Variations in Access Control Logic

Martin Abadil»?

! University of California, Santa Cruz
2 Microsoft Research, Silicon Valley

Abstract. In this paper we investigate the design space of access con-
trol logics. Specifically, we consider several possible axioms for the com-
mon operator says. Some of the axioms come from modal logic and
programming-language theory; others are suggested by ideas from secu-
rity, such as delegation of authority and the Principle of Least Privilege.
We compare these axioms and study their implications.

1 Introduction

While access control appears in various guises in many aspects of computer
systems, it is attractive to reduce it, as much as possible, to few central concepts
and rules [17]. The development and use of general logics for access control is an
ongoing effort in this direction. In this paper, we examine and compare several
logics for access control.

The logics that we consider all have the same operators and intended applica-
tions, but they differ in their axioms and rules. They all start from propositional
logic with the says operator, which is central in several theories and systems
for access control (e.g., [4,16,20,9,5,1,12,6,8,19, 14]). Moreover, they all allow
the definition of a “speaks for” relation [4,16, 18] from says and quantification:
A speaks for B if, for every X, if A says X then B says X. In a formula
A says s, the symbol A represents a principal and s represents a statement
(such as a request or a delegation of authority). Intuitively, A says s means that
A supports s, whether or not A has uttered s explicitly.

Perhaps because intuitive explanations of says are invariably loose and open-
ended, the exact properties that says should satisfy do not seem obvious. The
goal of this paper is to investigate the space of options, exploring the formal
consequences and the security interpretations of several possible axiomatiza-
tions, and thus to help in identifying logics that are sufficiently strong but not
inconsistent, degenerate, or otherwise unreasonable.

Some of the axioms that we study come from modal logic [15], computational
lambda calculus [21], and other standard formal systems. Other axioms stem
from ideas in security, such as delegations of authority and the Principle of
Least Privilege [22]. For instance, we consider the hand-off axiom, which says
that if A says that B speaks for A, then B does speak for A [16]. We evaluate
these axioms in both classical and intuitionistic contexts.

More specifically, we start with the basic axioms of standard modal logic, in
particular that says is closed under consequence (if A says s; and A says that



s1 implies so, then A says ss), together with the necessitation rule (if s is valid
then A says s). In addition, the axioms that we consider include the following:

1.

The hand-off axiom, as described above, and a generalization: if A says that
s1 implies A says so, then s; does imply A says sy. In the special case where
s1 is B says sz, we obtain a hand-off from A to B for ss.

A further axiom that if A can make itself speak for B, then A speaks for B
in the first place. This axiom may be seen roughly as a dual to the hand-off
axiom.

The axiom that s implies A says s. This axiom is similar to the necessitation
rule but stronger, and has been considered in access control in the past. It
is also suggested by the computational lambda calculus. We call it Unit.
The other main axiom from the computational lambda calculus, which we
call Bind: if s; implies A says so, then A says s; implies A says ss.

The axiom that if A says s then s or A says false. We call this axiom
Escalation, because it means that whenever A says s, either s is true or A
says anything—-possibly statements intuitively “much falser” than s.

An axiom suggested by the Principle of Least Privilege, roughly that if a
principal is trusted on a statement then it is also trusted on weaker state-
ments.

obtain the following results:

In classical logics, the addition of axioms beyond the basic ones from modal
logic quickly leads to strong and surprising properties that may not be de-
sired. Bind is equivalent to Escalation, while Unit implies Escalation.
Pictorially, we have:
Unit
I

Escalation

)

Bind

There are systems intermediate between the basic modal logic and Escala-
tion. For instance, one may require the standard axiom C4 from modal logic
(if A says A says s then A says s) without obtaining Escalation. However,
these intermediate systems appear quite limited in their support of delega-
tion and related concepts.

In intuitionistic logics, we have a little more freedom. In particular, a system
that includes Unit and Bind, which we call CDD [2, Section 8], does not lead
to Escalation.

Pictorially, we have:
CDD  Escalation

b 44
Unit Bind

Many further refinements become possible, in particular because Escalation
and Unit are independent intuitionistically.



— The general form of the hand-off axiom (1) is equivalent to Bind.

— Unit implies axiom (2). This axiom is equivalent to Unit if there is a truth-
telling principal.

— Finally, Escalation implies axiom (6). Conversely, this axiom and C4 imply
Escalation.

In addition to occasional trickiness in proofs, the main difficulties of this
work are in identifying and formulating the results summarized above. While
some previous work also explores various axiomatizations of access control logics
(e.g., [4]), those explorations have focused on classical logics, dealing for instance
with properties of compound principals. We previously knew that Unit implies
Escalation [1], and that Bind implies the hand-off axiom [2]. All the other results
appear to be new.

Section 2 reviews the basic intuitionistic and classical logics that serve as
our starting point. Section 3 studies CDD, considering axioms (1), (2), (3), and
(4). Section 4 focuses on Escalation (axiom (5)). Section 5 considers axiom (6).
Section 6 concludes with a brief discussion.

2 Basic Logics

In this section we briefly review the basic logics on which we build.

2.1 Formulas

Formulas are given by the grammar:
su=true|(sVs)|(sAs)|(s—s)| Asayss| X |VX.s

where A ranges over elements of a set P (intuitively the principals), and X
ranges over a set of variables. The variable X is bound in V.X. s, and subject to
renaming.

We write false for VX. X. We write s = sq for (s1 — s2) A (s2 — s1). We
write A = B as an abbreviation for

VX. (A says X — B says X)

This formula is our representation of “A speaks for B”. We write A controls s
as an abbreviation for (A says s) — s.

2.2 Basic Axioms and Rules

All of the logics that we consider are based on second-order propositional intu-
itionistic logic. We review this logic in Appendix A. In addition, we rely on a
standard axiom (closure under consequence):

VX,Y. ((Asays (X —=Y)) - (Asays X) — (AdsaysY))



and a standard rule (necessitation):

5
A says s

Thus, we obtain a second-order, intuitionistic, multi-modal version of the stan-
dard logic K. It is the least system that we consider in this paper.

Sometimes we consider classical variants. In those, we use the following ad-
ditional principle:

[Excluded-middle] VX.(X V(X — false))

Throughout the paper, we also introduce other additional axioms, as ex-
plained in the introduction.

3 CDD

CDD arose as a simplified version of the Dependency Core Calculus (DCC) [3],
but it is similarly adequate as a logic for access control [2, Section 8]. CDD is
related to lax logic [10] and the computational lambda calculus [21]. It has been
used for language-based authorization [11], and its central rules also appear in
other systems for access control, such as Alpaca [19].

In comparison with DCC, CDD may be seen as straightforward and conserv-
ative. For instance, while DCC proves (A says B says s) — (B says A says s),
CDD does not. Although we do not discuss DCC in detail, the results of this
paper are relevant to DCC as well.

A self-contained definition of CDD is in Appendix B. In the context of the
basic intuitionistic logic presented in Section 2.2, however, CDD amounts to
adopting the following two additional axioms, Unit and Bind:

[Unit] VX.(X — Asays X)
[Bind] VX,Y.((X — AsaysY) — (Asays X) — (AsaysY))

It is easy to show that neither of these axioms is derivable in the logic of Sec-
tion 2.2, neither intuitionistically nor classically. We prove some stronger results
below, in Section 3.1, also considering the axiom C4 mentioned in the introduc-
tion. In Sections 3.2 and 3.3, we relate Unit and Bind to formulas motivated by
security considerations.

3.1 C4in CDD

This section is devoted to some simple results on the relation between CDD and
the axiom C4:

[C4] VX.(Asays A says X — A says X)

We can replace Bind with the simpler C4 when we have Unit:



Proposition 1. Starting from the basic logic (without Excluded-middle), we
have:

1. Bind implies C/;

2. Unit and C (together) imply Bind;

3. C4 does not imply Bind;

4. Unit does not imply C4 (and a fortiori not Bind).

Proof. 1. In Bind, take X to be A says Y.

2. For arbitrary X and Y, assume (X — A says Y) and A says X. We wish
to show A says Y.
By Unit, we have (X — A saysY) — A says (X — AsaysY).
By closure under consequence, (X — A says Y) yields (A says X) —
(A says A says Y). By C4, we obtain (A4 says X) — (A saysY).
It follows that A says Y.

3. We prove a stronger result in Proposition 2, with Excluded-middle.

4. Mapping the logic to its fragment without says (to System F [13,7], essen-
tially), we interpret A says s as

(XA—>S>\/XA

where X 4 is a distinct type variable used only for this purpose for each
principal A. This interpretation satisfies Unit. It does not satisfy C4, because

A says A says false — A says false
translates to
((Xa— ((Xa—false) VX4))VX4) = (X4 — false) V X )

The left-hand side of this implication is intuitionistically provable, and the
right-hand side is not, so the implication is not. [

Bind does not imply Unit in the basic logic. We do not state it explicitly in
the intuitionistic case (in Proposition 1, above) because it is a corollary from
a stronger result in the classical case (Proposition 2, below). Conversely, Bind
implies C4 in the classical case, but we do not state explicitly there because it
follows from a stronger result in the intuitionistic case.

Proposition 2. Starting from the basic logic plus Excluded-middle, we have:

1. C4 implies neither Bind nor Unit.;
2. Unit implies C4 (and therefore Bind);
3. Bind does not imply Unit.

Proof. 1. We consider a Kripke model with two possible worlds w and w’,
with the accessibility relation {w,w’} x {w'} associated with A. This model
satisfies C4. It does not satisfy the instance of Bind

(X — A says false) — (A says X) — (A says false)

for a proposition X that holds in w’ but not in w (so A says X holds in w).
It does not satisfy the instance of Unit X — A says X for a proposition X
that holds in w but not in w’.



2. In classical logic, we assume A says A says X in order to prove A says X.
We proceed by cases on A says X, using Excluded-middle. If A says X
holds, we are done. On the other hand, if (A says X) — false holds, Unit
yields A says ((A says X) — false), and closure under consequence yields
A says false, and then A says X.

That Unit implies Bind follows from Proposition 1, which says that Unit
and C4 together imply Bind.

3. This part follows from Theorem 4. ]

3.2 Hand-off in CDD
In CDD, we obtain the hand-off axiom as a theorem:
[Hand-off] A controls (B = A)

A slight generalization of the hand-off axiom is also interesting and also a
theorem:

[Generalized-hand-off] VX,Y. A controls (X — AsaysY)

Theorem 1. Starting from the basic logic: Bind is equivalent to Generalized-
hand-off.

Proof. First we establish that Bind implies Generalized-hand-off. In order to
prove that, for all X and Y, we have A controls (X — A says Y), we assume
X and A says (X — A says Y) in order to prove A says Y. By Bind, we have:

(X - AsaysY) — AsaysY)
—

Asays (X —» AsaysY) - AsaysY
Since we have A says (X — A says Y), we obtain:

(X > AsaysY) > AsaysY)
—

A says Y

Since we also have X, and hence (X — A says Y) — A says Y, we conclude
A saysY.

For the converse, let us assume that A controls (X — A says Y) in order
to prove that (X — A saysY) — (A says X) — (A says Y). So let us assume
that X — A says Y and A says X in order to prove A says Y. If A says X,
by closure under consequence we have A says ((X — A saysY) — AsaysY)
since X — ((X — A saysY) — A says Y) is valid. By Generalized-hand-off,
we obtain (X — A saysY) — A says Y. Applying this to X — A says Y, we
conclude A says Y. ]



3.3 The Limits of Hand-off in CDD

Suppose that a principal A is trusted on whether it speaks for another principal B
on every statement. In CDD, it follows that A must speak for B in the first place,
whether it says so or not. If A does not wish to speak for B, it should reduce
its authority, for instance by adopting an appropriate role [16, Section 6.1]. This
result might be seen as a reassuring characterization of who can attribute the
right to speak for Bj; it may also be seen as a dual or a limitation of hand-off in
the context of CDD.
More precisely, we define:

[Authority-shortcut] (VX. A controls (A says X — B says X)) — (A = B)

We obtain:
Theorem 2. Unit implies Authority-shortcut.

Proof. Suppose that, for all X, A controls (A says X — B says X) and
suppose that, for some particular X, we have A says X. We wish to derive
B says X.

Because A says X, Unit implies A says B says X. (Here we apply Unit
under says.) Then by closure under consequence we have A4 says (A says X —
B says X).

By our assumption that, for all X, A controls (4 says X — B says X),
we obtain A says X — B says X.

Combining A says X — B says X with A says X, we obtain B says X, as
desired.

The proof is peculiar, not least because the hypothesis A says X is used
twice in different roles. ]

A small variant of the proof of Theorem 2 shows that Unit also implies:
VX. ((A controls (A says X — B says X)) — (A says X — B says X))

In other words, writing A =x B for A says X — B says X [18], we have that
Unit implies:

VX. ((A controls (A =x B)) — (A =x B))

The converse of Theorem 2 is almost true. Suppose that there is a truth-
telling principal A, that is, a principal for which VX. X = (A says X). Applying
Authority-shortcut to this principal, we can derive s — B says s by proposi-
tional reasoning, for every B and s. In other words, given such a truth-teller, we
obtain Unit.

Nevertheless, the converse of Theorem 2 is not quite true. All basic axioms
plus rules, plus Authority-shortcut, hold when we interpret A says s as true, for
every A and s. Unit does not hold under this interpretation.

In addition, we can prove that Authority-shortcut does not follow from other
axioms (such as Bind), even in classical logic. In other words, Authority-shortcut
appears to be very close to Unit, and can be avoided by dropping Unit.



4 Escalation

As indicated in the introduction, Escalation is the following axiom:
[Escalation] VX,Y.((Asays X) — (X V(4 saysY)))
Equivalently, Escalation can be formulated as:
VX,Y. ((A says X) — (X V (A says false)))

Escalation embodies a rather degenerate interpretation of says. At the very
least, great care is required when Escalation is assumed. For instance, suppose
that two principals A and B are trusted on s, and that we express this as
(A controls s) A (B controls s); with Escalation, if A says B says s then s
follows. Formally, we can derive:

(A controls s) A (B controls s) — ((A says B says s) — s)

This theorem may be surprising. Its effects may however be avoided: A should
not say that B says s unless A wishes to say s. As a result, though, the logic
loses flexibility and expressiveness.

On the whole, we consider that Escalation is not a desirable property. Un-
fortunately, it can follow from the combination of properties that may appear
desirable in isolation, as we show.

Theorem 3. Starting from the basic logic (without Excluded-middle),

1. Unit and Bind (together) do not imply Escalation (in other words, Escalation
is not a theorem of CDD);
2. Escalation implies Bind (and therefore C4).

Proof. 1. Following Tse and Zdancewic [23], we can interpret CDD in System
F [13,7]. We map A says s to X4 — s, where X4 is a distinct type variable
used only for this purpose. If s is provable in CDD, then its translation is
provable in System F.

The translation of Escalation is:

VX, Y. (Xa—=X)—= (XV(X4—Y))

This formula is not provable in System F.
2. Suppose that X — A says Y and that A says X. We wish to prove

AsaysY.
By Escalation, A says X implies X V A says Y. Combining this with
X — Asays Y, we obtain A says Y V A says Y, that is, A says Y. ]

Theorem 4. Starting from the basic logic plus Excluded-middle, we have:

1. Unit implies Escalation (and therefore Bind);
2. Escalation (and a fortiori Bind) does not imply Unit;



3. Bind implies Fscalation;
4. C4 does not imply Escalation.

Proof. 1. Suppose A says X. If X is true, then we are done, as we obtain
XV (A says V). If X is false, that is, X — false is true, then Unit
yields A says (X — false), and by closure under consequence we obtain
A says false and then A says Y for any Y, and then X V (4 says Y).

2. Escalation (and a fortiori Bind) is true in a Kripke model with two possible
worlds w and w’, in which every principal is mapped to the universal acces-
sibility relation {w,w’} x {w,w’}. This Kripke model does not satisfy the
instance of Unit X — A says X for a proposition X that holds in w but
not in w’.

3. We prove Escalation by cases on whether X is true or not. If it is true,
then Bind yields X vacuously, and hence Escalation. If it is false, then that
means X — false, which entails X — A says false, and applying Bind
with false for Y we obtain (4 says X) — (A says false).

4. The Kripke model described in part 1 of Proposition 2 does not satisfy
Escalation: A says X at w means that X is true in w’, while X may be false
in w and A says false is false in w. ]

Going further, in classical logic Unit implies that each principal A is either
a perfect truth-teller or says false. In the former case, A speaks for any other
principal; in the latter case, any other principal speaks for A. Formally, we can
derive (A = B) V (B = A). While this conclusion does not represent a logical
contradiction, it severely limits the flexibility and expressiveness of the logic:
policies can describe only black-and-white situations. This point is a further
illustration of the fact that usefulness degrades even before a logic becomes
inconsistent.

5 On the Monotonicity of Controls

The monotonicity of controls means that, if a principal controls a formula X,
then it controls every weaker formula Y. Formally, we write:

(X —=Y)
[Control-monotonicity] VX,Y. —
((A controls X) — (A controls Y))

This monotonicity property may seem attractive. In particular, it may make
it easier to comply with the Principle of Least Privilege. This principle says [22]:

Every program and every user of the system should operate using the
least set of privileges necessary to complete the job.

The monotonicity of controls implies that, if A wants to convince a reference
monitor of Y, and it can convince it of a stronger property X, then A should
be able to state Y directly, rather than the stronger property X. For instance,



suppose that Y is the statement that B may access a file f1, and that X is the
statement that B may access both fi; and another file fo. When A wishes to
allow B to access fi, it should not have to state also that B may access fo. The
monotonicity of controls allows A to say only that B may access fi.
Nevertheless, the monotonicity of controls has questionable consequences.

Proposition 3. Starting from the basic logic (without Ezxcluded-middle), Con-
trol-monotonicity implies:

A controls s; — A says s2 — (1 V s2)

Proof. We obtain A controls s; — A says ss — (s1 V s2) from Control-
monotonicity, as follows: Let X be s; and Y be s1 V s3. We have X — Y.
Suppose that A controls s;. Control-monotonicity yields A controls (s1V s2).
If A says sq, then we obtain A says (s; V s2), and hence $1 V ss. [ |

In Proposition 3, the formulas s; and sy may be completely unrelated. For
instance, suppose that A controls whether B may access a file f1, and A says
that B may access another file fo; curiously, we obtain that B may access f; or
B may access f2, by Proposition 3.

In fact, the monotonicity of controls is equivalent to Escalation in the pres-
ence of C4. (Intuitionistically, C4 is strictly required for this equivalence.)

Theorem 5. Starting from the basic logic (without Excluded-middle), the fol-
lowing are equivalent:

— FEscalation,
— C4 and Control-monotonicity.

However, neither Control-monotonicity nor C4 implies the other, not even in
combination with Unit.

Proof. — Escalation implies C4, by Theorem 3.

— Escalation implies Control-monotonicity:
Suppose X — Y and A controls X. We wish to prove A controls Y, so
we assume A says Y in order to derive Y.
By Escalation, we obtain Y V A says X. Since A controls X, it follows
that Y vV X. Since X — Y, it follows that Y, as desired.

— C4 and Control-monotonicity together imply Escalation:
We have A controls A says false by C4, and (A says false) — (Y V
A says false) by propositional reasoning, so Control-monotonicity yields
A controls (Y V A says false).
Since A says Y implies A says (Y V A says false) by propositional rea-
soning and closure under consequence, we obtain that A says Y implies
Y vV A says false.

— C4 does not imply Control-monotonicity, even in combination with Unit, by
Proposition 1 (which says that Bind implies C4) and Theorem 3 (which says
that Unit and Bind do not imply Escalation).



— Starting from the basic logic (without Excluded-middle), Control-mono-
tonicity and Unit (together) do not imply C4, and therefore not Bind nor
Escalation.

We construct an interpretation of the logic that satisfies the basic axioms,
Unit, and Control-monotonicity, but not C4.

In this interpretation, each formula is mapped to an open set in the Sierpinski
space, that is, to one of the sets 0, {1}, and {0,1}. These open sets form a
Heyting algebra with the usual inclusion ordering, so they provide a model
for intuitionistic logic. In this model, §) corresponds to false. Importantly
{1} — falseis ) (and not {0}, since this is not an open set). Quantification
works as a finite conjunction. For every A, we let the meaning of A says s
be {1} if the meaning of s is (}, and {0, 1} otherwise.

This interpretation satisfies Unit, since the meaning of s is always contained
in the meaning of A says s. A fortiori, it also satisfies necessitation.

Since says is monotonic, we have that 4 says (X - Y)AX) — AsaysY.
Moreover, since the inclusion ordering is linear, monotonicity implies that
says distributes over conjunctions, so ((4 says (X — Y))A (A says X)) —
A says ((X — Y) A X). Closure under consequence follows.

These definitions also imply that the meaning of A controls s is the same
as the meaning of s:

e for s =, A controls sis {1} — 0, that is, (;

o for s = {1}, A controls s is {0,1} — {1}, that is, {1};

e for s = {0,1}, A controls s is {0,1} — {0, 1}, that is, {0,1}.
Therefore, controls is monotonic.

The meaning of A says false is {1}. The meaning of A says A says false
is {0,1}. So we do not have C4. ]

Although Control-monotonicity does not imply C4 in intuitionistic logic, it
does in classical logic, as the following theorem implies:

Theorem 6. Starting from the basic logic plus Excluded-middle, the following
are equivalent:

— FEscalation,
— Control-monotonicity.

Proof. By Theorem 5, Escalation implies Control-Monotonicity. Conversely, we
instantiate Control-monotonicity in the case the stronger propositions (X) is
false; we obtain a formula that is classically equivalent to Escalation. [

The theorems of this section should not be construed as a criticism of the
Principle of Least Privilege. Formulations weaker than Control-monotonicity
might be viable and less problematic.



6 Discussion

Overall, the results of this paper indicate that, while in a classical setting we
may want to stay close to basic modal logic, in an intuitionistic setting we may
adopt CDD. This move may be attractive, in particular, because CDD supports
hand-off. These results also suggest that a great deal of caution should be applied
in selecting axioms, considering both their formal properties and their security
implications.

We do not argue that the use of a particular set of axioms is required for
writing good security policies. It is possible that reasonable security policies
and other assertions can be formulated in many different systems, with different
underlying logics. However, understanding the properties and consequences of
these logics is essential for writing appropriate formulas reliably.

The literature contains models for some of these axioms (e.g., [4]), and we
are currently developing others (in collaboration with Deepak Garg). Semantics
can be helpful in providing a different perspective on axiomatizations. In this
paper, we employ semantics as a tool in some of the proofs; more extensive uses
of semantics remain attractive but a subject for further research.

Acknowledgments

This work benefited from conversations with Butler Lampson.

References

1. Martin Abadi. Logic in access control. In Proceedings of the Fighteenth Annual
IEEE Symposium on Logic in Computer Science, pages 228—-233, 2003.

2. Martin Abadi. Access control in a core calculus of dependency. Electronic Notes in
Theoretical Computer Science, 172:5-31, April 2007. Computation, Meaning, and
Logic: Articles dedicated to Gordon Plotkin.

3. Martin Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core cal-
culus of dependency. In Proceedings of the 26th ACM Symposium on Principles of
Programming Languages, pages 147-160, January 1999.

4. Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus
for access control in distributed systems. ACM Transactions on Programming
Languages and Systems, 15(4):706-734, October 1993.

5. Lujo Bauer, Scott Garriss, and Michael K. Reiter. Distributed proving in access-
control systems. In Proceedings of the 2005 IEEE Symposium on Security and
Privacy, pages 81-95, May 2005.

6. Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. Design and seman-
tics of a decentralized authorization language. In 20th IEEE Computer Security
Foundations Symposium, pages 3—15, 2007.

7. Luca Cardelli. Type systems. In Allen B. Tucker, editor, The Computer Science
and Engineering Handbook, chapter 103, pages 2208-2236. CRC Press, Boca Raton,
FL, 1997.

8. Andrew Cirillo, Radha Jagadeesan, Corin Pitcher, and James Riely. Do as I SaY!
programmatic access control with explicit identities. In 20th IEEE Computer Se-
curity Foundations Symposium, pages 16-30, July 2007.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

John DeTreville. Binder, a logic-based security language. In Proceedings of the
2002 IEEE Symposium on Security and Privacy, pages 105-113, May 2002.

Matt Fairtlough and Michael Mendler. Propositional lax logic. Information and
Computation, 137(1):1-33, 1997.

Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type discipline for
authorization in distributed systems. In 20th IEEE Computer Security Foundations
Symposium, pages 31-45, 2007.

Deepak Garg and Frank Pfenning. Non-interference in constructive authorization
logic. In 19th IEEE Computer Security Foundations Workshop, pages 283-296,
2006.

Jean-Yves Girard. Interprétation Fonctionnelle et Elimination des Coupures de
UArithmétique d’Ordre Supérieur. These de doctorat d’état, Université Paris VII,
June 1972.

Yuri Gurevich and Itay Neeman. DKAL: Distributed-knowledge authorization
language. Technical Report MSR-TR-2007-116, Microsoft Research, August 2007.
G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen Inc.,
New York, 1968.

Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber. Authen-
tication in distributed systems: Theory and practice. ACM Transactions on Com-
puter Systems, 10(4):265-310, November 1992.

Butler W. Lampson. Protection. In Proceedings of the 5th Princeton Conference
on Information Sciences and Systems, pages 437-443, 1971.

Butler W. Lampson. Computer security in the real world. IEEE Computer,
37(6):37-46, June 2004.

Christopher Lesniewski-Laas, Bryan Ford, Jacob Strauss, M. Frans Kaashoek,
and Robert Morris. Alpaca: extensible authorization for distributed services. In
14th ACM Conference on Computer and Communications Security, pages 432—-444,
2007.

Ninghui Li, Benjamin N. Grosof, and Feigenbaum. Delegation logic: A logic-based
approach to distributed authorization. ACM Transactions on Information and
System Security, 6(1):128-171, February 2003.

Eugenio Moggi. Notions of computation and monads. Information and Control,
93(1):55-92, 1991.

Jerome H. Saltzer and Michael D. Schroeder. The protection of information in
computer system. Proceedings of the IEEE, 63(9):1278-1308, September 1975.
Stephen Tse and Steve Zdancewic. Translating dependency into parametricity.
Journal of Functional Programming. To appear.

Appendix

A

Second-Order Propositional Intuitionistic Logic

The axioms are:

true

51— (52 — s1)

(51 = (52 = 83)) — ((s51 — s2) = (51 = s3))
(81 A 82) — S1



- (31 A 82) — S9

— 81— 82— (81 A s2)

- 81 — (81 V 82)

— 89 — (81 \Y 82)

— (51— s3) = ((52 = s3) = ((s51 V 82) = s3))

(VX.s) — s[t/X]

— (VX. (s1 — s2)) — (s1 — VX. s3) where X is not free in s;

The rules are modus ponens and universal generalization:

51 S1 7 S _5
82 vX.s

B CDD
The rules of CDD are:
[Var] I s, I"Fs [Unit] TV true
[Lam] % [App] 't (s ; i222 I't-s1
[Pair] L ]': il 1 /{S:)Sz
[Proj 1] %1?182) [Proj 2] %1;232)
[Inj 1] % [Inj 2] %
[Case] I'F (51 52) FFILSEFS I'so ks
[TLam) % (X not free in ') [TApp] %
[UnitM] %::yss
[BindM] I'Asayss I,sk Asayst

' Asayst

As is typical for type systems, the rules are presented in a sequent-calculus for-
mat, rather than as a Hilbert system. In this definition, though, we simply omit
all the terms, as well as declarations for variables. An environment I" denotes a
list of formulas. In the case where I' is empty, we write F s, and say that s is a
theorem, when F s is derivable by these rules.



