposition 9 and the defi-
nition of HClock , that means that there exists (x0, t0) such that (x0, t0) (i, t)
and either

1. x0 is some d ∈ I∪E∪O, and for some m ∈M , m ∈ HQ(d) and time(m) = t0,
or

2. x0 is some q ∈ P , and t0 ∈ HNotRequests(q).

We have x0 = i by Proposition 8(5), which yields that for some m ∈ M , m ∈
HQ(i) and time(m) = t0. The definition of HQ(i) as Q(i) then yields m ∈ Q(i).
The definition of Clock finally yields (i, t) ∈ Clock .

Let ClockCorrespondence be:

∀p ∈ P, t ∈ D(p).

if

(
∀p0 ∈ P, t0 ∈ T, e0, e ∈ E such that src(e0) = p0 ∧ dst(e) = p.
if (e0, t0) (e, t) then t0 ∈ φ(e0)(D(p0))

)
then ∀e ∈ E such that dst(e) = p. if (e, t) ∈ HClock then (e, t) ∈ Clock

32

Proposition 26. Inv2 and Inv3 imply ClockCorrespondence.

Proof: Suppose that p and t are such that t ∈ D(p) and, for all p0 ∈ P ,
t0 ∈ T , e0, e ∈ E such that src(e0) = p0 and dst(e) = p, if (e0, t0) (e, t) then
t0 ∈ φ(e0)(D(p0)).

Suppose that dst(e) = p and (e, t) ∈ HClock . By Proposition 9 and the defi-
nition of HClock , that means that there exists (x0, t0) such that (x0, t0) (e, t)
and either

1. x0 is some d ∈ I∪E∪O, and for some m ∈M , m ∈ HQ(d) and time(m) = t0,
or

2. x0 is some q ∈ P , and t0 ∈ HNotRequests(q).

In these two cases, for establishing that (e, t) ∈ Clock , it suffices to show,
respectively, that:

1. m ∈ Q(d), or
2. t0 ∈ NotRequests(q).

We prove these two memberships as follows:

1. We have that m ∈ HQ(d) with time(m) = t0.
In case d ∈ I∪O, the definition of HQ says that HQ(d) = Q(d), so m ∈ Q(d).
Otherwise (d ∈ E), the definition of HQ says that m is in

µ− ν@D(q2)

where q1 = src(d), q2 = dst(d), µ = Πdg(q1)(H(q1)@D(q1)), and ν = 〈m |
m ∈M, (d,m) ∈ H(q2)〉.
Since (d, t0) (e, t) and src(d) = q1, the hypothesis yields t0 ∈ φ(d)(D(q1)).
By Condition 2, µ@φ(d)(D(q1)) = Πdg(q1)(H(q1))@φ(d)(D(q1)). So m is in

Πdg(q1)(H(q1))− ν@D(q2)

by Proposition 18.
We argue that t0 ∈ D(q2) as well, by cases.
– If d = e, then q2 = p, the fact that (d, t0) (e, t) implies that t0 ≤ t by

Proposition 8(3), so t ∈ D(p) implies t0 ∈ D(p), that is, t0 ∈ D(q2).
– Otherwise (d 6= e), (q2, t0) (e, t) by Proposition 8(2), so the hypothesis

and Proposition 11 yield that t0 ∈ D(q2).
By Inv3, Πdg(q1)(H(q1)) ↪→ ν·Q(d). By Proposition 17, we obtain m ∈ Q(d),
as desired. Recall that Proposition 17 says that ifm is in u−v@f and u ↪→ v·w
and time(m) ∈ f , then m is in w. We apply it with

u = Πdg(q1)(H(q1))
v = ν
w = Q(d)
f = D(q2)

33

2. We have that t0 ∈ HNotRequests(q), which is ΠNRg(p)(H(q)@D(q)), by
definition of HNotRequests. Since (q, t0) (e, t), the hypothesis and Propo-
sition 11 yield that t0 ∈ D(q). Condition 2 then yields t0 ∈ ΠNRg(p)(H(q)),
that is (by Inv2 in Lemma 3), t0 ∈ NotRequests(q), as desired.

Lemma 4. (HLocState,HNotRequests,HQ) constitutes a refinement mapping
from SpecP + Inv to SpecR.

Proof: For any expression Exp, we write Exp for the result of applying the
substitution

[HLocState/LocState,HNotRequests/NotRequests,HQ/Q]

to Exp.
We check conditions on initial predicates and on the next-state relation, as

follows:

R1. HQ(e) = Q(e) for e ∈ I ∪O, by definition.

R2. InitPropP implies InitProp.
We need: for all e ∈ E ∪ O, HQ(e) = ∅, for all i ∈ I, HQ(i) ∈ M∗, and for
all p ∈ P , (HLocState(p),HNotRequests(p)) ∈ Initial(p).
• For the third conjunct:

By definition HLocState(p) and HNotRequests(p) are the first two com-
ponents of g(p)(H(p)@D(p)), which equals

g(p)(〈〈(LocState(p),NotRequests(p))〉〉)

since InitPropP implies H(p) = 〈〈(LocState(p),NotRequests(p))〉〉. Fur-
thermore,

g(p)(〈〈(LocState(p),NotRequests(p))〉〉)
= (LocState(p),NotRequests(p), . . .)

so HLocState(p) = LocState(p) and HNotRequests(p) = NotRequests(p).
Moreover, InitPropP implies (LocState(p),NotRequests(p)) ∈ Initial(p).
• For the first conjunct:

For e ∈ E, HQ(e) contains at most the messages in Πeg(p)(H(p)@D(p))
where p = src(e). Since

g(p)(H(p)@D(p)) = g(p)(〈〈(LocState(p),NotRequests(p))〉〉)

we have thatΠeg(p)(H(p)@D(p)) is empty, and a fortiori HQ(e) is empty
as well.
For o ∈ O, HQ(o) = Q(o), so Q(o) = ∅ implies HQ(o) = ∅.
• For second conjunct:

For i ∈ I, HQ(i) = Q(i), so Q(i) ∈M∗ implies HQ(i) ∈M∗.

34

R3.(MessP) MessP and Inv imply

MessR ∨ 〈LocState,NotRequests, Q〉′ = 〈LocState,NotRequests, Q〉

Consider a MessP step. So for some p ∈ P , some e ∈ I ∪ E, some m ∈
M , u0, v0 ∈ M∗, we have p = dst(e), Q(e) = u0·m·v0, Q′(e) = u0·v0,
time(n) 6≤ time(m) for all n ∈ u0, H ′(p) = H(p)·(e,m), and LocState ′(p),
NotRequests ′(p), and Q′(ei) (for ei such that src(ei) = p) are updated by
calculating g1(p)(LocState(p), (e,m)).
Let {e1, . . . , ek} = {d ∈ E ∪O | src(d) = p}, s = LocState(p), and

(s′, {t1, . . . , tn}, 〈e1 7→µ1, . . . , ek 7→µk〉) = g1(p)(s, (e,m))

Then LocState ′(p) = s′, NotRequests ′(p) = NotRequests(p) ∪ {t1, . . . , tn},
and Q′(e1) = Q(e1)·µ1, . . . , Q′(ek) = Q(ek)·µk.
Other low-level state components are unchanged.
The proof is by cases on whether time(m) ∈ D(p).
Suppose first that time(m) ∈ D(p).
We wish to show that there exist u, v ∈ M∗ such that HQ(e) = u·m·v,
HQ ′(e) = u·v, and for all n in u, time(n) 6≤ time(m).
We distinguish the cases of e ∈ I and e ∈ E.
• If e ∈ I, HQ(e) = Q(e), and HQ ′(e) = Q′(e), so we can take u = u0 and
v = v0.
• If e ∈ E, we have:

HQ(e) = µ− ν@D(p)

where p0 = src(e), µ = Πeg(p0)(H(p0)@D(p0)), and ν = 〈n | n ∈
M, (e, n) ∈ H(p)〉, and

HQ ′(e) = µ− ν′@D(p)

where µ is as above (because sources and destinations are distinct, so
H ′(p0) = H(p0)), and ν′ = 〈n | n ∈M, (e, n) ∈ H(p)·(e,m)〉.
By the construction of the enriched state space (Construction 1(3)),
time(m) ∈ φ(e)(D(p0)) follows from m ∈ Q(e) and time(m) ∈ D(p),
and we also have that

〈n | n ∈M, (e, n) ∈ H(p)〉@D(p)
=

〈n | n ∈M, (e, n) ∈ H(p)〉@(φ(e)(D(p0)) ∩D(p))

so

HQ(e) = µ− 〈n | n ∈M, (e, n) ∈ H(p)〉@(φ(e)(D(p0)) ∩D(p))

Condition 2 implies that

µ@φ(e)(D(p0)) = Πeg(p0)(H(p0))@φ(e)(D(p0))

35

and hence, by Proposition 12,

µ@(φ(e)(D(p0)) ∩D(p)) = Πeg(p0)(H(p0))@(φ(e)(D(p0)) ∩D(p))

So, by Proposition 21,

HQ(e)@(φ(e)(D(p0)) ∩D(p))

=

(
Πeg(p0)(H(p0))
−〈n | n ∈M, (e, n) ∈ H(p)〉@(φ(e)(D(p0)) ∩D(p))

)
@(φ(e)(D(p0)) ∩D(p))

For proving that time(n) 6≤ time(m) for all n to the left of (the leftmost
occurrence) of m in HQ(e), Proposition 20 implies that it suffices to
establish this property for

Πeg(p0)(H(p0))− 〈n | n ∈M, (e, n) ∈ H(p)〉@(φ(e)(D(p0)) ∩D(p))

instead of HQ(e).
By Inv3,

Πeg(p0)(H(p0)) ↪→〈n | n ∈M, (e, n) ∈ H(p)〉·Q(e)
= 〈n | n ∈M, (e, n) ∈ H(p)〉·u0·m·v0

So, by Proposition 16,

Πeg(p0)(H(p0))− 〈n | n ∈M, (e, n) ∈ H(p)〉@(φ(e)(D(p0)) ∩D(p))
↪→〈n | n ∈M, (e, n) ∈ H(p)〉\@(φ(e)(D(p0)) ∩D(p))·u0·m·v0

Since time(m) ∈ φ(e)(D(p0)) ∩ D(p), and time(n) 6≤ time(m) for all
n ∈ u0, we obtain that time(n) 6≤ time(m) for all n to the left of (the
leftmost occurrence) of m in

〈n | n ∈M, (e, n) ∈ H(p)〉\@(φ(e)(D(p0)) ∩D(p))·u0·m·v0

and hence in

Πeg(p0)(H(p0))− 〈n | n ∈M, (e, n) ∈ H(p)〉@(φ(e)(D(p0)) ∩D(p))

by Proposition 19, and hence also in HQ(e) by Proposition 20 as indi-
cated above.
We let the prefix of HQ(e), to the left of the leftmost occurrence of m,
be u; the suffix (to the right) be v.
Furthermore, we have:

HQ ′(e) = µ− ν′@D(p)
= µ− 〈n | n ∈M, (e, n) ∈ H(p)·(e,m)〉@D(p)
= µ− ν@D(p)·m
= (µ− ν@D(p))−m
= HQ(e)−m
= u·v

36

In this case (time(m) ∈ D(p)), we also need to show that if

(s′1, N1, 〈e1 7→ν1, . . . , ek 7→νk〉) = g1(p)(HLocState(p), (e,m))

then:
• HLocState ′(p) = s′1:

We have that HLocState ′(p) = ΠLocg(p)(H ′(p)@D′(p)), which is

ΠLocg(p)((H(p)·(e,m))@D(p))

Since time(m) ∈ D(p), we have that

(H(p)·(e,m))@D(p) = H(p)@D(p)·(e,m)

so HLocState ′(p) is obtained by applying g1(p) to ΠLocg(p)(H(p)@D(p)),
in other words to HLocState(p). So HLocState ′(p) = s′1.
• HNotRequests ′(p) = HNotRequests(p) ∪N1:

Let N = ΠNRg(p)(H ′(p)@D′(p)), which is HNotRequests ′(p) by defini-
tion. Since time(m) ∈ D(p) and D = D′, we obtain

N = ΠNRg(p)(H(p)@D(p)·(e,m))

So

N = (ΠNRg(p)(H(p)@D(p)))

∪ (ΠNRg1(p)((ΠLocg(p)(H(p)@D(p))), (e,m)))

= HNotRequests(p) ∪ (ΠNRg1(p)(HLocState(p), (e,m)))

= HNotRequests(p) ∪N1

since HNotRequests(p) = (ΠNRg(p)(H(p)@D(p))) and HLocState(p) =
ΠLocg(p)(H(p)@D(p)).
• HQ ′(e1) = HQ(e1)·ν1, . . . , HQ ′(ek) = HQ(ek)·νk:

∗ For ei = o ∈ O:
We need to show that Q′(o) = Q(o)·νi, by the definition of HQ on O.
We have that Q′(o) = Q(o)·µi, by MessP .
So we need to show that µi = Πog1(p)(s, (e,m)) and

νi = Πog1(p)(HLocState(p), (e,m))

imply that µi = νi.
By Condition 1, since p must be a buffer in this case, we simply have
that µi = νi = m.

∗ For ei ∈ E:
Suppose that dst(ei) = q. We have that

HQ ′(ei) = Πeig(p)(H ′(p)@D′(p))
− 〈n | n ∈M, (ei, n) ∈ H ′(q)〉@D′(q)

37

Simplifying (using in particular that time(m) ∈ D(p)), we obtain

HQ ′(ei) = Πeig(p)((H(p)@D(p))·(e,m))
− 〈n | n ∈M, (ei, n) ∈ H(q)〉@D(q)

We also have that

HQ(ei) = Πeig(p)(H(p)@D(p))
− 〈n | n ∈M, (ei, n) ∈ H(q)〉@D(q)

Since HLocState(p) = ΠLocg(p)(H(p)@D(p)),

Πeig(p)((H(p)@D(p))·(e,m))

is obtained from Πeig(p)(H(p)@D(p)) by concatenating

Πeig1(p)(HLocState(p), (e,m))

called νi above. Therefore, we have:

HQ ′(ei)
= (Πeig(p)(H(p)@D(p))·νi)− 〈n | n ∈M, (ei, n) ∈ H(q)〉@D(q)
= (Πeig(p)(H(p)@D(p)))− 〈n | n ∈M, (ei, n) ∈ H(q)〉@D(q))·νi
= HQ(ei)·νi

as desired. The second equality requires Proposition 24.
• All other high-level state components are unchanged. This holds for

HLocState(q) for all q 6= p because H(q) does not change in this transi-
tion. It holds for HNotRequests(q) for the same reason. It also holds for
HQ(d) for all d ∈ I ∪ E ∪O − {e, e1, . . . , ek}:
∗ For d ∈ I∪O, HQ ′(d) = Q′(d), and HQ(d) = Q(d), so MessP , which

gives us Q′(d) = Q(d), implies HQ ′(d) = HQ(d).
∗ For d ∈ E, we have:
· H ′(src(d)) = H(src(d)) (since d cannot be among e1, . . . , ek, so

src(d) 6= p);
· if dst(d) 6= p, then H ′(dst(d)) = H(dst(d));
· if dst(d) = p, then H ′(dst(d)) = H(dst(d))·(e,m), so 〈n | n ∈
M, (d, n) ∈ H ′(p)〉 = 〈n | n ∈ M, (d, n) ∈ H(p)〉, so H ′(dst(d))
and H(dst(d))·(e,m) induce the same HQ ′(d).

Now suppose time(m) 6∈ D(p). We argue that HLocState, HNotRequests,
and HQ are unchanged.
Since H(q)@D(q) = H ′(q)@D′(q) in this case, for all q including p, we have
HLocState ′(q) = HLocState(q) and HNotRequests ′(q) = HNotRequests(q).
The argument about HQ is different for each type of edge:
• For i ∈ I, we need HQ ′(i) = HQ(i), that is, Q′(i) = Q(i). By the

construction of the enriched state space (Construction 1(1)), we have
that time(m0) ∈ D′(dst(i)) for each m0 such that (i,m0) ∈ H ′(dst(i)).
By MessP , D′ = D, so time(m0) ∈ D(dst(i)) for such m0. Since (e,m) ∈
H ′(p) and time(m) 6∈ D′(p), we have that p 6= dst(i), so e 6= i. Therefore,
MessP implies Q′(i) = Q(i), as desired.

38

• For d ∈ E, HQ ′(d) = HQ(d) follows H ′(p)@D′(p) = H(p)@D(p) and
H ′(q) = H(q) for all q 6= p.

• For o ∈ O, we need HQ ′(o) = HQ(o), that is, Q′(o) = Q(o). By the
construction of the enriched state space (Construction 1(2)), we have
that time(m0) ∈ D′(src(o)) for eachm0 such that, for some e0, (e0,m0) ∈
H ′(src(o)). By MessP , D′ = D, so time(m0) ∈ D(src(o)) for such m0.
Since (e,m) ∈ H ′(p) and time(m) 6∈ D(p), we obtain that p 6= src(o).
Therefore, MessP implies Q′(o) = Q(o), as desired.

R3.(NotP) NotP and Inv imply

Not ∨ 〈LocState,NotRequests, Q〉′ = 〈LocState,NotRequests, Q〉

Consider a NotP step. So for some p ∈ P , some t ∈ NotRequests(p), we have
(e, t) 6∈ Clock for all e ∈ I ∪ E such that dst(e) = p, H ′(p) = H(p)·t, and
LocState ′(p), NotRequests ′(p), and Q′(ei) (for ei such that src(ei) = p) are
updated by calculating g1(p)(LocState(p), t).
Let {e1, . . . , ek} = {d ∈ E ∪O | src(d) = p}, s = LocState(p), and

(s′, {t1, . . . , tn}, 〈e1 7→µ1, . . . , ek 7→µk〉) = g1(p)(s, t)

Then LocState ′(p) = s′, NotRequests ′(p) = NotRequests(p) − {t} ∪ {t1, . . . ,
tn}, and Q′(e1) = Q(e1)·µ1, . . . , Q′(ek) = Q(ek)·µk.
Other low-level state components are unchanged.
The proof is by cases on whether t ∈ D(p).
Suppose first that t ∈ D(p).
In this case, we need to show:
• t ∈ HNotRequests(p):

We have that t ∈ NotRequests(p), so t ∈ ΠNRg(p)(H(p)) by Inv2, so
t ∈ ΠNRg(p)(H(p)@D(p)) by Condition 2, that is, t ∈ HNotRequests(p).

• For all e ∈ I ∪ E such that dst(e) = p, (e, t) 6∈ HClock :
We have that, for such e, (e, t) 6∈ Clock . For e ∈ I, Proposition 25
immediately yields the desired result. We proceed with the case where
e ∈ E. We have t ∈ H ′(p), and also t ∈ D′(p) since NotP implies
D(p) = D′(p). So by the construction of the enriched state space (Con-
struction 1(4)), for all p0 ∈ P , e0 ∈ E such that src(e0) = p0, e ∈ E
such that dst(e) = p, t0 ∈ T , if (e0, t0) (e, t) then t0 ∈ φ(e0)(D′(p0)),
and hence in φ(e0)(D(p0)). Then, by ClockCorrespondence (obtained in
Proposition 26), for all e ∈ E such that dst(e) = p, if (e, t) ∈ HClock
then (e, t) ∈ Clock . Since, for all e such that dst(e) = p, we have assumed
that (e, t) 6∈ Clock , we obtain that (e, t) 6∈ HClock .

Most of the rest of the proof for NotP is directly analogous to the corre-
sponding parts of the proof for MessP , with changes only in easy details.
In this case (t ∈ D(p)), we also need to show that if

(s′1, N1, 〈e1 7→ν1, . . . , ek 7→νk〉) = g1(p)(HLocState(p), t)

then:

39

• HLocState ′(p) = s′1:
We have that

HLocState ′(p) = ΠLocg(p)(H ′(p)@D′(p))

which is ΠLocg(p)((H(p)·t)@D(p)). Since t ∈ D(p), we have that

(H(p)·t)@D(p) = H(p)@D(p)·t

so HLocState ′(p) is obtained by applying g1(p) to ΠLocg(p)(H(p)@D(p)),
in other words to HLocState(p). So HLocState ′(p) = s′1.

• HNotRequests ′(p) = HNotRequests(p)− {t} ∪N1:
Let N = ΠNRg(p)(H ′(p)@D′(p)), which is HNotRequests ′(p) by defini-
tion. Since time(m) ∈ D(p) and D = D′, we obtain

N = ΠNRg(p)(H(p)@D(p)·(e,m))

So

N = (ΠNRg(p)(H(p)@D(p)))− {t}
∪ (ΠNRg1(p)((ΠLocg(p)(H(p)@D(p))), (e,m)))

= HNotRequests(p)− {t} ∪ (ΠNRg1(p)(HLocState(p), (e,m)))

= HNotRequests(p)− {t} ∪N1

since HNotRequests(p) = (ΠNRg(p)(H(p)@D(p))) and HLocState(p) =
ΠLocg(p)(H(p)@D(p)).
• HQ ′(e1) = HQ(e1)·ν1, . . . , HQ ′(ek) = HQ(ek)·νk:

∗ For ei = o ∈ O:
We need to show that Q′(o) = Q(o)·νi, by the definition of HQ on O.
We have that Q′(o) = Q(o)·µi, by NotP .
So we need to show that µi = Πog1(p)(s, t) and

νi = Πog1(p)(HLocState(p), t)

imply that µi = νi.
By Condition 1, since p must be a buffer in this case, we simply have
that µi = νi = ∅.

∗ For ei ∈ E:
Suppose that dst(ei) = q. We have that

HQ ′(ei) = Πeig(p)(H ′(p)@D′(p))
− 〈n | n ∈M, (ei, n) ∈ H ′(q)〉@D′(q)

Simplifying (using in particular that t ∈ D(p)), we obtain

HQ ′(ei) = Πeig(p)((H(p)@D(p))·t)
− 〈n | n ∈M, (ei, n) ∈ H(q)〉@D(q)

40

We also have that

HQ(ei) = Πeig(p)(H(p)@D(p))
− 〈n | n ∈M, (ei, n) ∈ H(q)〉@D(q)

Since HLocState(p) = ΠLocg(p)(H(p)@D(p)),

Πeig(p)((H(p)@D(p))·t)

is obtained from Πeig(p)(H(p)@D(p)) by concatenating

Πeig1(p)(HLocState(p), t)

called νi above. Therefore, we have:

HQ ′(ei)
= (Πeig(p)(H(p)@D(p))·νi)− 〈n | n ∈M, (ei, n) ∈ H(q)〉@D(q)
= (Πeig(p)(H(p)@D(p)))− 〈n | n ∈M, (ei, n) ∈ H(q)〉@D(q))·νi
= HQ(ei)·νi

as desired. The second equality requires Proposition 24.

• All other high-level state components are unchanged. This holds for
HLocState(q) for all q 6= p because H(q) does not change in this transi-
tion. It holds for HNotRequests(q) for the same reason. It also holds for
HQ(d) for all d ∈ I ∪ E ∪O − {e1, . . . , ek}:
∗ For d ∈ I ∪O, HQ ′(d) = Q′(d), and HQ(d) = Q(d), so NotP , which

gives us Q′(d) = Q(d), implies HQ ′(d) = HQ(d).
∗ For d ∈ E, we have:
· H ′(src(d)) = H(src(d)) (since d cannot be among e1, . . . , ek, so

src(d) 6= p),
· if dst(d) 6= p, then H ′(dst(d)) = H(dst(d)),
· if dst(d) = p, then H ′(dst(d)) = H(dst(d))·t, so 〈n | n ∈
M, (d, n) ∈ H ′(p)〉 = 〈n | n ∈ M, (d, n) ∈ H(p)〉, so H ′(dst(d))
and H(dst(d))·t induce the same HQ ′(d).

Now suppose t 6∈ D(p). We argue that HLocState, HNotRequests, and HQ
are unchanged.
Since H(q)@D(q) = H ′(q)@D′(q) in this case, for all q including p, we have
HLocState ′(q) = HLocState(q) and HNotRequests ′(q) = HNotRequests(q).
The argument about HQ is different for each type of edge:
• For i ∈ I, we need HQ ′(i) = HQ(i), that is, Q′(i) = Q(i), which is

immediate for NotP .
• For d ∈ E, HQ ′(d) = HQ(d) follows H ′(p)@D′(p) = H(p)@D(p) and
H ′(q) = H(q) for all q 6= p.

• For o ∈ O, we need HQ ′(o) = HQ(o), that is, Q′(o) = Q(o). If p 6= src(o),
then NotP immediately implies Q′(o) = Q(o), as desired. If p = src(o),
then Condition 1 implies that p must be a buffer, and NotP implies
Q′(o) = Q(o) when p is a buffer.

41

R3.(InpP) InpP and Inv imply

Inp ∨ 〈LocState,NotRequests, Q〉′ = 〈LocState,NotRequests, Q〉

Since InpP implies H ′(p) = H(p) and D′(p) = D(p) for all p, and Q′(o) =
Q(o) for all o ∈ O, the definitions of the refinement mapping yield

〈LocState,NotRequests, Q�(E ∪O)〉′ = 〈LocState,NotRequests, Q�(E ∪O)〉)

Since, for every i ∈ I, InpP also implies that Q(i) is a subsequence of Q′(i),
those definitions yield that HQ(i) is a subsequence of HQ ′(i). We conclude
that InpP implies Inp.

R3.(OutpP) OutpP and Inv imply

Outp ∨ 〈LocState,NotRequests, Q〉′ = 〈LocState,NotRequests, Q〉

Since OutpP implies H ′(p) = H(p) and D′(p) = D(p) for all p, and Q′(i) =
Q(i) for all i ∈ I, the definitions of the refinement mapping yield

〈LocState,NotRequests, Q�(I ∪ E)〉′ = 〈LocState,NotRequests, Q�(I ∪ E)〉)

Since, for every o ∈ O, OutpP also implies that Q′(o) is a subsequence of
Q(o), those definitions yield that HQ ′(o) is a subsequence of HQ(o). We
conclude that OutpP implies Outp.

R3.(RollbackP) RollbackP and Inv imply

〈LocState,NotRequests, Q〉′ = 〈LocState,NotRequests, Q〉

Consider a RollbackP step. So we have some f such that

∀p ∈ P, i ∈ I such that dst(i) = p.
{time(m) | (i,m) ∈ H(p)} ⊆ f(p)
∧
∀p ∈ P, o ∈ O such that src(o) = p.
{time(m) | ∃e.(e,m) ∈ H(p)} ⊆ f(p)
∧
∀p, q ∈ P, e ∈ E such that src(e) = p ∧ dst(e) = q.
{time(m) | (e,m) ∈ H(q)} ∩ f(q) ⊆ φ(e)(f(p))
∧
∀p, q ∈ P, e1, e2 ∈ E such that src(e1) = p ∧ dst(e2) = q,
t1 ∈ T, t2 ∈ H(q)@f(q).
if (e1, t1) (e2, t2) then t1 ∈ φ(e1)(f(p))
∧
∀e ∈ I ∪O.Q′(e) = Q(e)

42

and, for all p,

f(p) ∩ {t | ∃e ∈ E,m ∈M.dst(e) = p ∧m ∈ Q(e) ∧ time(m) = t} = ∅
∧
let {e1, . . . , ek} = {d ∈ E ∪O | src(d) = p},
h = H(p)@f(p),
(s′, {t1, . . . , tn}, 〈e1 7→µ1, . . . , ek 7→µk〉) = g(p)(h)
in ∀i ∈ 1 . . . k. if ei ∈ E then Q′(ei) = µi\@(φ(ei)(f(p)) ∩ f(dst(ei)))
∧
LocState ′(p) = s′

∧
NotRequests ′(p) = {t1, . . . , tn}
∧
H ′(p) = h

Consider a node p. We have HLocState(p) = ΠLocg(p)(H(p)@D(p)), and

HLocState ′(p) = ΠLocg(p)(H ′(p)@D′(p))

= ΠLocg(p)(H(p)@f(p)@D′(p))

= ΠLocg(p)(H(p)@D(p))

by Proposition 12, so they are equal. Similarly, we have HNotRequests(p) =
ΠNRg(p)(H(p)@D(p)), and

HNotRequests ′(p) = ΠNRg(p)(H ′(p)@D′(p))

= ΠNRg(p)(H(p)@f(p)@D′(p))

= ΠNRg(p)(H(p)@D(p))

by Proposition 12, so they are equal.
For e ∈ I ∪ O, HQ(e) = Q(e), HQ ′(e) = Q′(e), so they are equal since
RollbackP implies Q′(e) = Q(e) for such e.
For e ∈ E, with dst(e) = q:

HQ(e) = µ0 − ν0@D(q)

where

µ0 = Πeg(p)(H(p)@D(p))

ν0 = 〈m | m ∈M, (e,m) ∈ H(q)〉

Also,
HQ ′(e) = µ1 − ν1@D′(q)

where

µ1 = Πeg(p)(H ′(p)@D′(p))

= Πeg(p)(H(p)@D(p)) as above by Proposition 12

= µ0

43

and

ν1 = 〈m | m ∈M, (e,m) ∈ H ′(q)〉
= 〈m | m ∈M, (e,m) ∈ H(q)@f(q)〉
= ν0@f(q)

Since D = f ∩ D′, we obtain ν0@D(q) = ν1@D′(q) by Proposition 12.
Therefore, HQ ′(e) = HQ(e).

Lemma 5. (HLocState,HNotRequests,HQ)/Q constitutes a refinement mapping
from (SpecP + Inv)/Q to SpecR.

Proof: By Proposition 3, it suffices to invoke Lemma 4 and to check that if

(LocState1,NotRequests1, H1, Q1, D1)Q(LocState2,NotRequests2, H2, Q2, D2)

then the refinement mapping maps (LocState1,NotRequests1, H1, Q1, D1) and
(LocState2,NotRequests2, H2, Q2, D2) to the same state.

So, let us assume that

(LocState1,NotRequests1, H1, Q1, D1)Q(LocState2,NotRequests2, H2, Q2, D2)

It follows that (LocState1,NotRequests1, H1, Q1) = (LocState2,NotRequests2,
H2, Q2) and that D1 and D2 coincide on ITimes(H1). Since the refinement
mapping depends on D1 (or D2) only via H1(p)@D1(p) (or H2(p)@D2(p)) for
p ∈ P , and since H1(p)@D1(p) = H1(p)@D2(p) when D1 and D2 coincide
on ITimes(H1), the refinement mapping maps (LocState1,NotRequests1, H1,
Q1, D1) and (LocState2,NotRequests2, H2, Q2, D2) to the same state.

Proposition 27. SpecP/Q implements SpecR.

Proof: Inv is an inductive invariant of SpecP by Lemma 3. Since Inv does not
mention D, it respects Q. Therefore, Inv/Q is an inductive invariant of SpecP/Q
by Proposition 5, and SpecP/Q implements SpecP/Q + Inv/Q by Proposition 6.
In turn, SpecP/Q+Inv/Q implements (SpecP +Inv)/Q by Proposition 7. Finally,
(SpecP +Inv)/Q implements SpecR by Lemma 5 and the soundness of refinement
mappings (Proposition 1). By transitivity, SpecP/Q implements SpecR.

(This proof strategy is a little more general than strictly needed: Inv respects
Q follows from the fact that Inv does not mention D at all. It may be possible
to leverage this fact to obtain a simple proof that SpecL implements (SpecP +
Inv)/Q, which would be a helpful intermediate step.)

Proof of Theorem 1: This follows immediately from Propositions 27 and 23,
by transitivity.

44

Further refinement proof

Proof of Theorem 2: We prove that SpecS implies SpecL by showing that
RollbackS implies RollbackL. This, in turn, we do by showing that conditions
(1), (2), and (3) imply the “ -based condition”. In fact, we prove something
stronger: for p, q ∈ P , e1, e2 ∈ E such that src(e1) = p and dst(e2) = q, t1, t2 ∈ T ,
we show that if (e1, t1) (e2, t2) and t2 ∈ fc(q) then t1 ∈ φ(e1)(fc(p)).

The “ -based condition” follows because t2 ∈ H(q)@f(q) implies t2 ∈ fc(q)
by (2), and φ(e1)(fc(p)) ⊆ φ(e1)(f(p)) by (1) and Condition 3(3) (monotonicity).

We argue by complete induction on the proof of (e1, t1) (e2, t2). We analyze
this proof.

– If e1 = e2 then t1 ≤ t2 by Proposition 8(3). So it suffices to show that
fc(q) ⊆ φ(e1)(fc(p)). This is what (3) says.

– If e1 6= e2, we look at dst(e1). Call it r. By Proposition 8(2), (r, t1) (e2, t2).
By Proposition 8(1), there exist e′ and t′ such that src(e′) = r and (r, t1)
(e′, t′) and (e′, t′) (e2, t2), with a strictly smaller proof than that of (e1, t1)
 (e2, t2). By induction hypothesis, t′ ∈ φ(e′)(fc(r)). By Proposition 10,
since (r, t1) (e′, t′), t1 ∈ fc(r). By (3), t1 ∈ φ(e1)(fc(p)).

The proof of Theorem 2 above includes an argument that conditions (1), (2),
and (3) imply the “ -based condition”. The converse relation between condi-
tions does not hold, at least not for any f , as the following example illustrates.

Example 4. Suppose that we have three nodes r, p, and q, with edge d from r
to p and e from p to q. Suppose that φ(e) and φ(d) are the identity, and that p
is a node such that (d, 1) (e, 2) but not (d, 2) (e, 2). (For example, p could
produce an output at time 2 every time it gets an input at time 1, but the output
may be affected by previous inputs at time 2.) Let f(p) = f(q) = {1, 2} and
f(r) = {1}. Note that RollbackL requires that ({time(m) | (d,m) ∈ H(p)}) ∩
f(p)) ⊆ f(r), but this can hold if r has not sent any messages at time 2 to p.
Suppose H(q)@f(q) = {1, 2}. H(r) and H(p) do not contain notifications. The
“ -based condition” holds; it requires that 1, 2 ∈ f(p) and 1 ∈ f(r). On the
other hand, conditions (1), (2), and (3) imply constraints on the choice of fc:

– fc(r) ⊆ f(r)
– fc(p) ⊆ f(p)
– fc(q) ⊆ f(q)
– fc(q) = {1, 2}
– fc(p) ⊆ fc(r)
– fc(q) ⊆ fc(p)

Putting these together, we obtain that fc(q) ⊆ f(r) = {1}, but also that
fc(q) = {1, 2}, in contradiction. So we cannot find fc to satisfy conditions (1),
(2), and (3).

45

Corollary 1. SpecS implies SpecR.

Proof: This follows immediately from Theorem 2 and Theorem 1, by transi-
tivity.

46

