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Abstract

Access control is central to security in computer systems.
Over the years, there have been many efforts to explain and
to improve access control, sometimes with logical ideas and
tools. This paper is a partial survey and discussion of the
role of logic in access control. It considers logical founda-
tions for access control and their applications, in particular
in languages for programming security policies.

1 Introduction

Access control consists in deciding whether the agent
that issues a request should be trusted on this request. For
example, the agent may be a process running on behalf of
a user, and the request may be a command to read a par-
ticular file. In this example, the access control machinery
would be charged with deciding whether the read should
be permitted. This authorization decision may, in the sim-
plest case, rely on consulting an access control matrix that
would map the user’s name and the file name to a set of al-
lowed operations [23]. The matrix may be implemented in
terms of access control lists (ACLs), attached to objects, or
in terms of capabilities, held by principals. Typically, how-
ever, the authorization decision is considerably more com-
plex. It may depend, for example, on the user’s membership
in a group, and on a digitally signed credential that certifies
this membership.

Access control is central to security and it is pervasive in
computer systems. It appears (with peculiar features and
flaws) in many applications, virtual machines, operating
systems, and firewalls. Physical protection for facilities and
for hardware components are other forms of access control.

Although access control may sometimes seem concep-
tually straightforward, it is both complex and error-prone in
practice. The many mechanisms for access control are often
broken or circumvented.

Over the years, there have been many efforts to explain
and to improve access control. Some of those efforts have
relied on logical ideas and tools. One may hope that logic

would provide a simple, solid, and general foundation for
access control, as well as methods for designing, imple-
menting, and validating particular access control mecha-
nisms. In fact, although logic is not a panacea, its applica-
tions in access control have been substantial and beneficial.

This short paper is a partial, informal survey and dis-
cussion of the role of logic in access control. It consid-
ers logical formulations of access control and their appli-
cations, emphasizing recent languages for programming se-
curity policies in distributed systems. It does not however
aim to be a complete overview. It deliberately neglects sev-
eral relevant topics that have been the subjects of significant
bodies of work. These include:

• Decidability results for problems related to access con-
trol (e.g., [17, 26, 28]).

• Logical approaches for authorizing code execution,
such as those based on proof-carrying code (e.g., [29]).

• Formal verification of security properties (e.g., [32]).

The next section introduces some logical constructs that
have been employed in connection with access control. The
following section then describes languages for access con-
trol, focusing on the Binder language. It is partly based
on a recent note [2], which also explores an analogy with
languages for data integration such as the Mediator Specifi-
cation Language of the Tsimmis system [12, 30].

2. Logics

From matrices to logics

An access control matrix may be viewed as a descrip-
tion of a ternary relation,may-access . With this inter-
pretation,may-access(p,o,r) would hold whenever
the matrix gives principalp the rightr on objecto. Thus,
we may obtain a first logic of access control by represent-
ing a global access control matrix with the predicate symbol
may-access , in the setting of a classical predicate calcu-
lus. This trivial logic seems of limited direct benefit. It
enables us to state facts such as



may-access(Alice,Foo.txt,Rd)

which says that principalAlice can perform the operation
read (Rd) on objectFoo.txt , and rules such as

may-access(p,o,Wr)
=>

may-access(p,o,Rd)

which makes theWr right stronger than theRd right, but
perhaps not much else. However, this trivial logic sug-
gests more elaborate systems with predicate symbols such
asmay-access .

We may reasonably suspect that there is nothing canon-
ical aboutmay-access . We may also worry about a pro-
liferation of variants; for instance, we may imagine a pred-
icate symbolmay-jointly-access , with the idea that
may-jointly-access(p,q,o,r) holds if p and q
have rightr on o when they requestr jointly. In addition,
we may imagine many useful auxiliary predicates, such as
one for expressing that a principal owns an object, and sev-
eral for grouping principals and objects. We would perhaps
be reluctant to develop a logic with the many built-in con-
structs and axioms that would result.

Nevertheless, rich logics with constructs similar to
may-access can support a wide range of current mod-
els for access control [6, 19, 20]. In addition to primitives
for authorization that greatly generalizemay-access , the
logics may include primitives pertaining to groups, roles,
object containment, privilege ordering, and perhaps others.
In a different direction, such a logic for access control may
include a modal operator for reasoning about necessity [9].
There is much room for logical creativity, for better or for
worse—richer logics are not automatically more tasteful or
more useful.

Logics for distributed systems

Several characteristics of distributed systems complicate
access control (e.g., [13, 22]). These include size, hetero-
geneity, the autonomy of system components, and the pos-
sibility of component failures. These complications have
resulted in a substantial line of work. They also suggest the
possibility of an important role for logical methods.

In what follows we focus on one of the logical constructs
that has often been used in this context,says [3].

The formula p says s represents that principalp
makes statements . This statement may simply be a request
for an operation. In more interesting cases, the statement
may express thatp delegates some of its authority to an-
other principalq, or it may express part of a security policy.
For instance, we may write

p says may-access(q,o,r)

and the rule

p says may-access(q,o,r)
=>

(may-access(p,o,r)
=>

may-access(q,o,r))

which states thatp may hand off a rightr to q.
Attractively, says abstracts from the details of authen-

tication. Whenp says s , p may transmits in a variety
of ways:

• on a local channel via a trusted operating system within
a computer,

• on a physically secure channel between two machines,

• on a channel secured with shared-key cryptography, or

• in a certificate with a public-key digital signature.

We may assert thatp says s even whenp does not
directly produces . For example, whenp is a user and one
of its programs sendss in a message, we may find it con-
venient and reasonably accurate to state thatp says s
althoughp itself may never have even seens . In this case,
p says s means thatp has causeds to be said, or thats
has been said onp’s behalf, or thatp supportss .

If p says s and p speaks for another principalq,
thenq says s . The relation “speaks for” serves to form
chains of responsibility in many important situations. A
program may speak for a user, much like a key may speak
for its owner, much like a channel may speak for its remote
end-point. Therefore, some logics include “speaks for” as a
primitive.

Existing logics differ in sometimes subtle but important
ways in their interpretation ofsays and related constructs.
They also vary in their axioms. Sometimessays requires
no special axioms and is treated quite syntactically, like
the cert construct of Halpern and van der Meyden [15].
Sometimessays has axioms familiar from modal logics,
such as:

p says (s => s’)
=>

(p says s) => (p says s’)

and the usual necessitation rule according to which the va-
lidity of s implies the validity ofp says s . Sometimes
says has additional properties. For instance, early on,
Lampson suggested the axiom:

s => (p says s)

Appel and Felten essentially adopt this axiom (as rule
namei) in their work on proof-carrying authentication [4].



It is stronger than the usual necessitation rule, and should
be used with caution (if at all). In a classical-logic context,
it can yield unexpected consequences such as:

(p says s) => (s \/ (p says s’))

for everys’ .
One may imagine that semantics would shed some light

on the proper choice of axioms. While semantics have in-
deed been helpful, so far they provide only limited new in-
sight into notions such as authority and responsibility.

The logics sketched above have had several applica-
tions. In particular, they have been used in an operating
system [34], in an account of access control in Java Vir-
tual Machines [33], and in an access control system for the
Web [5]. They have also influenced some of the languages
that are the subject of the next section.

3. Languages

From logics to languages

Languages for access control aim to support the expres-
sion and the enforcement of policies (e.g., [7, 8, 10, 11, 21,
25, 27, 31, 35, 36]). The languages are general and flexible
enough for programming a wide range of policies—for ex-
ample, in file systems and for digital rights management.

Many of these languages are targeted at distributed sys-
tems in which cryptography figures prominently. They
serve for expressing the assertions contained in crypto-
graphic credentials, such as the association of a principal
with a public key, the membership of a principal in a group,
or the right of a principal to perform a certain operation at
a specified time. They also serve for combining creden-
tials from many sources with policies, and thus for making
authorization decisions. More broadly, the languages some-
times aim to support trust management.

Several of the most recent language designs rely on con-
cepts and techniques from logic, specifically from logic
programming: Li et al.’s D1LP and RT [25–27], Jim’s
SD3 [21], and DeTreville’s Binder [10]. These are explic-
itly research projects.

Other languages intended for direct use, such as SDSI,
SPKI, and XrML 2.0 [11, 31, 36], include related ideas,
though typically with less generality. Some of these have
been influenced by logical work, but they have not been de-
signed or presented as logical systems. We may however
view them as logics, at least in a rudimentary sense. They
define systems of notations for describing principals, their
statements, authorizations, and sometimes more. The nota-
tions come with rules for combining facts and deriving their
consequences—for instance, rules for chaining certificates
in public-key infrastructures.

One might question whether the deployment of these so-
phisticated languages would reduce the number of ways in
which access control can be broken or circumvented. Poli-
cies in these languages might be difficult to write and to
understand—but perhaps no worse than policies embodied
in Perl scripts and configuration files. There seems to be no
hard data on this topic.

A look at Binder

Binder is a good representative for this line of work. It
shares many of the goals of other languages and several of
their features. It has a clean design, based directly on that
of logic-programming languages.

Basically, a Binder program is a set of Prolog-style log-
ical rules. Unlike Prolog, Binder does not allow function
symbols; in this respect, Binder is close to the Prolog frag-
ment Datalog. Also unlike Prolog, Binder has a notion of
context and a distinguished operatorsays . For instance, in
Binder we can write:

may-access(p,o,Rd) :- good(p)
may-access(p,o,Rd) :-

Bob says may-access(p,o,Rd)

These clauses can be read as expressing that any principal
p may access any objecto in read mode (Rd) if p is good
or if Bob says thatp may do so.

Here only :- and says have built-in meanings. The
other constructs (evenmay-access ) have to be defined
or axiomatized. As in Prolog,:- stands for reverse impli-
cation (“if”). For instance,

may-access(Alice,Foo.txt,Rd)

would follow from these clauses and from

Bob says may-access(Alice,Foo.txt,Rd)

As in previous logical treatments of access control,says
serves for representing the statements of principals and their
consequences. Thus,

Bob says may-access(Alice,Foo.txt,Rd)

holds if there is a statement fromBob that contains a repre-
sentation of the formula

may-access(Alice,Foo.txt,Rd)

or it can be derived if there is a statement fromBob that
contains a representation of the formula

may-access(Alice,Foo.txt,Wr)

and another one that contains a representation of the clause

may-access(p,o,Rd) :-
may-access(p,o,Wr)



Each formula is relative to a context (a source of state-
ments). In our example,Bob is a context. Another context
is implicit: the local context in which the formulas apply.
For example,

may-access(p,o,Rd) :-
Bob says may-access(p,o,Rd)

is to be interpreted in the implicit local context, andBob is
the name for another context from which the local context
may import statements.

In addition to logic-programming rules, Binder includes
a special proof rule for importing clausesa :- a1,
..., an from one context into another. The rule applies
only to clauses where the atoma in the head is not of the
form q says s . When importing a clause from contextp,
the rule replacesa with p says a , and replacesai with
p says ai if ai is not of the formq says s , for i =
1..n. For example, whenCharlie exports the clauses:

may-access(p,o,Rd) :- good(p)
may-access(p,o,Rd) :-

Bob says may-access(p,o,Rd)

the local context obtains:

Charlie says may-access(p,o,Rd) :-
Charlie says good(p)

Charlie says may-access(p,o,Rd) :-
Bob says may-access(p,o,Rd)

This proof rule is complicated enough to call for some
logical analysis. It can be partly justified by standard modal
logic, in particular via the theorem

p says s /\ p says s’
=>

p says (s /\ s’)

and the axiom

p says (s => s’)
=>

(p says s) => (p says s’)

Here, p represents the context that exports a clause (that
is, Charlie , in our simple example). However, more is
needed, even for our example. The proof rule can be derived
once we add the strong axiom

s => (p says s)

Fortunately, a restricted form of this axiom suffices:

(q says s) => (p says q says s)

Binder does not assume or require that predicate sym-
bols mean the same in every context. For example,
Bob might not even know aboutmay-access , and
might assertpeut-lire(Alice,Foo.txt) instead of
may-access(Alice,Foo.txt,Rd) . In that situa-
tion, one may translate explicitly with the clause:

may-access(p,o,Rd) :-
Bob says peut-lire(p,o)

On the other hand, Binder does not provide much built-
in support for local name spaces. A closer look reveals that
the names of contexts have global meanings. In particular,
whenCharlie exports:

may-access(p,o,Rd) :-
Bob says peut-lire(p,o)

the local context obtains:

Charlie says may-access(p,o,Rd) :-
Bob says peut-lire(p,o)

without any provision for the possibility thatBob might not
be the same locally and forCharlie .

Other systems, such as SDSI and SPKI, support more
elaborate naming mechanisms, with corresponding logical
explanations and problems (e.g., [1, 14–16, 18, 24]).
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