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Abstract. Access control is central to security in computer systems. Over the
years, there have been many efforts to explain and to improve access control,
sometimes with logical ideas and tools. This paper is a partial survey and dis-
cussion of the role of logic in access control. It considers logical foundations
for access control and their applications, in particular in languages for security
policies. It focuses on some specific logics and their properties. It is intended
as a written counterpart to a tutorial given at the 2009 International School on
Foundations of Security Analysis and Design.

1 Introduction

Access control consists in deciding whether the agent that issues a request should be
trusted on this request. For example, the agent may be a process running on behalf of
a user, and the request may be a command to read a particular file. In this example,
the access control machinery would be charged with deciding whether the read should
be permitted. This authorization decision may, in the simplest case, rely on consulting
an access control matrix that would map the user’s name and the file name to a set of
allowed operations [44]. The matrix may be implemented in terms of access control lists
(ACLs), attached to objects, or in terms of capabilities, held by principals. Typically,
however, the authorization decision is considerably more complex. It may depend, for
example, on the user’s membership in a group, and on a digitally signed credential that
certifies this membership.

Access control is central to security and it is pervasive in computer systems. It
appears (with peculiar features and flaws) in many applications, virtual machines, op-
erating systems, and firewalls. Physical protection for facilities and for hardware com-
ponents are other forms of access control.

Although access control may sometimes seem conceptually straightforward, it is
both complex and error-prone in practice. The many mechanisms for access control are
often broken or circumvented.

Over the years, there have been many efforts to explain and to improve access con-
trol. Some of those efforts have relied on logical ideas and tools. One may hope that
logic would provide a simple, solid, and general foundation for access control, as well
as methods for designing, implementing, and validating particular access control mech-
anisms. Indeed, although logic is not a panacea, its applications in research on access
control have been substantial and beneficial.



This paper is a partial survey and discussion of the role of logic in access control.
It considers logical formulations of access control and their applications, emphasizing
some particular logics and languages for security policies in distributed systems. It does
not however aim to be a complete overview. It deliberately neglects several relevant
topics that have been the subjects of significant bodies of work. These include:

– Decidability results for problems related to access control (e.g., [36, 49, 51]).
– Logical approaches for authorizing code execution, such as those based on proof-

carrying code (e.g., [53, 59]).
– Formal verification of security properties (e.g., [56]).

The next section introduces some logical constructs that have been employed in
connection with access control. Section 3 explains, at a high level, some of the choices
that need to be made in order to define a logic for access control. Section 4 defines some
specific logics. Section 5 briefly discusses non-interference properties. Section 6 con-
siders the relations between various formulas in these logics. Section 7 then describes
languages for access control, focusing on the Binder language. Section 8 concludes.

Some of the basic material in this paper is an adaptation and update of a brief sur-
vey from 2003 [2]. Other parts summarize recent research papers [3, 4], which contain
proofs and additional details.

2 From Matrices to Logics

This section aims to explain, informally, the transition from access control matrices
to logics for access control. Subsequent sections define and study these logics more
precisely, and also contain further examples.

2.1 From Matrices to Predicates

An access control matrix may be viewed as a description of a ternary relation, which we
call may-access . With this interpretation,may-access (p, o, r) would hold when-
ever the matrix gives principalp the rightr on objecto. Thus, we may obtain a first
logic of access control by representing a global access control matrix with the predicate
symbolmay-access , in the setting of a predicate calculus.

This trivial logic enables us to state facts such as

may-access (Alice , Foo.txt , Rd)

(which says that the principalAlice can perform the operation read (Rd) on the object
Foo.txt ). It also enables us to state rules such as

may-access (p, o, Wr) → may-access (p, o, Rd)

(which makes theWr right stronger than theRd right), but perhaps not much else.
Therefore, this trivial logic seems of limited direct benefit. However, it suggests more
elaborate systems with predicate symbols similar tomay-access .



We may reasonably suspect that there is nothing canonical aboutmay-access .
We may also worry about a proliferation of variants. For instance, thinking about se-
curity policies that require separation of duty, we may imagine a predicate symbol
may-jointly-access , with the intent thatmay-jointly-access (p, q, o, r)
would hold if p andq have rightr on o when they requestr jointly. In addition, we
may imagine many useful auxiliary predicates, such as one for expressing that a princi-
pal owns an object, and several for grouping principals and objects. We would perhaps
be reluctant to develop a logic with the many built-in constructs and axioms that would
result.

Nevertheless, rich logics with constructs similar tomay-access can support a
wide range of current models for access control [15, 39, 40]. In addition to primitives for
authorization that greatly generalizemay-access , the logics may include primitives
pertaining to groups, roles, object containment, privilege ordering, and perhaps others.
In a different direction, such a logic for access control may include a modal operator
for reasoning about necessity [21]. There is much room for logical creativity, for better
or for worse—richer logics are not automatically more tasteful or more useful.

2.2 Saying Predicates

Several characteristics of computer systems complicate access control. For distributed
systems, in particular, these characteristics include size, heterogeneity, the autonomy
of system components, and the possibility of component failures (e.g., [30, 43]). These
complications have resulted in a substantial line of work. They also suggest the possi-
bility of an important role for logical methods.

In what follows we focus on one logical construct that has often been used in
this context,says (e.g., [2, 6, 8, 12, 13, 20, 22, 29, 33, 43, 46, 48, 54, 63]). The formula
p says s represents that principalp makes statements. This statement may simply be
a request for an operation. In more interesting cases, the statement may express thatp
delegates some of its authority to another principalq, or it may express part of a security
policy.

For instance, we may write:

p says may-access (q, o, r)

We may also write the rule:

p says may-access (q, o, r) → (may-access (p, o, r) → may-access (q, o, r))

which states thatp may hand off a rightr to q. As in these formulas, the use ofsays
enables us to consider situations—common in distributed systems—in which there is
no global, universally trusted access control policy. Each principal can make its own
security-relevant assertions.

In a slightly more substantial and specific example (partly adapted from [28]), we
consider a principalAdmin (an administrator), a userBob, one fileFile1 , and the
following informal policy:

1. If Admin says thatFile1 should be deleted, then this must be the case.



2. Admin trustsBob to decide whetherFile1 should be deleted.

Several different formalizations of these statements are possible. For instance, much as
above, we may write:

1. may-access (Admin , File1 , Delete )
2. Admin says may-access (Bob, File1 , Delete )

Alternatively, letting the proposition symboldeleteFile1 mean thatFile1 should
be deleted, we may write:

1. (Admin says deleteFile1 ) → deleteFile1
2. Admin says ((Bob says deleteFile1 ) → deleteFile1 )

This second representation allows us to go further, in the following way. Suppose that
Bob wants to deleteFile1 . We may represent this statement by

Bob says deleteFile1

We may then expect to conclude thatdeleteFile1 , soFile1 should be deleted.
Some of the logics described below (in particular, CDD, of Section 4.3) do indeed
yield this conclusion. A reference monitor that controls access toFile1 and that bases
its decisions on such a logic could therefore derivedeleteFile1 from the other
formulas.Bob and other principals may however help with this proof, providing the
whole proof ofdeleteFile1 or some of its parts; this approach is sometimes called
proof-carrying authentication or proof-carrying authorization [8, 9].

Attractively, says abstracts from the details of authentication. Whenp says s, p
may transmits in a variety of ways:

– on a local channel via a trusted operating system within a computer,
– on a physically secure channel between two machines,
– on a channel secured with shared-key cryptography, or
– in a certificate with a public-key digital signature.

We may assert thatp says s even whenp does not directly produces. For example,
whenp is a user and one of its programs sendss in a message, we may find it convenient
and reasonably accurate to state thatp says s althoughp itself may never have even
seens. In this case,p says s means thatp has causeds to be said, or thats has been
said onp’s behalf, or thatp supportss. With this interpretation, we may assert that
p says s also whenp makes a statements′ stronger thans, with the idea that ifp
supportss′ thenp must also supports.

If p says s andp speaks for another principalq, thenq says s. The “speaks for”
relation serves to form chains of responsibility in many important situations [45]. A
program may speak for a user, much like a key may speak for its owner, much like a
channel may speak for its remote end-point. Therefore, some logics support “speaks
for” as a primitive (e.g., [6, 12, 43]) or as a definable construct (e.g., [3, 8]).

Revisiting our example, suppose that instead of havingBob says deleteFile1
directly, Bob hands off his authority toAlice who wants to deleteFile1 . Writing
⇒ for the “speaks for” relation, we may express these statements by:



1. Bob says (Alice ⇒ Bob)
2. Alice says deleteFile1

From these, we may be able to deriveBob says deleteFile1 , and then to derive
deleteFile1 . Again, some of the logics described below (in particular, CDD) do
indeed yield this conclusion. Note that, in this example,Bob says deleteFile1
does not mean thatBob utters the request to delete the file.

3 Defining a Logic (Preliminaries)

Existing logics differ in sometimes subtle but important ways in their syntax, in their
axioms and proof rules, and in the intended interpretations ofsays and related con-
structs. For instance, in some logicssays requires no special axioms and is treated
quite syntactically, like thecert construct of Halpern and van der Meyden [34]. Else-
where, sometimessays has axioms familiar from modal logics [38], such as the axiom
of closure under consequence:

p says (s → s′) → (p says s) → (p says s′)

and the usual necessitation rule according to which the validity ofs implies the va-
lidity of p says s. Sometimessays has additional properties. For instance, early on,
Lampson suggested the axiom:

s → (p says s)

Appel and Felten essentially adopt this axiom (as rule namei) in their work on proof-
carrying authentication [8]. It is stronger than the usual necessitation rule, and should
be used with caution (if at all). In a classical-logic context, it can yield unexpected
consequences such as:

(p says s) → (s ∨ (p says false ))

We explore this and related issues in Section 6.
One may imagine that rigorous semantics would clarify the intended interpretations

of logical constructs, and that they would also shed some light on the proper choice
of syntax, axioms, and proof rules. While semantics have indeed been helpful (for in-
stance, for decidability proofs [6, 28], in relating two definitions of “speaks for” [28],
and in establishing some of the results in this paper), so far they provide only limited
new insight into notions such as authority and responsibility. Therefore, we tend to use
semantics mostly informally or in proofs of metatheorems.

Various high-level desiderata may also influence the choice of syntax, axioms, and
proof rules of a logic:

– The logic should be consistent (that is, it should not provefalse ). It should also
be sensible in other ways. For instance, ifAlice andBob are unrelated principals,
Alice says false should not implyBob says false . This property can be
regarded as a non-interference property [5, 29]. (We discuss non-interference in
Section 5.)



– Human users should find it easy to write security policies and related assertions,
manipulate them, and understand them (e.g., [10]).

– Programs, such as decision procedures, should also be able to manipulate and ana-
lyze logical formulas.

These criteria are not fully orthogonal. In particular, one cannot express meaningful se-
curity policies in an inconsistent logic. On the other hand, expressiveness often conflicts
with algorithmic tractability.

A common approach to addressing these desiderata consists in restricting the forms
of logical formulas. In particular, the formulas may be required to be similar to Horn
clauses, much as in logic programming. The Binder language of Section 7 can be seen
partly as an example of this approach. More general formulas may be allowed for certain
purposes (for instance, in theoretical results) but not necessarily used on a day-to-day
basis, or entirely disallowed.

4 Some Logics

For concreteness, this section introduces specific logics, more formally. The logics have
the same operators and intended applications, but they differ in their axioms and rules.
Section 4.1 briefly introduces syntax. Section 4.2 concerns modal treatments ofsays ,
both intuitionistic and classical. Section 4.3 concerns another logic called CDD. It
presents CDD in a self-contained manner, but it also mentions how to view CDD as
an extension of the intuitionistic logic of Section 4.2.

4.1 Basic Syntax

The syntax of the logics includes that of propositional logic, second-order quantification
over propositions, and thesays operator. More precisely, formulas are given by the
grammar:

s ::= true | (s ∨ s) | (s ∧ s) | (s → s) | p says s | X | ∀X. s

wherep ranges over elements of a setP (intuitively the principals), andX ranges over
a set of variables. The variableX is bound in∀X. s, and subject to renaming.

We write false for ∀X. X. We writes1 ≡ s2 for (s1 → s2) ∧ (s2 → s1). We
write p ⇒ q as an abbreviation for

∀X. (p says X → q says X)

This formula is our representation of “p speaks forq”. We write p controls s as an
abbreviation for(p says s) → s.

4.2 Second-Order Propositional Modal Logics

Our starting point is second-order propositional intuitionistic logic. This logic can be
presented as a Hilbert system, with the following axioms:



– true
– s1 → (s2 → s1)
– (s1 → (s2 → s3)) → ((s1 → s2) → (s1 → s3))
– (s1 ∧ s2) → s1

– (s1 ∧ s2) → s2

– s1 → s2 → (s1 ∧ s2)
– s1 → (s1 ∨ s2)
– s2 → (s1 ∨ s2)
– (s1 → s3) → ((s2 → s3) → ((s1 ∨ s2) → s3))
– (∀X. s) → s[t/X]
– (∀X. (s1 → s2)) → (s1 → ∀X. s2) whereX is not free ins1

and the rules of modus ponens and universal generalization:

s1 s1 → s2

s2

s
∀X. s

A classical variant is obtained by adding the axiom of excluded middle:

[Excluded-middle] ∀X. (X ∨ (X → false ))

Going beyond these standard propositional systems, we axiomatize the operator
says as a modality, with the axiom of closure under consequence:

∀X, Y. ((p says (X → Y )) → (p says X) → (p says Y ))

and the necessitation rule:
s

p says s

More precisely,says is a modality indexed overP: in other words,p says is a modal-
ity for eachp ∈ P. Thus, we obtain second-order, indexed versions (intuitionistic and
classical) of the standard propositional modal logic K [38].

Below, we sometimes refer to the intuitionistic version as “the basic logic”, be-
cause it is the weakest logic that we use for access control in this paper. Occasionally
we emphasize that this logic does not include Excluded-middle, particularly when the
inclusion of Excluded-middle would affect the results under consideration.

4.3 CDD

CDD is a formalism related to lax logic and the computational lambda calculus [14,
24, 52]. CDD can be seen both as a type system and as a logic, via the Curry-Howard
isomorphism. Figure 1 presents CDD as a set of typing rules, in the style of those of
Girard’s System F [18, 31]. There, an environmentΓ declares a list of distinct type vari-
ables and distinct variables with their types (for example,X, x : X → true , y : X).
Figure 2 presents CDD as a logical system, with sequent notation. There, an environ-
mentΓ is a list of formulas (for example,X → true , X). WhenΓ is empty, we may
write ` s, and say thats is a theorem, wheǹ s is derivable by the rules of Figure 2.



[Var] Γ, x : s, Γ ′ ` x : s [Unit] Γ ` () : true

[Lam]
Γ, x : s1 ` e : s2

Γ ` (λx : s1. e) : (s1 → s2)
[App]

Γ ` e : (s1 → s2) Γ ` e′ : s1

Γ ` (e e′) : s2

[Pair]
Γ ` e1 : s1 Γ ` e2 : s2

Γ ` 〈e1, e2〉 : (s1 ∧ s2)

[Proj 1]
Γ ` e : (s1 ∧ s2)

Γ ` (proj 1 e) : s1
[Proj 2]

Γ ` e : (s1 ∧ s2)

Γ ` (proj 2 e) : s2

[Inj 1]
Γ ` e : s1

Γ ` (inj 1 e) : (s1 ∨ s2)
[Inj 2]

Γ ` e : s2

Γ ` (inj 2 e) : (s1 ∨ s2)

[Case]
Γ ` e : (s1 ∨ s2) Γ, x : s1 ` e1 : s Γ, x : s2 ` e2 : s

Γ ` (case e of inj 1(x). e1 | inj 2(x). e2) : s

[TLam]
Γ, X ` e : s

Γ ` (ΛX. e) : ∀X. s
[TApp]

Γ ` e : ∀X. s

Γ ` (et) : s[t/X]
(t well-formed inΓ )

[UnitM]
Γ ` e : s

Γ ` (ηp e) : p says s

[BindM]
Γ ` e : p says s Γ, x : s ` e′ : p says t

Γ ` bind x = e in e′ : p says t

Fig. 1.CDD typing rules.



[Var] Γ, s, Γ ′ ` s [Unit] Γ ` true

[Lam]
Γ, s1 ` s2

Γ ` (s1 → s2)
[App]

Γ ` (s1 → s2) Γ ` s1

Γ ` s2

[Pair]
Γ ` s1 Γ ` s2

Γ ` (s1 ∧ s2)

[Proj 1]
Γ ` (s1 ∧ s2)

Γ ` s1
[Proj 2]

Γ ` (s1 ∧ s2)

Γ ` s2

[Inj 1]
Γ ` s1

Γ ` (s1 ∨ s2)
[Inj 2]

Γ ` s2

Γ ` (s1 ∨ s2)

[Case]
Γ ` (s1 ∨ s2) Γ, s1 ` s Γ, s2 ` s

Γ ` s

[TLam]
Γ ` s

Γ ` ∀X. s
(X not free inΓ ) [TApp]

Γ ` ∀X. s

Γ ` s[t/X]

[UnitM]
Γ ` s

Γ ` p says s

[BindM]
Γ ` p says s Γ, s ` p says t

Γ ` p says t

Fig. 2.CDD logical rules.



(true )q = true

(s1 ∨ s2)
q = (s1)

q ∨ (s2)
q

(s1 ∧ s2)
q = (s1)

q ∧ (s2)
q

(s1 → s2)
q = (s1)

q → (s2)
q

(p says s)q =

�
true if q = p
p says (s)q otherwise

(X)q = X

(∀X. s)q = ∀X. (s)q

Fig. 3.Definition of (s)q .

The rules of Figure 2 are obtained from those of Figure 1 by omitting type-variable
declarations and terms.

In the context of access control, CDD arose as a simplified version of the Depen-
dency Core Calculus (DCC) [5], but it is similarly adequate as a logic for access con-
trol [3, Section 8]. (CDD is simpler than DCC and a little weaker: for instance, DCC
proves(p says q says s) → (q says p says s), and CDD does not.) CDD has been
used for language-based authorization [25], and its central rules also appear in other
systems for access control, such as Alpaca [46].

While Figure 2 is a complete, stand-alone presentation of CDD, CDD may also be
seen as an extension of the intuitionistic logic of Section 4.2. The extension consists in
adopting the following two additional axioms, Unit and Bind:

[Unit] ∀X. (X → p says X)
[Bind] ∀X, Y. ((X → p says Y ) → (p says X) → (p says Y ))

These axioms straightforwardly correspond to the rulesUnitM andBindM. It is easy
to show that neither of these axioms is derivable in the logic of Section 4.2, neither
intuitionistically nor classically.

5 Non-interference

The Dependency Core Calculus (DCC) [3, 5] was not initially designed as a calculus for
access control. Rather, it was designed in order to capture the notion of dependency that
arises in information-flow control, partial evaluation, slicing, and similar programming-
language settings. In those contexts, non-interference results characterize independence
properties. Interestingly, non-interference results are also relevant to access control.

A typical non-interference result would imply that if we have a proofe of p says s
and it depends on a proofx of q says t, wherep andq are unrelated principals, then,
from the point of view ofe, it does not matter which actual proof we substitute forx.
Even more strongly, we should be able to obtain thate can be constructed withoutx (at
least under certain hypotheses one).



As an example, we show a non-interference result for CDD. For a formulas and
principal q , we define the formula(s)q in Figure 3. Intuitively,(s)q is a variant ofs
that corresponds to the situation in whichq is completely untrustworthy, soq says t
is always true, independently oft. For an environmentΓ , we define(Γ )q by applying
(·)q to each formula inΓ . Using these definitions, Theorem 1 aims to show thatq ’s
untrustworthiness has a limited effect on other principals:

Theorem 1. In CDD, for every typing environmentΓ , formulas, and principalq , if
Γ ` e : s then there existse′ such that(Γ )q ` e′ : (s)q .

As a special case, we derive the following corollary from the theorem:

Corollary 1. In CDD, for every formulas and principalq , if ` s then` (s)q .

For example, Corollary 1 says that ifq 6= p, then

` (q says t) → (p says false )

implies
` true → (p says false )

and therefore
` p says false

Via a simple translation to System F, we can prove that this judgment is not derivable
in CDD, so we conclude that

` (q says t) → (p says false )

is not derivable in CDD either. Thus, no matter whatq says,p does not sayfalse .
Such non-interference results are not unique to CDD. Analogous theorems hold

for other logics for access control. In fact, one might be inclined to regard with some
suspicion a logic for which an analogous theorem does not hold.

6 Relating Axioms

Perhaps because intuitive explanations ofsays are invariably loose and open-ended,
the exact properties thatsays should satisfy do not seem obvious, as indicated in Sec-
tion 3. The goal of this section is to explore the formal consequences and the security
interpretations of several possible axiomatizations, and thus to help in identifying logics
that are sufficiently strong but not inconsistent, degenerate, or otherwise unreasonable.

Some of the axioms that we consider are those of Section 4, which come from modal
logic, computational lambda calculus, and other standard formal systems. Other axioms
stem from ideas in security, such as delegations of authority and the Principle of Least
Privilege [57]. For instance, we consider the hand-off axiom, which says that ifp says
that q speaks forp, thenq does speak forp [43]. We evaluate these axioms in both
classical and intuitionistic contexts.

More specifically, we start with the basic axioms of standard modal logic, in par-
ticular thatsays is closed under consequence, together with the necessitation rule. In
addition, the axioms that we consider include the following:



1. The hand-off axiom, as described above, and a generalization: ifp says thats1

impliesp sayss2, thens1 does implyp sayss2. In the special case wheres1 is q
sayss2, we obtain a hand-off fromp to q for s2.

2. A further axiom that ifp can make itself speak forq , thenp speaks forq in the first
place. This axiom may be seen roughly as a dual to the hand-off axiom.

3. The axiom thats impliesp says s (Unit). As indicated in Section 3, this axiom is
similar to the necessitation rule but stronger. It is also suggested by the computa-
tional lambda calculus.

4. The other main axiom from the computational lambda calculus (Bind): ifs1 implies
p sayss2, thenp sayss1 impliesp sayss2.

5. The axiom that ifp says s thens or p says false . We call this axiom Escala-
tion, because it means that wheneverp says s, eithers is true orp says anything—
possibly statements intuitively “much falser” thans.

6. An axiom suggested by the Principle of Least Privilege, roughly that if a principal
is trusted on a statement then it is also trusted on weaker statements.

In short, we obtain the following relations between these axioms:

– In classical logics, the addition of axioms beyond the basic ones from modal logic
quickly leads to strong and surprising properties that may not be desired. Bind is
equivalent to Escalation, while Unit implies Escalation.
Pictorially, we have:

Unit
↓

Escalation
l

Bind

Some milder, reasonable additions do not lead to Escalation. For instance, we may
require the standard axiom C4 from modal logic (ifp saysp sayss thenp sayss)
without obtaining Escalation. Unfortunately, those additions do not always suffice
in applications.

– In intuitionistic logics, we have a little more freedom. In particular, CDD (which
includes Unit and Bind) does not lead to Escalation.
Pictorially, we have:

CDD Escalation
↓ ↓ ↓

Unit Bind

Many further refinements become possible, in particular because Escalation and
Unit are independent intuitionistically.

– The general form of the hand-off axiom (1) is equivalent to Bind.
– Unit implies axiom (2). This axiom is equivalent to Unit if there is a truth-telling

principal.
– Finally, Escalation implies axiom (6). Conversely, this axiom and C4 imply Esca-

lation.

Next we elaborate on these relations between the axioms. Sections 6.1 and 6.2 focus
on CDD, considering axioms (1), (2), (3), and (4). Section 6.3 focuses on Escalation
(axiom (5)). Section 6.4 considers axiom (6).



6.1 C4

As noted in Section 4.3, CDD amounts to adding the axioms Unit and Bind to the basic
intuitionistic logic of Section 4.2. We can replace Bind with the simpler C4 when we
have Unit. Formally, C4 is:

[C4] ∀X. (p says p says X → p says X)

We obtain:

Proposition 1. Starting from the basic logic (without Excluded-middle), we have:

1. Bind implies C4;
2. Unit and C4 (together) imply Bind;
3. C4 does not imply Bind;
4. Unit does not imply C4 (and a fortiori not Bind).

Assuming Excluded-middle, we have:

1. C4 implies neither Bind nor Unit.;
2. Unit implies C4 (and therefore Bind);
3. Bind does not imply Unit.

6.2 Hand-off

The hand-off axiom is:

[Hand-off] p controls (q ⇒ p)

In the basic logic, this axiom is not a theorem. Therefore, some examples and appli-
cations that require hand-off do not immediately work. For instance, in the example
of Section 2,deleteFile1 does not follow fromBob says (Alice ⇒ Bob) and
Alice says deleteFile1 . The axiom or ad hoc assumptions need to be added for
those examples and applications (as in [43]). This need may be regarded as a shortcom-
ing of the basic logic.

On the other hand, in CDD we obtain the hand-off axiom as a theorem. A slight
generalization of the hand-off axiom is also interesting and also a theorem:

[Generalized-hand-off] ∀X, Y. p controls (X → p says Y )

Theorem 2. Starting from the basic logic, Bind is equivalent to Generalized-hand-off.

Suppose that a principalp is trusted on whether it speaks for another principalq on
every statement. In CDD, it follows thatp must speak forq in the first place, whether
it says so or not. Ifp does not wish to speak forq , it should reduce its authority, for
instance by adopting an appropriate role [43, Section 6.1]. This result might be seen as
a reassuring characterization of who can attribute the right to speak forq ; it may also
be seen as a dual or a limitation of hand-off in the context of CDD.

More precisely, we define:

[Authority-shortcut] (∀X. p controls (p says X → q says X)) → (p ⇒ q)

We obtain:



Theorem 3. Starting from the basic logic, Unit implies Authority-shortcut.

Next we show the proof of this result. Suppose that, for allX,

p controls (p says X → q says X)

and suppose that, for some particularX, we havep says X. (The following argument
is peculiar in that the assumptionp says X is exploited twice in different ways.) In
order to establish thatp ⇒ q , we wish to deriveq says X. Becausep says X, Unit
impliesp says q says X. (Here we apply Unit undersays .) Then by closure under
consequence we havep says (p says X → q says X). By our assumption that, for
all X, p controls (p says X → q says X), we obtainp says X → q says X.
Combiningp says X → q says X with p says X, we obtainq says X, as de-
sired.

A small variant of the argument shows that Unit also implies:

∀X. ((p controls (p says X → q says X)) → (p says X → q says X))

In other words, writingp ⇒X q for p says X → q says X [45], we have that Unit
implies:

∀X. ((p controls (p ⇒X q)) → (p ⇒X q))

The converse of Theorem 3 is almost true. Suppose that there is a truth-telling prin-
cipalp, that is, a principal for which

∀X. (X ≡ (p says X))

Applying Authority-shortcut to this principal, we can derives → (q says s) by propo-
sitional reasoning, for everyq ands. In other words, given such a truth-teller, we obtain
Unit.

Nevertheless, the converse of Theorem 3 is not quite true. All basic axioms plus
rules, plus Authority-shortcut, hold when we interpretp says s as true, for everyp
ands. Unit does not hold under this interpretation.

In addition, Authority-shortcut does not follow from other axioms (such as Bind),
even in classical logic. In other words, Authority-shortcut appears to be very close to
Unit, and, if one wishes, it can be avoided by dropping Unit.

6.3 Escalation

As indicated above, Escalation is the following axiom:

[Escalation] ∀X, Y. ((p says X) → (X ∨ (p says Y )))

Equivalently, Escalation can be formulated as:

∀X. ((p says X) → (X ∨ (p says false )))

Escalation embodies a rather degenerate interpretation ofsays . At the very least, great
care is required when Escalation is assumed. For instance, suppose that two principalsp



andq are trusted ons, and that we express this as(p controls s)∧(q controls s);
with Escalation, ifp says q says s thens follows. Formally, we can derive:

(p controls s) ∧ (q controls s) → ((p says q says s) → s)

This theorem may be surprising. Its effects may however be avoided:p should not say
thatq sayss unlessp wishes to says. As a result, though, the logic loses flexibility and
expressiveness.

On the whole, we consider that Escalation is not a desirable property. Unfortunately,
it can follow from the combination of properties that may appear desirable in isolation,
as we show.

Theorem 4. Starting from the basic logic (without Excluded-middle),

1. Unit and Bind (together) do not imply Escalation (in other words, Escalation is not
a theorem of CDD);

2. Escalation implies Bind (and therefore C4).

Assuming Excluded-middle, we have:

1. Unit implies Escalation (and therefore Bind);
2. Escalation (and a fortiori Bind) does not imply Unit;
3. Bind implies Escalation;
4. C4 does not imply Escalation.

Going further, in classical logic Unit implies that each principalp is either a perfect
truth-teller or saysfalse . In the former case,p speaks for any other principal; in the
latter case, any other principal speaks forp. Formally, we can derive:

(p ⇒ q) ∨ (q ⇒ p)

While this conclusion does not represent a logical contradiction, it severely limits the
flexibility and expressiveness of the logic: policies can describe only black-and-white
situations. This point is a further illustration of the fact that usefulness degrades even
before a logic becomes inconsistent.

6.4 Monotonicity of Controls

The monotonicity of controls means that, if a principal controls a formulaX, then it
controls every weaker formulaY . Formally, we write:

[Control-monotonicity] ∀X, Y.

 (X → Y )
→

((p controls X) → (p controls Y ))


This monotonicity property may seem attractive. In particular, it may make it easier

to comply with the Principle of Least Privilege. This principle says [57]:

Every program and every user of the system should operate using the least set
of privileges necessary to complete the job.



The monotonicity of controls implies that, ifp wants to convince a reference monitor
of Y , and it can convince it of a stronger propertyX, thenp should be able to state
Y directly, rather than the stronger propertyX. For instance, suppose thatY is the
statement thatq may access a filef1, and thatX is the statement thatq may access both
f1 and another filef2. Whenp wishes to allowq to accessf1, it should not have to state
also thatq may accessf2. The monotonicity of controls allowsp to say only thatq may
accessf1.

Nevertheless, the monotonicity of controls has questionable consequences. Starting
from the basic logic (without Excluded-middle), Control-monotonicity implies:

(p controls s1) → (p says s2) → (s1 ∨ s2)

Here, the formulass1 ands2 may be completely unrelated. For instance, suppose that
p controls whetherq may access a filef1, andp says thatq may access another filef2;
curiously, we obtain thatq may accessf1 or q may accessf2.

In fact, the monotonicity of controls is equivalent to Escalation in the presence
of C4. (Intuitionistically, C4 is strictly required for this equivalence.)

Theorem 5. Starting from the basic logic (without Excluded-middle), the following are
equivalent:

– Escalation,
– C4 and Control-monotonicity.

However, neither Control-monotonicity nor C4 implies the other, not even in combina-
tion with Unit.

Assuming Excluded-middle, Control-monotonicity is equivalent to Escalation.

The theorems of this section should not be construed as a criticism of the Principle
of Least Privilege. Formulations weaker than Control-monotonicity might be viable and
less problematic.

7 Languages

The logics described above have had several applications. In particular, a number of re-
search projects have relied on these logics for designing or explaining various languages
and systems, such as virtual machines and operating systems (e.g., [7–9, 11, 12, 19, 20,
25, 41, 43, 46, 58, 60]). They have also influenced the languages that are the subject of
this section.

7.1 From Logics to Languages

Languages for access control aim to support the practical expression and the enforce-
ment of policies (e.g., [13, 16, 17, 22, 23, 33, 42, 48, 50, 54, 55, 61, 62]). The languages
are general and flexible enough for programming a wide range of policies—for exam-
ple, in file systems and for digital rights management.



Many of these languages are targeted at distributed systems in which cryptography
figures prominently. They serve for expressing the assertions contained in cryptographic
credentials, such as the association of a principal with a public key, the membership of
a principal in a group, or the right of a principal to perform a certain operation at a spec-
ified time. They also serve for combining credentials from many sources with policies,
and thus for making authorization decisions. More broadly, the languages sometimes
aim to support trust management.

Several of these languages rely on concepts and techniques from logic, specifically
from logic programming: D1LP [48], SD3 [42], RT [50], Binder [22], Soutei [54],Sec-
PAL [13], and DKAL [33]. Other languages such as SDSI [55], SPKI [23], and XrML
2.0 [62] include related ideas though typically with less generality. Some of these have
been influenced by logical work, but they have not been designed or presented as log-
ical systems. We may however view them as logics, at least in a rudimentary sense.
They all define systems of notations for describing principals, their statements, autho-
rizations, and sometimes more. The notations come with rules for combining facts and
deriving their consequences—for instance, rules for chaining certificates in public-key
infrastructures.

Despite substantial progress, one might still question whether the deployment of
these sophisticated languages would reduce the number of ways in which access control
can be broken or circumvented. Policies in these languages might be difficult to write
and to understand—but probably no worse than policies embodied in Perl scripts and
the like, which are often the alternative.

7.2 A Look at Binder

Binder is a good representative for this line of work. It shares many of the goals of other
languages and several of their features. It has a clean design, based directly on that of
logic-programming languages.

Basically, a Binder program is a set of Prolog-style logical rules. Unlike Prolog,
Binder does not allow function symbols; in this respect, Binder is close to the Prolog
fragment Datalog. Also unlike Prolog, Binder has a notion of context and a distin-
guished operatorsays . For instance, in Binder we can write:

may-access(p,o,Rd) :- good(p)
may-access(p,o,Rd) :- Bob says may-access(p,o,Rd)

These clauses can be read as expressing that any principalp may access any objecto
in read mode (Rd) if p is good or ifBob says thatp may do so.

Here only :- and says have built-in meanings. The other constructs (even the
predicate symbolmay-access ) have to be defined or axiomatized. As in Prolog,:-
stands for reverse implication (“if”). For instance,

may-access(Alice,Foo.txt,Rd)

would follow from these clauses and from

Bob says may-access(Alice,Foo.txt,Rd)



As in previous logical treatments of access control,says serves for representing the
statements of principals and their consequences. Thus,

Bob says may-access(Alice,Foo.txt,Rd)

holds if there is a statement fromBob that contains a representation of the formula

may-access(Alice,Foo.txt,Rd)

or it can be derived if there is a statement fromBob that contains a representation of
the formula

may-access(Alice,Foo.txt,Wr)

and another one that contains a representation of the clause

may-access(p,o,Rd) :- may-access(p,o,Wr)

Each formula is relative to a context (a source of statements). In our example,Bob
is a context. Another context is implicit: the local context in which the formulas apply.
For example,

may-access(p,o,Rd) :- Bob says may-access(p,o,Rd)

is to be interpreted in the implicit local context, andBob is the name for another context
from which the local context may import statements.

In addition to logic-programming rules, Binder includes a special proof rule for im-
porting clausesa :- a1, ..., an from one context into another. The rule applies
only to clauses where the atoma in the head is not of the formq says s . When
importing a clause from contextp, the rule replacesa with p says a , and replaces
ai with p says ai if ai is not of the formq says s , for i = 1..n. For example,
whenCharlie exports the clauses:

may-access(p,o,Rd) :- good(p)
may-access(p,o,Rd) :- Bob says may-access(p,o,Rd)

the local context obtains:

Charlie says may-access(p,o,Rd) :- Charlie says good(p)
Charlie says may-access(p,o,Rd) :-

Bob says may-access(p,o,Rd)

This proof rule is complicated enough to call for some logical analysis. It can be
partly justified by standard modal logic, in particular via the theorem

((p says s) ∧ (p says s′)) → p says (s ∧ s′)

and the axiom of closure under consequence. However, more is needed, even for our
example. The proof rule can be derived once we add the strong axiom Unit. In fact, a
restricted form of Unit suffices:

(q says s) → (p says q says s)



Garg has recently studied the logical foundations of Binder and Soutei, considering this
restricted form of Unit [26, 27].

Binder does not assume or require that predicate symbols mean the same in every
context. For example,Bob might not even know aboutmay-access , and might assert
lecteur(Alice,Foo.txt) instead ofmay-access(Alice,Foo.txt,Rd) .
In that situation, one may translate explicitly with the clause:

may-access(p,o,Rd) :- Bob says lecteur(p,o)

On the other hand, Binder does not provide much built-in support for local name
spaces. A closer look reveals that the names of contexts have global meanings. In par-
ticular, whenCharlie exports:

may-access(p,o,Rd) :- Bob says lecteur(p,o)

the local context obtains:

Charlie says may-access(p,o,Rd) :-
Bob says lecteur(p,o)

without any provision for the possibility thatBob might not be the same locally and for
Charlie .

Other systems, such as SDSI and SPKI [23, 55], support more elaborate naming
mechanisms, with corresponding logical explanations and problems (e.g., [1, 32, 34,
35, 37, 47]). They enable the linking of name spaces, allowing for the possibility that
the intended meaning of a name might not be the same in all contexts.

8 Outlook

Logics for access control have been used in a variety of ways, as indicated in this paper.
They have played a helpful role in the design and understanding of languages and sys-
tems. Nevertheless, they have not replaced traditional mechanisms for access control,
nor is there any prospect that they will in the near future. Although logics can be power-
ful and general, for each specific application there typically exist special-purpose, expe-
dient alternatives. It is questionable whether the proliferation of those alternatives con-
tributes to security. Still, whether logics should be routinely employed for actual access
control (at “compile-time” or “run-time”, rather than “design-time” or “understanding-
time”), and how they should be employed, remains open to debate.

A great deal of caution should be applied in selecting logics for access control, con-
sidering both their formal properties and their security implications. In particular, while
in a classical setting we may want to stay close to basic modal logic, in an intuition-
istic setting we may adopt CDD. This move may be attractive, in particular, because
CDD supports the hand-off of authority. Nevertheless, other logics (for instance, with
weaker axioms, or with additional operators) may be reasonable choices as well. We
do not argue that the use of a particular set of axioms is required for writing good se-
curity policies. It is possible that reasonable security policies and other assertions can
be formulated in many different systems, with different underlying logics. However,
understanding the properties and consequences of these logics is essential for writing
appropriate formulas reliably.
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