Position Paper: Differential Privacy
with Information Flow Control

Arnar Birgisson

Chalmers University of Technology
arnar.birgisson@chalmers.se

Abstract

We investigate the integration of two approaches to informa-
tion security: information flow analysis, in which the depen-
dence between secret inputs and public outputs is tracked
through a program, and differential privacy, in which a weak
dependence between input and output is permitted but pro-
vided only through a relatively small set of known differen-
tially private primitives.

We find that information flow for differentially private ob-
servations is no harder than dependency tracking. Differen-
tial privacy’s strong guarantees allow for efficient and accu-
rate dynamic tracking of information flow, allowing the use
of existing technology to extend and improve the state of the
art for the analysis of differentially private computations.

Categories and Subject Descriptors D.4.6 [Operating Sys-
tems]: Security and Protection—Information flow controls

General Terms Languages, Security

Keywords Differential Privacy, Information Flow Control

1. Introduction

Understanding the flow of sensitive information through
computer programs, and the implications the visible out-
comes may have about the private inputs, remains a chal-
lenge for information security. One particular challenge on
which we focus relates to aggregate information, data about
a large number of secret inputs (perhaps individual medical
records) but reduced in some way which intuitively provides
some qualitative protection. Many standard approaches to
information flow control [13] rightly conclude that the re-
sults of such computations depend on all sensitive inputs,
and that their disclosure could reveal information about each
of those inputs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLAS’11 June 5, 2011, San Jose, California, USA.

Copyright © 2011 ACM 978-1-4503-0830-4/11/06. .. $10.00

Frank McSherry Martin Abadi

Microsoft Research
{mcsherry,abadi}@microsoft.com

One promising approach to enabling privacy-preserving
use of individual data is differential privacy [6, 7]. Dif-
ferential privacy provides a data analyst (or their analysis)
with access to certain aggregates of sets of possibly sensi-
tive records. To limit the analyst’s ability to draw inferences
about individual records, the aggregate results are carefully
randomized. By adding an appropriately distributed random
value to the exact result, one can bound the increase or de-
crease in the relative probability of a particular randomized
result, when one individual’s record is added to or removed
from the dataset. This bound restricts the amount of infor-
mation that the release of the output may reveal about any
one input.

Our interest in this note is to study the connection be-
tween differential privacy and information flow. In particu-
lar, as differential privacy acts as a quantitative measure for
the information disclosed through one quantity (the output)
about another (any of the secret inputs), it seems possible to
use it as a form of quantitative information flow control. As
we will see, the strong compositional properties of differen-
tial privacy allow us to reason easily about the differential
privacy cost of a sub-computation based only on the differ-
entially private measurements it uses, and not at all on how
they are used.

The main limitation of differential privacy appears to be
that most traditional programs simply do not satisfy it. Pro-
totypical examples such as the password program, emitting
true if and only if the input equals a secret value, simply do
not have any quantitative bound in the differential privacy
framework. Programs compatible with differential privacy
are typically built out of differentially private primitive com-
putations — many standard aggregations exist, and more are
being developed as the research progresses. Our goal then, is
not to replace quantitative information flow with differential
privacy, nor vice versa, but to explore the combination of dif-
ferential privacy with information flow control. We find that
this combination is both viable and beneficial.

1.1 Programming with Differential Privacy

As mentioned in the previous section, differentially private
programs are so almost always because they access the un-

derlying secret inputs through well understood and standard
primitives. These primitives are typically aggregations run
across a collection of inputs, though advanced programming
languages [10—12] are enriching this space. Each computa-
tion provides a quantitative bound on the probabilistic de-
pendence between the output value and the secret inputs, of-
ten referred to as the “differential privacy cost”.

Most differentially private computations will make many
measurements of the underlying data, each costing privacy
and increasing the quantitative flow of information through
the program. One virtue of differential privacy is that the
composition rules are so easy: the costs of multiple mea-
surements simply add up. However, as the underlying mea-
surement substrates have no understanding of how the differ-
entially private measurements are being used, they are typi-
cally configured to interrupt access to a dataset when a cer-
tain quantitative bound is breached.

While this behavior is safe, it can be overly conservative.
In many such computations, the analyst is not the final con-
sumer of the computation; policy makers, implementors, and
other analysts may consume strict subsets of the results, and
even integrate them with the results of other differentially
private computations. For a complex computation built out
of uncoordinated parts, understanding the actual differential
privacy cost can allow both more liberal disclosure as well
as provide more realistic privacy guarantees.

Concretely, imagine a decision tree classifier for medical
diagnosis. Each node in the decision tree is based on dis-
tinct measurements of some sensitive training data (actual
medical records), but it is only when the new patients ar-
rive and the tree is used that we discover which nodes are
required and how much information about the source data
is disclosed. Different hospitals (and units within a hospital)
may end up using very different sub-trees to classify their
patients, and understanding how much information is dis-
closed to each party (patient, unit, hospital, and the world) is
both challenging and important.

1.2 Contributions

We present a theoretical framework, based on the call-by-
name A-calculus, which allows programs using differentially
private measurements to reveal their actual dependence on
their underlying inputs through the measurements essential
to their evaluation. We rely on lazy execution, so that queries
for information that is not needed in the final result are
never performed, even if they are part of the code. We rely
on lazy execution, so that queries for information that is
not needed in the final result are never performed, even if
they are part of the code; further, we collect dependency
information dynamically (much as in [3]). We prove that our
framework maintains the statistical guarantee of differential
privacy, i.e., that programs written in this framework are
themselves differentially private given that the underlying
mechanism is.

The rest of this paper is organized as follows. Section 2
presents the necessary background on differential privacy.
Section 3 defines our formal language and proves that the
differential privacy guarantee is maintained. Section 4 dis-
cusses a prototype implementation in Haskell. Section 5 con-
cludes.

1.3 Related Work

This work provides the combination of three main features:
differential privacy, dynamic tracking, and quantitative in-
formation flow. In the absence of any one of the three, we
find influential related work.

Putting aside differential privacy, we have the problem of
dynamic quantitative information flow, on which a substan-
tial amount of work exists [8, 9]. One of the main challenges
in this work is the ability to deal with aggregate or other-
wise anonymized data. There is little basis for declassifica-
tion without a privacy guarantee like differential privacy, and
guarantees other than differential privacy appear to lack the
strong properties which align it with program analysis. The
same challenges apply to static methods for quantitative in-
formation flow, which has been well studied. See e.g. [13]
for an overview.

If we do not require dynamic analysis, previous work of
Reed and Pierce [11] provides a static type system in which
one can express metric properties of programs, including dif-
ferential privacy parameters. While this approach is promis-
ing, its static nature forces it to be pessimistically conser-
vative on issues of control flow. Conditional statements are
given the maximum possible cost of their branches; loops
and recursion can be typed only if their body has no privacy
cost; loops or recursion with non-trivial measurements are
typed as having infinite privacy cost. By dynamically check-
ing programs we achieve greater accuracy, and by virtue of
differential privacy’s guarantees they do not leak informa-
tion through the analysis’s execution.

If we do not employ information flow techniques, at
least two previous works apply dynamic accounting to dif-
ferentially private computation: Privacy Integrated Queries
(PINQ) [10] and Airavat [12] each provide a query language
in which each query has statically determinable privacy
guarantees, and programs whose data access is limited to
these mechanism inherit their differential privacy guaran-
tees. However, the two approaches do nothing more than
accounting; if a computation does not make full use of the
measurements made, the systems are unable to acknowledge
the reduced privacy cost.

Other recent related work compares differential privacy
with information-theoretic notions and with quantitative in-
formation flow [4, 5]. Alvim et al. consider the connections
between differential privacy and definitions of quantitative
information leaks, focusing on quantifications of mutual in-
formation between an attacker’s knowledge before and af-
ter observing a program. They conclude that differential pri-
vacy provides stronger bounds on leakage. In [5], Barthe

and Kopf show an upper bound for information leaked by
differentially private programs. They show that the bound
must depend on the size of the input domain for secrets. Our
work differs in that we do not establish these theoretical con-
nections, but instead focus on improving the programming
model for differentially private programs.

2. Background

The technical definition of differential privacy states that
the distribution of the outputs of a randomized computation
changes only slightly if its inputs change a little. We con-
sider computations that depend on data sets, collections of
records. We use the operator @ to represent the symmetric
difference of two data sets: A@® B is the collection of records
appearing in exactly one of of the data sets A and B.

Definition 1. We let C be a random variables representing
the outcome of a randomized computations depending on
data sets. We say that C' is e-differentially private, if for any
data sets A and B, and any set S C Range(C), the following
inequality holds:

Pr[C e S| Al <Pr[C e S|B] exple-|A® B|)

While it is useful in the above definition to think of
computations and their outcomes, we can replace C' € S
with any probabilistic event which may depend on a dataset.

When multiple computations are composed into a larger
one, each computation depending on the same input dataset,
we would like to say something about the privacy of the
composed computation. By managing the noise added to
each individual query made on the dataset, it is possible to
provide differential privacy guarantees about the composed
result. PINQ [10] provides a mechanism that ensures that
rich collections of queries together adhere to differential
privacy. We call such a mechanism a differentially private
mechanism, i.e., one that gives the above guarantee for any
collection of queries, as well as each individual one.

Definition 2. Let M be a random variable representing
a partial function, mapping measurements m (which shall
remain abstract) to values, depending on an underlying data
set. We say that M is a differentially private mechanism if
for any collection of measurements mq, . .., My, each with
a specified privacy cost €., € R, the following holds for any
two datasets A and B:

Pr[Vi: M(m;) € S; | A
<Pr[Vi: M(m;) € S; | B] - exp(e - |A® BJ)

where e =), €.

In particular, if a computation depends on a set of mea-
surements obtained from a differentially private mechanism,
but is deterministic otherwise, then it is differentially private
according to Definition 1.

x,y € Vars Variables

m,n € MVars Measurement vars

t = [me— o) Tags

e == x|m|Aze Terms
leelt:e

u,v u= Azre|t:v Values

E := [:]|Fel|t:E Evaluation contexts

Figure 1. Syntax and evaluation contexts

€ — M 6,
CTX 7
E[e] — M E[e] ()\m.el) €2 — M 61[62/1']
M(m)=v
M T-LIFT

m—y [me—av]:v (t:e1)ea —mt:(e1e2)

Figure 2. Semantics

The main property of a differentially private mechanism
is its ability to produce observations that are certified not to
reveal too much about the source data sets.

3. Theory

The syntax of our language is presented in Figure 1. It is
the untyped A-calculus extended with terms that represent
values to be acquired from an external mechanism, called
measurement variables, and tagged terms. Tags are intended
to indicate that an expression may depend on a value previ-
ously obtained from an external mechanism. Tagged values
are also considered to be values. A tag describes both the
measurement variable on which the subexpression may de-
pend as well the value with which the measurement variable
was instantiated.

For example, assume that we have the usual encodings of
natural numbers and +. Then the expression [m +— 2] : 5 in-
dicates that the value 5 was computed using a measurement
variable m, which was instantiated to 2 by some external
mechanism. One possible program leading to this value is
m+ 3.

Tags represent may-dependencies. For example the tagged
value might also be produced by the program if true
then 5 else m (assuming also standard encodings of
conditionals and booleans.) One of our goals will be to min-
imize the reporting of false dependencies by making use of
a call-by-name evaluation order.

For two partial functions f, g we write f < g, and say f
is a restriction of g, iff whenever f(x) is defined it is equal to
g(x). However, g may be defined on points where f is not.

Figure 2 shows the small step semantics of our language.
Evaluation contexts (Figure 1) together with the congruence
rule CTX allow evaluation in the left-hand side of applica-
tions as well as inside tagged expressions. The evaluation
relation is parametrized by a measurement map M.

Definition 3. A measurement map is a partial function that
maps measurement variables to closed, tag-free values.

Besides the standard rule for call-by-name [-reduction
we introduce two rules for managing tags. The M rule in-
stantiates a measurement variable according to the measure-
ment mechanism and tags the resulting value appropriately.
The T-LIFT rule lifts tags appearing in the left-hand side of
application, in order to obtain a term suitable for application
of the 3-rule.

We want a theorem that says that, after evaluating a term,
we obtain a value whose tags describe the measurement
maps that could have led to this evaluation. First we give
some useful definitions and lemmas.

Definition 4. Let M be a measurement map and m a mea-
surement variable. The measurement map M — m is defined
by removing the definition of M (m):

M (z) ifn#m
(M —m)(n) = .
undefined ifn=m
Definition 5. A measurement variable m appears in a per-
sistent position in an expression e iff

e ec=m,or
o e =[m — v|: € for some v and €', or
ec=1t:¢e ore = ¢e'€e and m appears in a persistent
position in €.
Similarly, m appears in a persistent position in a context £/
iff E has the form [m +— v] : E for some v, or when it has
the form t : E' or E' e for some e and m is in a persistent
position in E'.
Lemma 1. 1. If m is in a persistent position in e, it is in a
persistent position in E|e].
2. If mis in a persistent position in Ele], it is in a persistent
position in either E or e.

Proof. Induction on the structure of evaluation contexts. [

Note that if m is in a persistent position in E then it is in
a persistent position in E[e’’] for any e”.

Lemma 2. I. Ife — s € and m is in a persistent position
in e, then m is in a persistent position in €'.
. . ; e
2. If e =% € and m is in a persistent position in e, then m
is in a persistent position in €’

Proof. The proof of part 1 is by induction on the derivation
of e — s €’ with a case for each rule of the semantics.

e (-rule. e has the form (Az.e1) es. If m were to appear in
a persistent position in e, it would have to do so in Az.eq,
but abstractions cannot have any measurement variables
in a persistent position. Therefore, this case is vacuous.

® M-rule. e has the form n. Since m is in a persistent
position in e, we must have n = m. Therefore, ¢/ =

[m +— o] : v where M (m) = v, so m is in a persistent
position in €’.

e T-LIFT rule. e has the form (¢ : e;)ez. Suppose m is
in a persistent position in e. This can be the case only
if t = [m — v] for some v, or if m is in a persistent
position in e; . In the first case m is in a persistent position
ine’ =t: (e ez). Inthe second case m is in a persistent
position in (e; e) and therefore also in t : (eq e3).

e cTX-rule. This case follows directly from the induction
hypothesis and part 2 of Lemma 1.

Part 2 follows directly from part 1 by induction. O

Lemma 3. Let m be a measurement variable. If m does
not appear in a persistent position in an expression e and
e — € for some M, then e — pp_p, €.

Proof. By induction on the derivation of e —j; €’

e (-rule. This rule does not depend on the measurement
map, so if ¢ — s €’ by it, then ¢ — ¢’ also for any N,
in particular for M — m.

® M-rule. For this rule to apply, e must be m itself or
some other measurement variable m’. The former case
is impossible, for otherwise m would be in a persistent
position in e. In the latter case, ¢’ is [m' +— v] : v for
some v such that M (m’) = v,s0e —p_pm €.

e T-LIFT rule. This rule does not depend on the measure-
ment map. Since ¢ — s ¢’ according to it, then ¢ — €’
for any measurement map /N, in particular M — m.

e cTX-rule. This case follows directly from the induction
hypothesis and part 1 of Lemma 1. O

The previous lemma easily extends to program runs.

Lemmad. Ife —%, € and m does not occur in a persistent
/

position in €', then e —%,;_, €.
Proof. The claim is proved by induction on the length of the
derivation e —%, €.

If this length is 0, the claim is trivial. Assume that e —73,
e’ — € for some €’. By part 1 of Lemma 2, m does
not occur in a persistent position in e”. Therefore by the
induction hypothesis, e —%,_,. €. Moreover, since m does
not occur in a persistent position in e”, Lemma 3 gives that
e’ —p—m €, so by transitivity e —%,_,. ¢ O

The above allows us to deduce that any tag that does not
appear in a persistent position in the result of a derivation
is not relevant for the derivation. Hence the evaluation does
not need to instantiate the corresponding measurement (by
invocation of the M -rule).

If we start from an expressions that contains no tags,
the tags in the final result will tell us what parts of M the
evaluation depends on. Any measurement map that agrees
on the measurements described by the tags in the final value
will give the same result.

Definition 6. Let e be an expression. If any two tags with the
same measurement variable also hold the same value we say
that the tags in e are non-conflicting. If they are, then we let
M, be the measurement map generated by this set of tags.

v if [m — v] appears in e

undefined otherwise

Theorem 1. Assume that e contains no tags. If e —7; v then
e =4y v forall M such that M, < M’

Proof. First we need to show that M,, is well defined, i.e.,
that the tags in v are non-conflicting. Since e has no tags,
all tags in v are produced by a — j; transition. The only rule
that can produce tags is the M rule, so the value of any tag
for a measurement variable m will be M (m).

A tag does not appear in a persistent position in v if it
does not appear in v at all. By iteratively applying Lemma 4
we obtain that e —7, v. By induction on the derivation
sequence we obtain that any measurement map M’ such that
M, < M’ produces the same derivation. O

The above theorem states that the set of measurement
maps that extend M, is a subset of the set of measurement
maps that cause e to evaluate to the value v. Furthermore,
since v encodes the information about all measurements
taken, the converse is true as well.

Theorem 2. Given a tag-less expression e and a value v, the
following set equivalence holds:

{M:e—=yvt={M: M, <M}

We omit the full proof for this theorem. Its key insight is
that tags are introduced only by applications of the M -rule
in the derivation, which obtains the tag from M, and that
other rules do not modify the tag set of an expression.

We are now ready to make the connection with differen-
tial privacy. Theorem 1 describes a set of measurement maps
that produce a given result. As evaluation is otherwise deter-
ministic, the probability of an expression e evaluating to a
certain value v is completely determined by the probabil-
ity of the measurement map under which it is evaluated. An
evaluation e —}, v may be viewed as a probabilistic event,
determined by the probability with which M is realized by
the privacy mechanism as the measurement map. We will use
this observation to talk about differential privacy of evalua-
tions, replacing C' € S in Definition 1 with an evaluation.

Theorem 3. The evaluation of an expression e given by
e —y v is e-differentially private if M is a differentially
private mechanism, where € =). €y, for measurements
m; appearing in the tags of v.

Proof. Assume M is a differentially private mechanism, and
that e —3, v. We want to show that

Prle =3, v | A] < Prle =3, v | B] -exp(e- |[A @ B))

By Theorem 2 we have the following.
Prle =3, v | A] = Pr[M, < M | A]

Let ([m; — v;])ics be the set of tags of v, determining M,,.
The right-hand side of the above can be written

Pr[Vie I: M(m;) =v; | 4]

As € =) . ¢ and M is a differentially private mechanism,
according to Definition 1 we have:

Pr[Vie I: M(m;) =v; | 4]
<Pr[VielI:M(m;)=v;|B] exp(e-|A® B|)

which, again according to Theorem 2, equals
Prle =3, v | B] - exp(e- |A @ BY).
Summarizing, we obtain
Prle =3, v | A] < Prle =3, v | B] - exp(e- |A @ B)
i.e., the evaluation is e-differentially private. [

The importance of Theorem 3 is that it allows us to deter-
mine the differential privacy cost of an evaluation by look-
ing only at the measurements present in tags of the resulting
value. This result concretely connects the quantitative track-
ing of differentially private information with dependence
tracking, an arguably much simpler task.

4. Implementation

We have experimented with prototype implementations of
our ideas within a few different programing languages. Our
main goal is to make writing general-purpose programs eas-
ier, using measurement mechanisms such as PINQ, while
avoiding the need to annotate or rewrite useful existing code.

Our main approach is to use lazy evaluation to identify
the essential measurements required from the underlying pri-
vacy mechanism to evaluate an expression. However, the
languages we considered exhibited a tension between lazy
semantics and transparency of evaluation: lazy languages
were less inclined to violate referential transparency, con-
cealing whether a measurement was truly needed for an eval-
uation, while strict languages such as F# [1] make it cumber-
some to write lazy programs.

We were somewhat successful with an implementation in
Haskell [2], a pure functional language that uses lazy evalu-
ation by default. However, Haskell’s referential transparency
makes it non-trivial to observe the steps of evaluation, since
these are (rightly) left up to the compiler rather than being
fully specified by the language itself.

Monadic programming could be used to provide a very
natural programming model for working on top of a differen-
tially private database. However, this style of programming
requires the programmer to be mindful of not “unpacking”

values with the <— operator, unless they are strictly needed.
In other words, we partly lose the benefits of lazy evaluation.

Therefore, we represent differentially private computa-
tions as pure computations of the following type:

type DPComp g r v = (g —> r) —> Vv

Such a computation depends on a function of type g —> r,
representing the differentially private mechanism that turns
queries of type g into results of type r. The computation
uses the mechanism to produce a value of type v. With this
type, invocations of the underlying mechanism are consid-
ered pure and will be performed only by need.

As said above, referential transparency does not allow us
to observe these invocations, at least not while remaining
fully pure. We surmount this obstacle by running a computa-
tion of type DPComp g r v withag —> r function that
throws an exception whenever it is invoked. The exception
contains a continuation for proceeding with the computation
once a result value is supplied. We then run the whole com-
putation in a harness that catches the exception, calls the ac-
tual user-supplied g —-> r function, logging both the query
and the result, and then simply invokes the continuation to
proceed. The implementation uses unsafePerformIO to
escape the side-effects of exception handling and logging.
Doing so is safe since the semantics of the pure part of the
computation remains the same.

The harness hides all of these details, so the user needs
only specify the computation itself, of type DPComp g r v,
and a function acting as the differentially private mechanism
of type g —> r. A variant of the harness can even accept
a query function of the type g —> IO r, which may be
appropriate in many cases. However, its invocations will be
wrapped in unsafePerformIO, so the this function is re-
sponsible for maintaining apparent referential transparency.

Our experiments indicate that the framework described
here works in principle, and is able to correctly report pri-
vacy costs while still conservatively issuing queries.

5. Conclusion

We have considered differential privacy as a candidate for
quantitative information flow control. While differential pri-
vacy may be introduced only through limited interfaces to
data, once introduced it becomes a robust quantification of
information flow. In particular, one can determine the dif-
ferential privacy parameter of a computation by determining
only on which differentially private measurements the com-
puted value depends, and accumulating their privacy costs.

Reasoning about the flow of differentially private infor-
mation appears to be relatively simple. We have introduced a
slight extension of the untyped lambda calculus to reflect de-
pendence on exogenous measurements, and shown that the
probability of derivation varies at most as much as the prob-
ability of the measurements. Consequently, differential pri-
vacy guarantees of the essential measurements propagate to
computations derived from them.

We expect this line of research, and more careful analy-
sis of the flow of differentially private information, will lead
to more realistic systems for private data analysis. Our pre-
liminary investigation of the implementation of such a sys-
tem revealed that dependence tracking need not be complex.
However, there is clearly more to do in this direction.

Acknowledgements Arnar Birgisson worked on this re-
search while at Microsoft Research. Martin Abadi is also
affiliated with UC Santa Cruz and College de France. We
thank Andrei Sabelfeld and Ulfar Erlingsson for discussions
and comments.

References

[1] The F# programming language. http://research.
microsoft.com/en-us/um/cambridge/
projects/fsharp/.

[2] The Haskell programming language. www.haskell.org.

[3] M. Abadi, B. Lampson, and J. Lévy. Analysis and caching of
dependencies. ACM SIGPLAN Notices, 31(6):83-91, 1996.

[4] M. Alvim, K. Chatzikokolakis, P. Degano, and C. Palamidessi.
Differential Privacy versus Quantitative Information Flow.

[5] G. Barthe and B. Kopf. Information-theoretic bounds for
differentially private mechanisms. Cryptology ePrint Archive,
Report 2011/071, 2011. http://eprint.iacr.org/.

[6] C. Dwork. Differential privacy. In in ICALP, pages 1-12.
Springer, 2006.

[7] C. Dwork, F. Mcsherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In In Proceedings

of the 3rd Theory of Cryptography Conference, pages 265—
284. Springer, 2006.

[8] B. Kopf and A. Rybalchenko. Approximation and randomiza-
tion for quantitative information-flow analysis. In CSF, pages
3-14, 2010.

[9] S. McCamant and M. D. Ernst. Quantitative information flow
as network flow capacity. In PLDI 2008, Proceedings of
the ACM SIGPLAN 2008 Conference on Programming Lan-
guage Design and Implementation, pages 193-205, Tucson,
AZ, USA, June 9-11, 2008.

[10] F. McSherry. Privacy integrated queries: an extensible plat-
form for privacy-preserving data analysis. In Proceedings of
the 35th SIGMOD international conference on Management
of data, pages 19-30. ACM, 2009.

[11] J. Reed and B. C. Pierce. Distance makes the types grow
stronger: A calculus for differential privacy. In ACM SIG-
PLAN International Conference on Functional Programming
(ICFP), Baltimore, Maryland, Sept. 2010.

[12] L. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel.
Airavat: security and privacy for mapreduce. In Proceedings
of the 7th USENIX conference on Networked systems design
and implementation, NSDI’10, pages 20-20, Berkeley, CA,
USA, 2010. USENIX Association.

[13] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. [EEE J. Selected Areas in Communications,
21(1):5-19, Jan. 2003.

