
Security Protocols: Principles and Calculi
Tutorial Notes

Mart́ın Abadi

Microsoft Research
and

University of California, Santa Cruz

Abstract. This paper is a basic introduction to some of the main themes in the
design and analysis of security protocols. It includes a brief explanation of the
principles of protocol design and of a formalism for protocol analysis. It is in-
tended as a written counterpart to a tutorial given at the 2006 International School
on Foundations of Security Analysis and Design.

1 Introduction

Over the last 30 years, work on security protocols has led to a number of ideas and
techniques for protocol design, to a number of protocol implementations, and also to
many attacks. Gradually, it has also led to mature techniques for analyzing protocols,
and to an understanding of how to develop more robust protocols that address a range
of security concerns.

These notes are based on a tutorial on security protocols given at the 2006 Inter-
national School on Foundations of Security Analysis and Design. The tutorial was an
introduction to the following topics:

– security protocols (informally),
– some design principles,
– a formal calculus for protocol analysis: the applied pi calculus,
– automated proof methods and tools, such as ProVerif.

The slides from the tutorial are available on-line [1]. These notes are essentially a sum-
mary of the material presented there. They do not aim to provide a balanced survey of
the entire field, nor to explain some of its advanced points, which are covered well in
research papers. Instead, the notes aim to introduce the basics of security protocols and
the applied pi calculus. They may help readers who are starting to study the subject,
and may offer some perspectives that would perhaps interest others.

The next section is a general description of security protocols. Section 3 gives an
example, informally. Section 4 explains a few principles for the design of protocols.
Section 5 is an introduction to informal and formal protocol analysis. Sections 6 and 7
present the applied pi calculus and the ProVerif tool, respectively. Section 8 revisits the
example of Section 3. Section 9 concludes by discussing some further work.

2 Security Protocols

Security protocols are concerned with properties such as integrity and secrecy. Primary
examples are protocols that establish communication channels with authenticity and
confidentiality properties—in other words, communication channels that protect the
integrity and secrecy of the data sent between the intended protocol participants. Other
examples include protocols for commerce and for electronic voting.

This section describes security protocols in a little more detail. It introduces a pro-
tocol due to Needham and Schroeder, which serves as a running example in the rest of
these notes.

2.1 Cryptography

In distributed systems, security protocols invariably employ some cryptography [65],
so they are sometimes called cryptographic protocols. We call them security protocols
in order to emphasize ends over means, and also in order to include some exchanges
in which cryptography is not needed or not prominent. For the purposes of these notes,
only very simple cryptography is needed.

We focus on symmetric cryptosystems (such as DES and AES). In these, when two
principals communicate, they share a key that they use for encryption and for decryp-
tion. Therefore, symmetric cryptosystems are also called shared-key cryptosystems.
When integrity is required, as it often is, a shared key also serves for producing and
for checking message authentication codes (MACs). A MAC is basically a signature,
with the limitation that only the principals that know the corresponding shared key can
check it, and that any of these principals could produce it. So, although any principal
that knows the shared key could convince itself that some other principal has produced
a given MAC, it may not be able to convince a judge or some other third party.

In SSL [46] and other practical protocols, multiple shared keys are often associated
with each communication channel. For instance, for each point-to-point connection, we
may have two shared keys for encryption, one for communication in each direction, and
two for MACs, again one per direction. However, these four keys may all be derived
from a shared master key. Furthermore, protocols often rely on both symmetric cryp-
tosystems and asymmetric cryptosystems (such as RSA). While we may not explicitly
discuss them, many of these variants do fall within the scope of the methods presented
in these notes.

As in many informal protocol descriptions, below we assume that the encryption
function provides not only secrecy but also authenticity. In other words, we proceed as
though the encryption function includes a built-in MAC.

2.2 Other Machinery

There is more to the mechanics of protocols than cryptography. Moreover, protocols ex-
ist and should be understood in the context of other security machinery, such as auditing
and access control.

Protocols often include timestamps or other proofs of freshness. They may also
include sequence numbers for ordering messages. At a lower level, practical protocols

also include key identifiers (so that the recipient of an encrypted message knows which
key to try), message padding, and facilities for message compression, for instance.

Furthermore, protocols often rely on trusted third parties. These trusted third parties
may function as certification authorities, as trusted time servers, and in other roles. Trust
is not absolute, nor always appropriate—so protocols often aim to eliminate trusted
third parties or to limit the trust placed in them.

2.3 Authentication Protocols

In systems based on the access-control model of security [58], authorization relies on
authentication, and protocols that establish communication channels with authenticity
and confidentiality properties are often called authentication protocols. There are many
such protocols. They typically involve two principals (hosts, users, or services) that
wish to communicate, and some trusted third parties. In particular, the two principals
may be a client and a server, and the purpose of the channel may be to convey requests
and responses between them.

Despite these commonalities, there are also a number of differences across authen-
tication protocols; no single authentication protocol will be suitable for all systems. For
performance, designers consider communication, storage, and cryptographic costs, and
sometimes trade between them. The choice of cryptographic algorithms is influenced
by these cost considerations, and also by matters of convenience and law. In addition,
systems rely on synchronized clocks to different extents.

At a higher level, no single authentication protocol will be suitable for all purposes.
Protocols vary in their assumptions, in particular with respect to trusted third parties.
They also vary in their objectives:

– Some protocols achieve mutual authentication; others achieve only one-way au-
thentication, and in some cases guarantee the anonymity of one of the parties (typ-
ically the client).

– Data secrecy is sometimes optional.
– A few protocols include protection against denial-of-service attacks. This protec-

tion aims to ensure that protocol participants cannot be easily burdened with many
costly cryptographic operations and other expensive work.

– Going beyond the basic security properties, some protocols aim to ensure non-
repudiation (so participants cannot later deny some or all of their actions), for in-
stance. A few protocols aim to support plausible deniability, which is roughly the
opposite of non-repudiation.

3 An Example

We describe a protocol due to Needham and Schroeder as an example. The protocol is
the first from their seminal paper on authentication [74]; it relies on a symmetric cryp-
tosystem. Throughout, we refer to this protocol as the Needham-Schroeder protocol,
because of its importance and because we do not consider other protocols by the same
authors.

The Needham-Schroeder protocol is one of the classics in this field. It has served as
the basis for the Kerberos system [56, 68] and much other subsequent work. Many of
its ingredients occur in other protocols, including many recent ones. Recent protocols,
however, typically have more moving parts—more modes, options, and layers.

3.1 Model

Needham and Schroeder set out the following informal model:

We assume that an intruder can interpose a computer in all communication
paths, and thus can alter or copy parts of messages, replay messages, or emit
false material.
We also assume that each principal has a secure environment in which to com-
pute, such as is provided by a personal computer or would be by a secure shared
operating system.

The first assumption is common across the field, and is probably even more reasonable
now than it was when it was first formulated. The second assumption is also common,
but unfortunately it is often somewhat questionable because of the widespread software
failures that viruses and worms exploit.

3.2 The Protocol

In this protocol,A andB are two principals that wish to establish a secure communica-
tion session. An authentication serverS is a trusted intermediary.

Initially the principalsA andB shareKAS andKBS with S, respectively. The goal
of the protocol is to establish a session keyKAB for A andB.

In the course of the protocol,A andB invent the noncesNA andNB , respectively.
Nonces are quantities generated for the purpose of being fresh. In particular,A can
reason that any message that includesNA was manufactured afterNA’s invention; so
A can conclude that any such message belongs in the current protocol session, and is
not a replay from a previous session. The use of nonces dispenses with the requirement
of a single network clock; nonces are still prevalent today, in protocols such as SSL and
IKE [46, 53].

Figure 1 depicts the message exchange. Here, we write{X}K for an encryption of
the plaintextX under the keyK, andX, Y for the concatenation ofX andY (with
markers, as needed, in order to avoid ambiguities).

Only A contacts the serverS, in Message 1. This message includesNA. Upon
receipt of this message,S generatesKAB , which becomes the session key between
A andB. In Message 2,S provides this session key toA, underKAS . This message
includesA’s nonce, as a proof of freshness. Message 2 also includes a certificate (or a
“ticket”, in Kerberos parlance) underKBS that conveys the session key andA’s identity
to B. Message 3 transmits this certificate fromA to B. After decrypting Message 3 and
obtaining the session key,B carries out a handshake withA, in Messages 4 and 5. The
use ofNB − 1 in Message 5 is somewhat arbitrary; almost any function ofNB would
do as long asB can distinguish this message from its own Message 4.

&%
'$

A &%
'$

B

&%
'$

S

q

3. {KAB , A}KBS

�
4. {NB}KAB

-

5. {NB − 1}KAB

�
�

�
�

�
�

�
�

�
�

�
�

�
���

1. A, B, NA

�
�

�
�

�
�

�
�

�
�

�
�

�
��	

2. {NA, B, KAB , {KAB , A}KBS}KAS

Fig. 1.The Needham-Schroeder protocol.

3.3 A Limitation

As Denning and Sacco observed [41], this protocol has a serious limitation:

– Suppose that an attacker has a log of the messages exchanged during a protocol
run.

– Suppose further that, long after a run, the attacker may discover the session key
KAB somehow—for instance, through a long brute-force attack or as a result of
the careless exposure of old key material.

– The attacker may then replay Message 3 toB. UnlessB remembersKAB or has
some external indication of the attack,B is not able to distinguish the replay from
a legitimate, new instance of Message 3.

– The attacker may then conduct a handshake withB. AlthoughB uses a fresh nonce
for this handshake, the attacker is able to produce a corresponding response because
it knowsKAB .

– Subsequently, the attacker may continue to communicate withB underKAB , im-
personatingA.

In order to address this limitation, one may try to makeKAB strong, and to change
KBS often, thus limiting the window of vulnerability. One may however prefer to use
an improved protocol, in whichB andS interact directly (as Needham and Schroeder
suggested [75]), or in which messages include timestamps (as Denning and Sacco pro-
posed, and as done in Kerberos).

As this example illustrates, most security protocols have subtleties and flaws. Many
of these have to do with cryptography, but many of these do not have to do with the

details of cryptographic algorithms. For design, implementation, and analysis, a fairly
abstract view of cryptography is often practical.

4 Principles of Protocol Design

While protocol design often proceeds informally, it need not be entirely driven by trial
and error. Some general principles can guide the creation and understanding of proto-
cols (e.g., [9, 14, 15, 79]). Such principles serve to simplify protocols and to avoid many
mistakes. They also serve to simplify informal reasoning about protocols and their for-
mal analysis [28, 76].

In this section we explain some of these principles, with reference to our example.

4.1 Explicit Messages

In the early logics of authentication, an informal process of idealization turned loose
protocol narrations into formulas that expressed the perceived intended meanings of
messages [37]. Over time, it was noticed that many attacks were identified in the course
of this informal process—even more than during the later formal proofs. More broadly,
it was noticed that many attacks appeared because of gaps between the actual contents
of messages and their intended meanings. This realization and much experience led to
the following principle [9]:

Every message should say what it means: the interpretation of the message
should depend only on its content.

In other words, the meaning of the message should not depend on implicit informa-
tion that is presumed clear from context. Such presumptions are often unreliable in the
presence of attackers that do not play by the rules.

As an important special case of this principle, it follows:

If the identity of a principal is important for the meaning of a message, it is
prudent to mention the principal’s name explicitly in the message.

For instance, Message 2 of the Needham-Schroeder protocol consists of the cipher-
text {NA, B, KAB , {KAB , A}KBS

}KAS
. The first three fieldsNA, B, KAB of the

plaintext message are intended as a statement toA thatKAB is a good key for a ses-
sion withB sometime after the generation ofNA. The nameA is implicit, and can be
deduced fromKAS . Making it explicit would not be costly, and it would lead to a more
robust protocol—allowing, for instance, the possibility that the keyKAS would be a
key for a node with multiple users (A1, A2, . . .). On the other hand, the nameB is and
must be explicit. Omitting it enables an attack, as follows.

– Suppose that an attackerC intercepts Message 1, replacesB with C, and sends the
modified message toS.

– In response, Message 2 includes{KAC , A}KCS
, whereKCS is known toC, rather

than{KAB , A}KBS
. However,A cannot detect this substitution:A can check its

nonceNA, and obtainsKAC and this certificate, but the certificate is opaque toA.
The subscriptC in KAC is merely a meta-notation; nothing in the key itself indi-
cates that it is shared withC rather than withB.

– Suppose further thatC intercepts Message 3 in whichA forwards{KAC , A}KCS

to B. ThenC obtainsKAC and can conduct a handshake withA, in B’s place.
– Subsequently,C may continue to communicate withA underKAC , impersonat-

ing B.

Many successful attacks against published protocols resemble this one, and stem from
the omission of some names.

Similarly, Message 3 of the Needham-Schroeder protocol consists of the ciphertext
{KAB , A}KBS

. To B, this message should mean thatKAB is a good key for a session
with A. Again, one of the names (B in this case) is implicit, while the other (A) is
explicit and is needed in order to thwart an attack. (The attack is left as an easy exercise
for the reader.) Remarkably, the meaning of this message does not specify at which time
KAB is a good key. While the handshake has something to do with timeliness, the exact
significance of{NB}KAB

and{NB − 1}KAB
is a little unclear. Denning and Sacco

exploited these shortcomings in their attack.
Often, the meanings of messages pertain to the goodness of keys. As Needham

noted, years later, much progress can be made without further elaboration on what is a
good key [73]:

The statement that a key was “good” for certain communication bundles up
all sorts of useful notions—that it was made by a careful agent, had not been
scattered about, had sufficient variety, and so forth.

Still, if several kinds of good keys are possible (from different cryptosystems, or with
different parameters), then messages should be explicit on which kind is intended.

4.2 Explicit Design

Cryptography is a powerful tool, but a proper understanding of its guarantees, nuances,
and limitations is required for its effective use in protocols. Accordingly, the next prin-
ciple concerns the use of cryptography, rather than the specifics of particular crypto-
graphic algorithms [9].

Be clear as to why encryption is being done.
Encryption is not synonymous with security.

In protocols, encryption and other cryptographic functions are used for a variety of
purposes.

– Encryption is sometimes used for confidentiality. For example, in Message 2, en-
cryption protects the secrecy ofKAB .

– Encryption is sometimes used in order to guarantee authenticity. For example,A
may reason that Message 2 is an authentic message fromS because of the encryp-
tion.

– Encryption sometime serves for proving the presence of a principal or the posses-
sion of a secret. Message 5 exemplifies this use.

– Encryption may also serve for binding together the parts of a message. In Mes-
sage 2, the double encryption may be said to serve this purpose. However, in this ex-
ample, rewriting the message to{NA, B, KAB}KAS

, {KAB , A}KBS
would work

just as well. Double encryption is not double security—and indeed sometimes it is
a source of confusion and insecurity, as in the Woo-Lam protocol [9, 81, 82].

– Encryption is sometimes used in random-number generation, in defining MACs,
and in other cryptographic tasks. It is generally best to leave those uses for the
lower-level constructions of cryptographic primitives, outside the scope of protocol
design.

While the principle above refers to encryption, it also applies to other cryptographic
functions. More generally, it is desirable that not only messages but also the protocol
design be explicit [14]:

Robust security is about explicitness; one must be explicit about any properties
which can be used to attack a public key primitive, such as multiplicative ho-
momorphism, as well as the usual security properties such as naming, typing,
freshness, the starting assumptions and what one is trying to achieve.

5 Analysis

The development of methods for describing and analyzing security protocols seems to
have started in the early 1980s (e.g., [30, 40, 42, 55, 66, 83]). The field matured con-
siderably in the 1990s. Some of the methods rely on rigorous but informal frame-
works, sometimes supporting sophisticated complexity-theoretic definitions and argu-
ments (e.g., [19, 30, 47, 83]). Others rely on formalisms specially tailored for this task
(e.g., [37, 80]). Yet others are based on temporal logics, process algebras such as CSP
and the pi calculus, and other standard formalisms, sometimes in the context of various
theorem-proving tools, such as Isabelle (e.g., [8, 52, 61, 64, 76, 78]). The next section
presents the applied pi calculus as an example of this line of work.

Overall, the use of these methods has increased our confidence in some protocols. It
has also resulted in the discovery of many protocol limitations and flaws, and in a better
understanding of how to design secure protocols.

Many of these methods describe a protocol as a program, written in a programming
notation, or as the corresponding set of executions. In addition to the expected prin-
cipals, this model of the protocol should include an attacker. The attacker has various
standard capabilities:

– it may participate in some protocol runs;
– it may know certain data in advance;
– it may intercept messages on some or all communication paths;
– it may inject any messages that it can produce.

The last of these is the most problematic: in order to obtain a realistic model, we should
consider non-deterministic attackers, which may for example produce keys and nonces,
but without such luck that they always guess the keys on which the security of the
protocol depends.

One approach to this problem consists in defining the attacker as some sort of proba-
bilistic program that is subject to complexity bounds. For instance, the attacker may be a
probabilistic polynomial-time Turing machine. Such a machine is not able to explore an
exponentially large space of possible values for secret keys. This approach can be quite
successful in providing a detailed, convincing model of the attacker. Unfortunately, it
can be relatively hard to use.

Going back to early work on decision procedures by Dolev and Yao [42], formal
methods adopt a simpler solution. They arrange that non-deterministic choice of a key
or a nonce always yields a fresh value (much like object allocation in object-oriented
languages always returns a fresh address). In this respect, keys and nonces are not or-
dinary bitstrings. Accordingly, cryptographic operations are treated formally (that is,
symbolically). Some assumptions commonly underly these formal methods. For in-
stance, for symmetric encryption, we often find the following assumptions:

– GivenK, anyone can compute{M}K from M .
– Conversely, givenK, anyone can computeM from {M}K .
– {M}K cannot be produced by anyone who does not knowM andK.
– M cannot be derived from{M}K by anyone who does not knowK (andK cannot

be derived from{M}K).
– An attempt to decrypt{M}K with an incorrect keyK ′ will result in an evident

failure.

Here,M , K, and{M}K represent formal expressions. The first assumption says that
anyone with the expressionsK andM can obtain the expression{M}K ; the opera-
tion applied is a symbolic abstraction of encryption, rather than a concrete encryption
operation on bitstrings. Similarly, the second assumption corresponds to a symbolic ab-
straction of decryption, and the fifth assumption to a related symbolic check. The third
and the fourth assumptions are reflected in the absence of any operations for encrypting
or decrypting without the corresponding key.

Despite their somewhat simplistic treatment of cryptography, formal methods are
often quite effective, in part because, as noted above, a fairly abstract view of cryptog-
raphy often suffices in the design, implementation, and analysis of protocols. Formal
methods enable relatively simple reasoning, and also benefit from substantial work on
proof methods and from extensive tool support.

The simplistic treatment of cryptography does imply inaccuracies, possibly mis-
takes. The separation of keys and nonces from ordinary data implies that attackers can-
not do arbitrary manipulations on keys and nonces. For instance, attackers may not be
allowed to do bitwise shifts on keys, if that is not represented as a symbolic operation
somehow. Thus, attacks that rely on shifts are excluded by the model, rather than by
proofs.

A recent research effort aims to bridge the gap between complexity-theoretic meth-
ods and formal methods. It aims to provide rigorous justifications for abstract treat-
ments of cryptography, while still enabling relatively easy formal proofs. For instance,
a formal treatment of encryption is sound with respect to a lower-level computational
model based on complexity-theoretic assumptions [10]. The formal treatment is sim-
ple but fairly typical, with symbolic cryptographic operations. In the computational
model, on the other hand, keys and all other cryptographic data are bitstrings, and

adversaries have access to the full low-level vocabulary of algorithms on bitstrings.
Despite these additional capabilities of the adversaries, the secrecy assertions that can
be proved formally are also valid in the lower-level model, not absolutely but with high
probability and against adversaries of reasonable computational power. Further research
in this area addresses richer classes of systems and additional cryptographic functions
(e.g., [16, 39, 59, 60, 67]). Further research also considers how to do automatic proofs in
a computational model, starting from formal protocol descriptions but with semantics
and proof principles from the complexity-theoretic literature (e.g., [26, 29]).

6 The Applied Pi Calculus

This section introduces the applied pi calculus [6], focusing on its syntax and its infor-
mal semantics. Section 7 describes ProVerif, a tool for the applied pi calculus; Section 8
gives an example of the use of the applied pi calculus.

6.1 Security Protocols in the Pi Calculus

The pi calculus is a minimal language for describing systems of processes that commu-
nicate on named channels, with facilities for dynamic creation of new channels [69, 70].
We use it here without defining it formally; some definitions appear below, in the con-
text of the applied pi calculus. As usual, we writec〈. . .〉 for a message emission and
c(. . .) for a message reception, “.” for sequential prefixing, “|” for parallel composi-
tion, and “ν” for name restriction. Equations likeA = . . ., B = . . ., andP = . . . are
definitions outside the pi calculus: the operator “=” is not part of the calculus itself.

At an abstract level, the pi calculus is sufficient for describing a wide range of
systems, including security protocols. For instance, we may describe an abstract version
of a trivial one-message protocol as follows:

A = c〈V 〉
B = c(x).d〈〉
P = (νc)(A | B)

Here,A is a process that sends the messageV on the channelc, andB is a process that
receives a message on the channelc (with x as the argument variable to be bound to
the message), then signals completion by sending an empty message on the channeld.
Finally, P is the entire protocol, which consists of the parallel composition ofA andB
with a restriction on the channelc so that onlyA andB can accessc.

The attacker, left implicit in the definitions of this example, is the context. It may be
instantiated to an arbitrary expressionQ of the pi calculus, and put in parallel withP ,
as inP | Q.

This process representation of the protocol has properties that we may interpret as
security properties. In particular, in any context,P is equivalent to a variantP ′ that
sendsV ′ in place ofV , for any other messageV ′. Indeed,P andP ′ are so trivial that
they are equivalent tod〈〉. Thinking of the context as an attacker, we may say that this
property expresses the secrecy of the messageV from the attacker.

In more complicated examples, the security properties are less obvious, but they
can still be formulated and established (or refuted) using the standard notations and
proof techniques of the pi calculus. In particular, the formulations rely on universal
quantification over all possible attackers, which are treated as contexts in the pi calculus.
This treatment of attackers is both convenient and generally useful.

6.2 The Applied Pi Calculus

As in the small example above, the pi-calculus representations of protocols often model
secure channels as primitive, without showing their possible cryptographic implemen-
tations. In practice, the channelc of the example may be implemented using a public
channel plus a keyK shared byA andB. Sending onc requires encryption underK,
and receiving onc requires decryption withK. Additional precautions are necessary,
for instance in order to prevent replay attacks. None of this implementation detail is
exposed in the pi-calculus definitions.

Moreover, even with the abstraction from keys to channels, some protocols are hard
to express. The separation of encryption from communication (an important aspect of
the work of Needham and Schroeder) can be particularly problematic. For instance,
Message 2 of the Needham-Schroeder protocol, fromS to A, includes{KAB , A}KBS

,
to be forwarded toB. This message component might be modeled as a direct message
from S to B on a secure channel—but such a model seems rather indirect, and might
not be sound.

One approach to addressing this difficulty consists in developing encodings of en-
cryption in the pi calculus [8, 17]. While this approach may be both viable and interest-
ing, it amounts to a substantial detour.

Another approach to addressing this difficulty relies on extensions of the pi calcu-
lus with formal cryptographic operations, such as the spi calculus [8] and the applied
pi calculus. The applied pi calculus is essentially the pi calculus plus function sym-
bols that can be used for expressing data structures and cryptographic operations. The
spi calculus can be seen as a fragment that focuses on a particular choice of function
symbols. In both cases, the function symbols enable finer protocol descriptions. These
descriptions may show how a secure channel is implemented with encryption, or how
one key is computed from another key. Next we introduce the syntax and the informal
semantics of the applied pi calculus.

We start with a sort of variables (such asx andy) and a sort of names (such asn).
We use meta-variablesu andv to range over both names and variables. We also start
with a set of function symbols, such asf, encrypt, andpair. These function symbols
have arities and types, which we generally omit in this presentation. In addition to
arities and types, the function symbols come with an equational theory (that is, with an
equivalence relation on terms with certain closure properties). For instance, for binary
function symbolssenc andsdec, we may have the usual equation:

sdec(senc(x, y), y) = x

If in addition we have a binary function symbolscheck and a constant symbolok, we
may have the additional equation:

scheck(senc(x, y), y) = ok

Intuitively, senc andsdec stand for symmetric encryption and decryption, whilescheck
provides the possibility of checking that a ciphertext is under a given symmetric key.

The set of terms is defined by the grammar:

U, V ::= terms
c, d, n, s, K, N, . . . name
x, y, K, . . . variable
f(U1, . . . , Ul) function application

wheref ranges over the function symbols andU1, . . . , Ul match the arity and type
of f . Terms are intended to represent messages and other data items manipulated in
protocols.

The set of processes is defined by the grammar:

P,Q,R ::= processes
nil null process
P | Q parallel composition
!P replication
(νn)P name restriction (“new”)
if U = V then P else Q conditional
u(x1, . . . , xn).P message input
u〈V1, . . . , Vn〉.P message output

Informally, the semantics of these processes is as follows:

– The null processnil does nothing.
– P | Q is the parallel composition ofP andQ.
– The replication!P behaves as an infinite number of copies ofP running in parallel.
– The process(νn)P generates a new namen then behaves asP . The namen is

bound, and subject to renaming.
The use ofν is not limited to generating new channel names. We often useν more
broadly, as a generator of unguessable values. In some cases, those values may
serve as nonces or as keys. In others, those values may serve as seeds, and various
transformations may be applied for deriving keys from seeds.

– The conditional constructif U = V then P else Q is standard. Here,U = V rep-
resents equality in the equational theory, not strict syntactic identity. We abbreviate
it if U = V then P whenQ is nil .

– The input processu(x1, . . . , xn).P is ready to input a message withn components
from channelu, then to runP with the actual message components replaced for
the formal parametersx1, . . . , xn. We may omitP when it isnil . The variables
x1, . . . , xn are bound, and subject to renaming.

– The output processu〈V1, . . . , Vn〉.P is ready to output a message withn compo-
nentsV1, . . . , Vn on channelu, then to runP . Again, we may omitP when it
is nil .

Processes are intended to represent the components of a protocol, but they may also
represent attackers, users, or other entities that interact with the protocol.

As an abbreviation, we may also writelet x = U in P . It can be defined as
(νc)(c〈U〉 | c(x).P), wherec is a name that does not occur inU or in P .

As these definitions indicate, the applied pi calculus is rather abstract. It allows
us to omit many details of cryptography and communication. On the other hand, both
cryptography and communication are represented in the applied pi calculus. We can
describe every message, under what circumstances it is sent, how it is checked upon
receipt, and what actions it triggers.

Research on the spi calculus and the applied pi calculus includes the development
of formal semantics, the study of equivalences and type systems, the invention of de-
cision procedures for particular problems, the definition of logics, other work on proof
techniques and tools, and various applications (e.g., [2, 5, 18, 34–36, 43, 44, 49, 50, 54]).
Research on related formalisms touches on many of these topics as well (e.g., [12, 13,
38, 45, 77]). We discuss only a fraction of this work in the present notes, and refer the
reader to the research literature for further material on these topics.

7 ProVerif

A variety of methods for protocol analysis rely at least in part on tool support. They are
effective on abstract but detailed models of important protocols. Many of them employ
elaborate proof techniques—some general, some specific to this area.

Since the work of Dolev and Yao, there has been much research on special decision
procedures. In recent years, these have been most successful for finite-state systems
(e.g., [18]). Since the mid 1990s, general-purpose model-checking techniques have
also been applied in this area (e.g., [62, 71]). Again, they are usually most effective
for finite-state systems. There has also been research on proofs with semi-automatic
proof assistants (e.g., [33, 76]). These proofs can require a fair amount of expert human
guidance. On the other hand, they can produce sophisticated theorems and attacks, even
for infinite-state systems.

Several other approaches rely on programming-language techniques, such as typing,
control-flow analysis, and abstract interpretation (e.g., [2, 31, 72]). These techniques
are often incomplete but useful in examples and (relatively) easy to use. It turns out
that some of these techniques are equivalent, at least in theory [2, 32]. We give a brief
description of ProVerif [23–25, 27], as an important example of this line of work.

ProVerif is an automatic checker for the applied pi calculus. It features a somewhat
modified input syntax, in which function symbols are categorized as constructors and
destructors. Pairing and encryption are typical examples of constructors, while projec-
tion operations and decryption are examples of destructors.

Internally, ProVerif translates from the applied pi calculus to Horn clauses, and thus
represents protocols as logic programs. For example, if a process sends the nameA
on channelc when it receives the nameB on channeld, then the Horn clauses that
represent the protocol will imply

mess(d, B) → mess(c, A)

wheremess is a predicate that indicates the possible presence of a message on a chan-
nel. Some of the Horn clauses deal with communication and with cryptography (not

specifically to a protocol). For example, we may have:

attacker(x) ∧ attacker(y) → mess(x, y)
attacker(x) ∧ attacker(y) → attacker(senc(x, y))

whereattacker is a predicates that characterizes the knowledge of an attacker.
ProVerif then applies automated analysis techniques based on resolution to these

Horn clauses. It contains proof methods for certain classes of properties. These include
secrecy and authenticity properties. In particular, the secrecy of a names may be for-
mulated in terms of whether or notattacker(s) is provable.

ProVerif has been effective on a wide range of examples. For instance, it can treat
the Needham-Schroeder protocol without much difficulty, using definitions similar to
those presented in Section 8. More advanced examples include a protocol for certified
email [3], the JFK protocol [11] for keying for IP security [4], some password-based
protocols [27], some electronic-voting protocols [57], and several web-services proto-
cols [20, 63]. ProVerif seems to be fairly accessible to new users. Remarkably, it has
also served as a powerful basis for sophisticated tools for analyzing web-services pro-
tocols [22].

ProVerif proofs typically take seconds or minutes, though longer proofs are possible
too. ProVerif guarantees termination only in certain cases [28]. Manual arguments are
sometimes combined with automatic proofs.

8 An Example, Revisited

As an example, we write the Needham-Schroeder protocol in the applied pi calculus.
An analysis of this example may be done by hand, using a variety of proof tech-

niques for the applied pi calculus that go beyond the scope of these notes. An analysis
may also be done automatically with ProVerif, as mentioned above.

8.1 Preliminaries

We assume thate is a public channel on which all principals may communicate. There-
fore, we do not restrict the scope ofe with theν operator. We do not represent the details
of addressing and routing. In our formulation of the code, it is possible for a principal to
receive a message intended for some other principal, and for the processing to get stuck.
It is straightforward to do better. We choose this simplistic model because the details of
addressing are mostly orthogonal to the primary security concerns in this protocol. In
other protocols, the details of addressing may be more important, for instance if one is
interested in hiding the identities of the principals that communicate, in order to obtain
privacy guarantees (e.g., [7]).

We use the following function symbols:

– We use constant symbolsA, B, . . . for principal names.
– We also use the function symbols introduced above for symmetric cryptography

(senc, sdec, scheck, andok).

– We use two unary function symbols that we write in postfix notation, as−1 and
+1, with the equation(x− 1) + 1 = x.
While this equation may not seem surprising, it is worth noting that it is not essen-
tial to writing the processes that represent the protocol. We introduce it because we
wish to emphasize that anyone (including an attacker) can invert the−1 function.
Without this equation,−1 might appear to be a one-way function, so one might
wrongly expect that it would be impossible to recoverNA from NA − 1. Similarly
we could add other equations, such as(x + 1)− 1 = x. We return to the subject of
choosing equations in Section 8.4.

– We also assume tupling and the corresponding projection operations. We write
(U1, . . . , Un) for the tuple ofU1, . . . ,Un, for anyn, and writepi for the projection
function that retrievesUi, for i = 1..n, with the equationpi((x1, . . . , xn)) = xi.

– Finally, we introduce a binary function symbolskeygen. We useskeygen to map
a master key and a principal name to a symmetric key. Relying on this mapping,
the serverS needs to remember only a master keyKS , and can recoverKAS by
computingskeygen(KS , A) andKBS by computingskeygen(KS , B).
Thus, we model a practical, modern strategy for reducing storage requirements atS.
An alternative set of definitions might encode a table of shared keys atS.

8.2 A First Version

As an initial attempt, we may model the messages in the protocol rather directly. We
write a process for each ofA, B, andS, then combine them.

The code forA includes a top-level definition ofKAS (formally introduced as a
variable, not a name). We do not model more realistic details of howA may obtainKAS .
We write the code forA in terms of auxiliary processesA1, A2, Basically,Ai

representsA at Messagei of a protocol execution. For instance,A1 generatesNA, then
sendsA,B, NA one, then proceeds toA2. In turn,A2 receives a messagex, checks that
it is a ciphertext under the expected key, decrypts it, extracts four components from the
plaintext, and checks thatNA is the first component andB the second, then proceeds
to A3; a failure in any of the verifications causes the processing to stop. Each of these
auxiliary processes may have free names and variables bound in previous processes; for
instanceNA is bound inA1 and used inA2.

A = let KAS = skeygen(KS , A) in A1

A1 = (νNA)e〈A,B,NA〉.A2

A2 = e(x).if scheck(x, KAS) = ok then
let x′ = sdec(x,KAS) in
let x1 = p1(x′) in
let x2 = p2(x′) in
let x3 = p3(x′) in
let x4 = p4(x′) in
if x1 = NA then
if x2 = B then A3

A3 = e〈x4〉.A4

A4 = e(x5).if scheck(x5, x3) = ok then A5

A5 = e〈senc((sdec(x5, x3)− 1), x3)〉

Similarly, we write the code forS as follows:

S = S1

S1 = e(x1, x2, x3).S2

S2 = (νK)let x′ = senc((K, x1), skeygen(KS , x2)) in
e〈senc((x3, x2,K, x′), skeygen(KS , x1))〉

Here the keyK stands for the new symmetric key for communication between clients
(namedKAB above for clientsA andB).

Finally, we write the code forB as follows:

B = let KBS = skeygen(KS , B) in B3

B3 = e(x).if scheck(x,KBS) = ok then
let x′ = sdec(x, KBS) in
let x1 = p1(x′) in
let x2 = p2(x′) in B4

B4 = (νNB)e〈senc(NB , x1)〉.B5

B5 = e(y).if scheck(y, x1) = ok then
if sdec(y, x1)− 1 = NB − 1 then nil

We assemble the pieces so as to represent a system withA, B, andS:

P = (νKS)(A | B | S)

8.3 A Second Version

The first version of the code is not entirely satisfactory in several respects.

– A appears to initiate a session withB spontaneously, and communication stops
entirely after a shared key is established. For instance,B checks the last message,
but stops independently of whether the check succeeds.
A more complete model of the protocol would show thatA initiates a session be-
cause of some event. This event may for example come from a processRA that rep-
resents an application that uses the protocol atA. Upon completion of a successful
exchange, the resulting key may be provided to the application. (Alternatively, the
protocol could include its own layer for encrypted data communications, like SSL’s
record layer.) Similarly, upon completion of a successful exchange, the resulting
key and the identity of the other endpoint could be passed to a processRB at B,
which may check the identity against an access-control policy. Thereafter,RA and
RB may use the session key; they should never use the master keyKS .

– If the possibility of session-key compromise is important, as indicated by Denning
and Sacco, then it should be modeled. For instance, upon completion of a successful
exchange, the session key may be broadcast. An analysis of the protocol without
such an addition would not detect the possibility of an attack that relies on the
compromise of old session keys.
In a model with user processesRA andRB , we may simply consider the possibility
that one of these processes leaks old session keys.

– A should not be limited to initiating one session, and the identity of the principals
A andB should not be fixed. Rather, each principal may engage in the protocol in
the role ofA or B, or even in both roles simultaneously, multiple times.
Therefore, the code for these roles should use, as a parameter, the claimed name of
the principal that is running the code. In addition, the code should be replicated.

We arrive at the following variant of our definitions forA:

A(xA) = (νc)(νd)(RA | let KAS = skeygen(KS , xA) in !c(xB).A1)
A1 = (νNA)e〈xA, xB , NA〉.A2

A2 = as above, except for the last line, which becomes
if x2 = xB then A3

A3 = as above
A4 = as above
A5 = e〈senc((sdec(x5, x3)− 1), x3)〉.d〈x3, xB〉

Here the variablesxA andxB representA’s andB’s names, respectively. Channelsc
andd are for communication betweenRA and the rest of the code. Channelc conveys
the identity of the other endpoint; channeld returns this identity and a session key;
RA may then use the session key, and perhaps leak it. A replication indicates that an
unbounded number of sessions may be initiated.

Similarly, we revise the code forB as follows:

B(xB) = (νd)(RB | let KBS = skeygen(KS , xB) in !B3)
B3 = as above
B4 = as above
B5 = e(y).if scheck(y, x1) = ok then

if sdec(y, x1)− 1 = NB − 1 then d〈x1, x2〉

As in the code forA, channeld conveys the session key and the identity of the other
endpoint. Again, a replication indicates that an unbounded number of sessions may be
initiated.

In S, only an extra replication is needed:

S = !S1

S1 = as above
S2 = as above

Suppose that we wish to represent a system with client principals namedC1, . . . ,
Cn, all of them able to play the roles ofA andB, and all of them with the same appli-
cation code for each for the roles. The corresponding assembly is:

P = (νKS)(A(C1) | B(C1) | . . . | A(Cn) | B(Cn) | S)

Many variants and elaborations are possible. For instance, some of the checks may
safely be removed from the code. Since the applied pi calculus is essentially a program-
ming language, protocol models are enormously malleable. However, complex models
are rarely profitable—the point of diminishing returns is reached fairly quickly in the
analysis of most protocols.

8.4 Discussion

As in the pi calculus, scoping can be the basis of security properties for processes in
the applied pi calculus. Moreover, attackers can be treated as contexts for processes. In
our example, the scoping onKS reflects that it cannot be used by attackers. Principals
other thanS useKS only as prescribed in their code, which is given explicitly as part
of the processP above.

On the other hand, the added expressiveness of the applied pi calculus enables writ-
ing detailed examples, such as this one. Not only we can represent cryptographic op-
erations, but we need not commit to a particular cryptosystem: we can introduce new
function symbols and equations as needed. The awareness of such extensibility is far
from new: it appears already in Merritt’s dissertation [66, page 60]. This extensibility
can be a cause of concerns about soundness. Indeed, we may want to have a method
for deciding whether a given set of rules captures “enough” properties of an underly-
ing cryptosystem. At present, the most attractive approach to this problem consists in
developing complexity-theoretic foundations for formal methods.

The applied pi calculus also gives rise to the possibility that a process may reveal
a term that contains a fresh names without revealings itself. For instance, in our ex-
ample, the process reveals an encryption of a session key, by sending this encryption
on the public channele, without necessarily disclosing the session key. This possibility
does not arise in the pure pi calculus, where each name is either completely private
to a process or completely known to its context. Technically, this possibility is a sig-
nificant source of complications in reasoning about security in the applied pi calculus.
These complications should not be too surprising, however: they reflect the difficulty of
reasoning about security protocols.

9 Outlook

The development of new security protocols remains active. As mentioned in Section 3,
recent protocols typically have many moving parts—many modes, options, and layers.
Their complexity can be a source of serious concerns. Moreover, from time to time,
security protocols are used in new contexts, in which their assumptions may not hold
exactly. We may therefore conjecture that understanding how to design and analyze
security protocols will remain important in the coming years. What new research will
be necessary and most fruitful remains open to debate.

The applied pi calculus and its relatives are idealized programming languages. As
formal analysis matures, it becomes applicable to more practical programming lan-
guages, at least for protocol code written in a stylized manner [21, 48, 51]. For such
code, it is possible to translate to the applied pi calculus—more specifically to the di-
alect understood by ProVerif—and to obtain automatic proofs. We may expect that
these stylistic requirements will be relaxed over time. We may also expect that general-
purpose static analysis techniques (not specifically developed for security) will be help-
ful in this progress. Moreover, in light of some of the research described in Section 5,
we may expect to obtain not only formal but also complexity-theoretic security results.
With this further development, formalisms may ultimately be externally visible neither

in protocol descriptions (which would be in ordinary programming languages) nor in
security guarantees.

Acknowledgments

These notes are largely based on joint work with Bruno Blanchet, Mike Burrows, Cédric
Fournet, Andy Gordon, and Roger Needham. Bruno Blanchet, Cédric Fournet, and
Andy Gordon commented on a draft of these notes. I am grateful to all of them.

I am also grateful to the organizers of the 2006 International School on Foundations
of Security Analysis and Design for inviting me to lecture and then for the encourage-
ment to write these notes.

This work was partly supported by the National Science Foundation under Grants
CCR-0208800 and CCF-0524078.

References

1. Mart́ın Abadi. Security protocols: Principles and calculi. Lectures at 6th International School
on Foundations of Security Analysis and Design, September 2006. Slides athttp://www.
sti.uniurb.it/events/fosad06/papers/Abadi-fosad06.pdf .

2. Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with secrecy types and logic
programs.Journal of the ACM, 52(1):102–146, 2005.

3. Mart́ın Abadi and Bruno Blanchet. Computer-assisted verification of a protocol for certified
email. Science of Computer Programming, 58(1–2):3–27, October 2005.

4. Mart́ın Abadi, Bruno Blanchet, and Cédric Fournet. Just Fast Keying in the pi calculus.ACM
Transactions on Information and System Security, 2007. To appear.

5. Mart́ın Abadi and V́eronique Cortier. Deciding knowledge in security protocols under equa-
tional theories.Theoretical Computer Science, 367(1–2):2–32, November 2006.

6. Mart́ın Abadi and Ćedric Fournet. Mobile values, new names, and secure communication.
In 28th ACM Symposium on Principles of Programming Languages (POPL’01), pages 104–
115, January 2001.

7. Mart́ın Abadi and Ćedric Fournet. Private authentication.Theoretical Computer Science,
322(3):427–476, September 2004.

8. Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The spi cal-
culus. Information and Computation, 148(1):1–70, January 1999. An extended version ap-
peared as Digital Equipment Corporation Systems Research Center report No. 149, January
1998.

9. Mart́ın Abadi and Roger Needham. Prudent engineering practice for cryptographic proto-
cols. IEEE Transactions on Software Engineering, 22(1):6–15, January 1996.

10. Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (The computa-
tional soundness of formal encryption).Journal of Cryptology, 15(2):103–127, 2002.

11. William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John Ioannidis, Angelos D.
Keromytis, and Omer Reingold. Just Fast Keying: Key agreement in a hostile internet.ACM
Transactions on Information and System Security, 7(2):242–273, May 2004.

12. Roberto Amadio and Denis Lugiez. On the reachability problem in cryptographic protocols.
In CONCUR 2000: Concurrency Theory, volume 1877 ofLNCS, pages 380–395. Springer-
Verlag, August 2000.

13. Roberto Amadio and Sanjiva Prasad. The game of the name in cryptographic tables. In
Advances in Computing Science - ASIAN’99, volume 1742 ofLNCS, pages 15–27. Springer-
Verlag, December 1999.

14. Ross Anderson and Roger Needham. Robustness principles for public key protocols. In
Proceedings of Crypto ’95, volume 963 ofLNCS, pages 236–247. Springer-Verlag, 1995.

15. Tuomas Aura. Strategies against replay attacks. In10th IEEE Computer Security Founda-
tions Workshop, pages 59–68, 1997.

16. Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryptographic li-
brary with nested operations. In10th ACM conference on Computer and Communications
security (CCS’03), pages 220–230, October 2003.

17. Michael Baldamus, Joachim Parrow, and Björn Victor. Spi calculus translated to pi-calculus
preserving may-tests. In19th Annual IEEE Symposium on Logic in Computer Science
(LICS’04), pages 22–31, July 2004.

18. Mathieu Baudet.Śecurit́e des protocoles cryptographiques: aspects logiques et calcula-
toires. PhD thesis, Ecole Normale Supérieure de Cachan, 2007.

19. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. InAdvances
in Cryptology—CRYPTO ’94, volume 773 ofLNCS, pages 232–249. Springer-Verlag, 1993.

20. Karthikeyan Bhargavan, Cédric Fournet, and Andrew D. Gordon. Verifying policy-based
security for web services. InACM Conference on Computer and Communications Security
(CCS’04), pages 268–277, October 2004.

21. Karthikeyan Bhargavan, Cédric Fournet, and Andrew D. Gordon. Verified reference imple-
mentations of WS-security protocols. InWeb Services and Formal Methods, Third Inter-
national Workshop, WS-FM 2006, volume 4184 ofLNCS, pages 88–106. Springer-Verlag,
2006.

22. Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Riccardo Pucella. Tu-
laFale: A security tool for web services. InFormal Methods for Components and Objects
(FMCO 2003), volume 3188 ofLNCS, pages 197–222. Springer-Verlag, November 2003.

23. Bruno Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In14th
IEEE Computer Security Foundations Workshop, pages 82–96, June 2001.

24. Bruno Blanchet. From secrecy to authenticity in security protocols. InStatic Analysis, 9th
International Symposium (SAS’02), volume 2477 ofLNCS, pages 342–359. Springer-Verlag,
September 2002.

25. Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In2004 IEEE
Symposium on Security and Privacy, pages 86–100, May 2004.

26. Bruno Blanchet. A computationally sound mechanized prover for security protocols. In
2006 IEEE Symposium on Security and Privacy, pages 140–154, May 2006.

27. Bruno Blanchet, Martı́n Abadi, and Ćedric Fournet. Automated verification of selected
equivalences for security protocols.Journal of Logic and Algebraic Programming, 2007.
To appear.

28. Bruno Blanchet and Andreas Podelski. Verification of cryptographic protocols: Tagging
enforces termination. InFoundations of Software Science and Computation Structures (FoS-
SaCS’03), volume 2620 ofLNCS, pages 136–152. Springer-Verlag, April 2003.

29. Bruno Blanchet and David Pointcheval. Automated security proofs with sequences of
games. InCRYPTO’06, volume 4117 ofLecture Notes on Computer Science, pages 537–554.
Springer Verlag, August 2006.

30. Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudo random bits. In23rd Annual Symposium on Foundations of Computer Science
(FOCS 82), pages 112–117, 1982.

31. C. Bodei, P. Degano, F. Nielson, and H. Nielson. Flow logic for Dolev-Yao secrecy in
cryptographic processes.Future Generation Computer Systems, 18(6):747–756, 2002.

32. Chiara Bodei.Security Issues in Process Calculi. PhD thesis, Università di Pisa, January
2000.

33. Dominique Bolignano. Towards a mechanization of cryptographic protocol verification. In
9th International Conference on Computer Aided Verification (CAV’97), volume 1254 of
LNCS, pages 131–142. Springer-Verlag, 1997.

34. Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Proof techniques for crypto-
graphic processes.SIAM J. Comput., 31(3):947–986, 2001.

35. Johannes Borgström, Śebastien Briais, and Uwe Nestmann. Symbolic bisimulation in the spi
calculus. InCONCUR 2004: Concurrency Theory, volume 3170 ofLNCS, pages 161–176.
Springer-Verlag, August 2004.

36. Johannes Borgström and Uwe Nestmann. On bisimulations for the spi calculus. InAlgebraic
Methodology and Software Technology: 9th International Conference, AMAST 2002, volume
2422 ofLNCS, pages 287–303. Springer-Verlag, September 2002.

37. Michael Burrows, Martı́n Abadi, and Roger Needham. A logic of authentication.Proceed-
ings of the Royal Society of London A, 426:233–271, 1989. A preliminary version appeared
as Digital Equipment Corporation Systems Research Center report No. 39, February 1989.

38. Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A derivation system and
compositional logic for security protocols.Journal of Computer Security, 13(3):423–482,
2005.

39. Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. Protocol composition logic
(PCL). Electronic Notes in Theoretical Computer Science, 172(1):311–358, April 2007.

40. Richard A. DeMillo, Nancy A. Lynch, and Michael Merritt. Cryptographic protocols. In
14th Annual ACM Symposium on Theory of Computing, pages 383–400, 1982.

41. Dorothy E. Denning and Giovanni Maria Sacco. Timestamps in key distribution protocols.
Communications of the ACM, 24(7):533–535, August 1981.

42. Danny Dolev and Andrew C. Yao. On the security of public key protocols.IEEE Transac-
tions on Information Theory, IT-29(12):198–208, March 1983.

43. Luca Durante, Riccardo Sisto, and Adriano Valenzano. A state-exploration technique for
spi-calculus testing-equivalence verification. InFormal Techniques for Distributed System
Development, FORTE/PSTV, volume 183 ofIFIP Conference Proceedings, pages 155–170.
Kluwer, October 2000.

44. Luca Durante, Riccardo Sisto, and Adriano Valenzano. Automatic testing equivalence ver-
ification of spi calculus specifications.ACM Transactions on Software Engineering and
Methodology, 12(2):222–284, April 2003.

45. Riccardo Focardi and Roberto Gorrieri. The compositional security checker: A tool for
the verification of information flow security properties.IEEE Transactions on Software
Engineering, 23(9):550–571, September 1997.

46. Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL protocol: Ver-
sion 3.0. http://www.mozilla.org/projects/security/pki/nss/ssl/
draft302.txt , November 1996.

47. Shafi Goldwasser and Silvio Micali. Probabilistic encryption.Journal of Computer and
System Sciences, 28:270–299, April 1984.

48. Andrew D. Gordon. Provable implementations of security protocols. In21st Annual IEEE
Symposium on Logic in Computer Science (LICS’06), pages 345–346, 2006.

49. Andrew D. Gordon and Alan Jeffrey. Authenticity by typing for security protocols. In14th
IEEE Computer Security Foundations Workshop, pages 145–159, June 2001.

50. Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric cryptographic proto-
cols. In15th IEEE Computer Security Foundations Workshop, pages 77–91, June 2002.

51. Jean Goubault-Larrecq and Fabrice Parrennes. Cryptographic protocol analysis on real
C code. In6th International Conference on Verification, Model Checking and Abstract In-
terpretation (VMCAI’05), volume 3385 ofLNCS, pages 363–379. Springer-Verlag, January
2005.

52. James W. Gray, III, Kin Fai Epsilon Ip, and King-Shan Lui. Provable security for cryp-
tographic protocols—exact analysis and engineering applications. In10th IEEE Computer
Security Foundations Workshop, pages 45–58, 1997.

53. D. Harkins and D. Carrel. RFC 2409: The Internet Key Exchange (IKE).http://www.
ietf.org/rfc/rfc2409.txt , November 1998.

54. Hans Ḧuttel. Deciding framed bisimilarity. In4th International Workshop on Verification of
Infinite-State Systems (INFINITY’02), pages 1–20, August 2002.

55. Richard A. Kemmerer, Catherine Meadows, and Jonathan K. Millen. Three systems for
cryptographic protocol analysis.Journal of Cryptology, 7(2):79–130, Spring 1994.

56. J. Kohl and C. Neuman. RFC 1510: The Kerberos network authentication service (v5).
ftp://ftp.isi.edu/in-notes/rfc1510.txt , September 1993.

57. Steve Kremer and Mark D. Ryan. Analysis of an electronic voting protocol in the applied pi
calculus. InProgramming Languages and Systems: 14th European Symposium on Program-
ming, ESOP 2005, volume 3444 ofLNCS, pages 186–200. Springer-Verlag, April 2005.

58. Butler W. Lampson. Protection. In5th Princeton Conference on Information Sciences and
Systems, pages 437–443, 1971.

59. Peeter Laud. Symmetric encryption in automatic analyses for confidentiality against active
adversaries. In2004 IEEE Symposium on Security and Privacy, pages 71–85, May 2004.

60. Peeter Laud. Secrecy types for a simulatable cryptographic library. In12th ACM Conference
on Computer and Communications Security (CCS’05), pages 26–35. ACM, November 2005.

61. P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework
for protocol analysis. In5th ACM Conference on Computer and Communications Security
(CCS’98), pages 112–121, 1998.

62. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR.
In Tools and Algorithms for the Construction and Analysis of Systems, volume 1055 ofLNCS,
pages 147–166. Springer-Verlag, 1996.

63. Kevin D. Lux, Michael J. May, Nayan L. Bhattad, and Carl A. Gunter. WSEmail: Secure
internet messaging based on web services. InICWS ’05: Proceedings of the IEEE Interna-
tional Conference on Web Services, pages 75–82, 2005.

64. Nancy Lynch. I/O automaton models and proofs for shared-key communication systems. In
12th IEEE Computer Security Foundations Workshop, pages 14–29, 1999.

65. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.Handbook of Applied
Cryptography. CRC Press, 1996.

66. Michael J. Merritt.Cryptographic Protocols. PhD thesis, Georgia Institute of Technology,
February 1983.

67. Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption in the presence
of active adversaries. InTheory of Cryptography Conference (TCC’04), volume 2951 of
LNCS, pages 133–151. Springer-Verlag, February 2004.

68. S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer. Kerberos authentication and
authorization system, Project Athena technical plan, section E.2.1. Technical report, MIT,
July 1987.

69. Robin Milner.Communicating and Mobile Systems: theπ-Calculus. Cambridge University
Press, 1999.

70. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, parts I
and II. Information and Computation, 100:1–40 and 41–77, September 1992.

71. John C. Mitchell, Vitaly Shmatikov, and Ulrich Stern. Finite-state analysis of SSL 3.0. In
7th USENIX Security Symposium, pages 201–216, January 1998.

72. David Monniaux. Abstracting cryptographic protocols with tree automata.Science of Com-
puter Programming, 47(2–3):177–202, 2003.

73. R. M. Needham. Logic and over-simplification. In13th Annual IEEE Symposium on Logic
in Computer Science, pages 2–3, 1998.

74. Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large
networks of computers.Communications of the ACM, 21(12):993–999, December 1978.

75. Roger M. Needham and Michael D. Schroeder. Authentication revisited.Operating Systems
Review, 21(1):7, 1987.

76. Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols.Journal
of Computer Security, 6(1–2):85–128, 1998.

77. Ajith Ramanathan, John Mitchell, Andre Scedrov, and Vanessa Teague. Probabilistic bisim-
ulation and equivalence for security analysis of network protocols. InFOSSACS 2004 -
Foundations of Software Science and Computation Structures, volume 2987 ofLNCS, pages
468–483. Springer-Verlag, March 2004.

78. Steve Schneider. Security properties and CSP. In1996 IEEE Symposium on Security and
Privacy, pages 174–187, 1996.

79. Paul Syverson. Limitations on design principles for public key protocols. In1996 IEEE
Symposium on Security and Privacy, pages 62–73, 1996.

80. F. Javier Thayer F́abrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces: Why
is a security protocol correct? In1998 IEEE Symposium on Security and Privacy, pages
160–171, May 1998.

81. Thomas Y. C. Woo and Simon S. Lam. Authentication for distributed systems.Computer,
25(1):39–52, January 1992.

82. Thomas Y. C. Woo and Simon S. Lam. A lesson on authentication protocol design.Operating
Systems Review, 28(3):24–37, 1994.

83. Andrew C. Yao. Theory and applications of trapdoor functions. In23rd Annual Symposium
on Foundations of Computer Science (FOCS 82), pages 80–91, 1982.

