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Abstract. We present BCiC, a system for verifying and authenticating code that
combines language-based proof methods with public-key digital signatures. BCiC
aims to augment the rigor of formal proofs about intrinsic properties of code by
relying on authentication and trust relations. BCiC integrates the Binder secu-
rity language with the Calculus of (Co)Inductive Constructions (CiC). In this re-
spect, it is a descendant of our previous logic BLF, which was based on LF rather
than CiC. This paper focuses on the architecture and implementation of BCiC.
In addition to a logical inference engine, the design most notably includes a net-
work communication module for the efficient exchange of logical facts between
hosts, and a cryptography module for generating and checking signatures. The
implementation cooperates with the Open Verifier, a state-of-the-art system for
proof-carrying code with modular checkers.

1 Introduction

Modern software comes from a multitude of sources, and it often comes in pieces. Some
applications dynamically link to libraries, some are extended with applets or plug-in
modules, and others can be automatically updated. In every case, policies and mech-
anisms for establishing trust in new code are essential. When the new code is signed
with a public-key digital signature, trust in the code may be based on trust in its signer.
More generally, trust in the code may result from authenticating the source of the code.
However, such trust has limits: many signers are unknown or only partly known to the
consumers of code, and even reputable signers make mistakes. Therefore, evaluating
the code itself and its properties is also important. It can yield fundamental safety guar-
antees, as in Java bytecode verification [17], and it need not burden code consumers
with proofs of code properties, as research on proof-carrying code (PCC) [18] demon-
strates. (With PCC, code comes accompanied by safety proofs, and consumers need
only check, not generate, the proofs.) Nevertheless, formal specification and analysis
of code remain difficult and often incomplete, particularly when we go beyond basic
memory-safety guarantees.

In this paper we present an approach and a system for establishing trust in code that
combine signatures and proofs. We define a policy language that allows references to
signed assertions and supports reasoning about trust in the signers. The policy language
can also express theorems about code properties, and supports reasoning about the cor-
rectness of proofs of the theorems. The final decision to run code, and what privileges



to give to the code, may require both signatures from trusted parties and direct proofs
of code safety. For instance, it may require a partial proof of safety with trusted, signed
assertions as hypotheses.

Specifically, we introduce BCiC, a system for verifying and authenticating code that
combines language-based proof methods with public-key digital signatures. BCiC aims
to augment the rigor of formal proofs about intrinsic properties of code by relying on
authentication and trust relations. BCiC integrates the Binder security language [10]
with the Calculus of (Co)Inductive Constructions (CiC) [8]. In this respect, it is a de-
scendant of our previous logic BLF [22], which was based on LF [13] rather than CiC.
Here we go beyond our work on BLF by designing and building a concrete system.
In addition to a logical inference engine, the design most notably includes a network
communication module for the efficient exchange of logical facts between hosts, and a
cryptography module for generating and checking signatures. The implementation co-
operates with the Open Verifier [6], a state-of-the-art system for proof-carrying code
with modular checkers.

After considering previous and related work in Section 2, we give a short example in
Section 3 and present a high-level overview of our system in Section 4. In Section 5 we
define the syntax and logical meaning of policies, and describe the implementation of
the logical inference engine. In Section 6 we present two important components of the
system in more detail, the cryptography module and the network module. In Section 7
we describe the integration of BCiC with the Open Verifier. We conclude with some
comments on future work in Section 8.

2 Related Work and Background

Many existing systems combine reason and authority in some way. Checking the valid-
ity of an X.509 certificate involves a combination of trusting principals and reasoning
about the transitivity of certification. Environments that execute network code often
combine static typechecks of the code with signature checks [11,15,17]. These systems
can verify only fixed, simple properties of the code. PCC allows more interesting prop-
erties to be checked, but existing work on PCC [1,3,18,19] assumes that properties and
proof rules are fixed ahead of time between the code producer and the code consumer;
they also do not support signatures in their reasoning. Our previous paper [22] contains
further discussion of related work, in particular of research on proof-carrying authen-
tication [2, 4, 16]. For the sake of brevity we do not reproduce that material here; it is
somewhat less relevant for the present paper.

BLF is a logic for authorizing code that combines reason and authority [22]. The
logic in our new system is similar to BLF but, instead of combining Binder [10] and
LF [13], it combines Binder and CiC, the Calculus of (Co)Inductive Constructions [8],
used in the Coq tool [5, 21]. We switched to CiC in order to allow the use of Coq
for theorem proving. We have found that inductive definitions for data structures yield
significant advantages in proofs. The Coq environment also allows a high degree of
organization and automation, and is thus friendly to large-scale theorem proving efforts.
Our formal description in Section 5 is an updated version of our previous presentation,
adapted to the new choice of logical framework.
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Although the change in logical framework is significant, the primary difference be-
tween our current and previous work is that BCiC has a definite system architecture
and a concrete realization whereas BLF does not. Previously we implemented BLF in
an abstract way. All computation was contained in one machine and the interactions
between hosts were simulated. Public-key digital signatures were considered abstract
terms; no actual cryptographic algorithms were used. Similarly, logical formulas were
manipulated abstractly. In our present work the implementation is concrete. Signatures
and logical formulas have concrete representations as binary bit strings in a standard-
ized format. Hosts communicate with one another over the Internet in order to share
data, following the formal semantics of the import and export functions in Section 5.
We have also connected our system with an actual PCC framework, the Open Verifier,
as described in Section 7.

The implementation of our communication structure, in which pairs of hosts syn-
chronize and exchange new information, is inspired by work on replicated databases
and database synchronization [9,14]. In our case, the database which is being synchro-
nized is a set of logical statements.

3 An Example

This section motivates and introduces some components of the system through an ex-
ample.

Suppose that Alice is a user who requires that every program she executes nei-
ther access memory incorrectly nor use too many resources. There may be a relatively
straightforward way to prove memory safety for the programs of interest, but not one for
characterizing resource usage. Moreover, excessive resource usage may not be viewed
as very harmful when there is someone to blame and perhaps bill. Accordingly, Al-
ice may want proofs for memory safety but may trust Bob on resource usage. Alice
constructs a policy that includes:

use R in
forallobj P:program
mayrun(P) :- sat(safe P), economical(P)
economical(P) :- Bob says economical(P)

end

The first line indicates thatR applies, as an environment. This environment is a set of
constructors and proof rules that define the syntax of programs and the rules employed
for proving memory safety. It is specific to a particular programming language and
proof methodology. For instance,R may contain the following snippet, which defines
standard constructs for memory access:

mem : Type
sel : mem -> val -> val
upd : mem -> val -> val -> mem

The second line of the policy (forallobj P:program ) is a universal quantifica-
tion over all programsP. The first clause indicates that Alice believes that she may
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execute a programP if there is a proof thatP is memory safe and she thinks thatP
is economical. The second clause reflects Alice’s trust in Bob. In more complex ex-
amples, other clauses may provide other ways of establishingeconomical(P) . The
operatorsays , from Binder, represents assertions by principals. Thesat construct is
a special logic predicate that holds when there is a CiC proof of its argument. The other
predicates (mayrun andeconomical ) are user-defined predicates.

In turn, Bob trusts Charlie to write only economical programs, and has in his policy:

use R in
forallobj P:program
economical(P) :- Charlie says mine(P)

end

wheremine is another user-defined predicate.
Suppose further that Charlie supplies a programP0 that Alice wishes to execute.

Charlie produces a CiC proof,Pf , of memory safety of the program. Charlie publishes
his proof by assertingproof(Pf) , specifically by typing the commandbcicclient
assert proof(Pf) . The predicateproof does not have any built-in logical mean-
ing; it simply serves for introducing the proofPf . Similarly, Charlie assertsmine(P0) .

Alice, Bob, and Charlie all run BCiC servers in the background. When the servers
are set up, they are given the address of an existing server. From that point, they syn-
chronize and receive a list of all other known servers. Once connected, they occasionally
choose other servers with which to synchronize. After sufficient synchronization, Alice
can deduceeconomical(P0) andCharlie says proof(Pf) . After the logic
inference engine checks the proofPf , Alice obtainssat(safe P0) . Now when Al-
ice queriesmayrun(P0) , she receives the answer “yes” and is prepared to runP0.

4 Overview

Although our system must implement the logic presented in the next section in order to
support reasoning about signatures and proofs (like the reasoning in the example), the
system is much more than a bare implementation of the logic. In such a bare implemen-
tation, for instance, signed statements may simply be logical expressions—appropriate
for initial experimentation but not much else. In order to be useful, signed statements
must have concrete, secure digital representations. Thus, in our system, signatures em-
ploy cryptography; they are unforgeable and tamper-evident. Furthermore, our system
deals with communication over an insecure network. The network module should min-
imize the need for manual user intervention for synchronization.

The implementation has several parts:

– The parserunderstands the syntax of the logic and can translate between textual
and abstract syntax tree representations.

– Thelogic interpreterperforms deductions in the logic from a set of given statements
to produce a larger (but still finite) set of deduced statements.

– Thecryptography moduleimplements the necessary cryptographic operations, such
as generating and checking signatures.
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– Thenetwork modulecan communicate statements over the network.
– Theuser interfaceaccepts textual input from the user and determines which action

should be taken. The user interface is a simple command-line utility that commu-
nicates with an existing daemon over a secure local socket.

– Thesupervisoris in charge of coordinating the global behavior of the program. It
loads existing databases of statements, decides when to communicate on the net-
work, sign statements, draw inferences, and accept input from the user.

– The policy gives rules for deciding when code should be executed, who to trust
initially about what, and so forth.

– Thedatabaseholds all known true facts from any source.

Figure 1 shows the organization of these components in the system. Boxes represent
code modules, circles represent data. The figure also shows the Open Verifier; this part
is explained in Section 7.
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5 BCiC’s Policy Language

This section presents the syntax and semantics of our policy language in a somewhat
abbreviated fashion. Details can be found in the appendix. The interested reader is also
encouraged to refer to corresponding descriptions for BLF [22] for additional explana-
tions. What we describe here, however, should suffice for understanding the rest of this
paper.

5.1 Formal Presentation of the Language

The policy language has both a user syntax (defined in Figure 2 of the appendix) and
an internal syntax (in Figure 4). The user syntax allows proof rules to be stated in en-
vironments of the formuse R in ... end . On the other hand, the internal syntax
records proof rules at every point where they are employed, as extra parameters rather
than withuse . A simple annotation function translates from the user syntax into the in-
ternal syntax (Figure 3). Rulesets (type signatures) are typed according to the identifiers
that they define. In this respect, BCiC is more constrained than BLF. Therefore, when
one quantifies over rulesets, only rulesets with the proper definitions are considered.

The logical meaning of policies is given by proof rules (in Figure 5). These proof
rules rely on the CiC typing relation (writteǹCiC). They also rely on conversions
to normal form, as calculated by Coq. In other respects, the proof rules are a fairly
ordinary logical system for standard logical constructs. We formulate them as sequent
deductions [12].

The import function is used for determining the logical meaning of signed state-
ments received over the network. It is a partial function that takes a key and a formula
and returns a new formula. Our method for importing statements follows Binder. An
atomic formulaA signed with a keyU is imported asU says A. It is also possible to
export and import some (but not all) non-atomic formulas. A clause can be imported
from U only if the head of the clause is not already quoted withsays . If the original
clause isH :- B, then the imported clause will beU says H :- B′ whereB′ is the
original body with every formulaF without asays prefix replaced withU says F . In
terms of g-formulas and d-formulas as used in the formal syntax, a g-formulaG without
asays prefix is translated toU says G. A g-formula of the formV says G remains
unchanged in translation. A d-formulaD without says gets translated toU says D,
while d-formulas of the formV says D are untranslatable.

5.2 The Logic Interpreter

The logic module is responsible for managing the fact database and responding to
queries. Initially the fact database contains only the facts in the local policy. After syn-
chronizing with other hosts and exchanging signed statements, the fact database will
grow. The main job of the logic interpreter is finding all possible logical deductions
within the database and adding them to the database.

This method of answering queries is bottom-up evaluation. The bottom-up approach
has the advantage that it is simple and clearly exhaustive. In contrast, the termination of
top-down inference for Datalog (and therefore for Binder) requires tabling, which can
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give rise to subtle issues [7, 20]. Moreover, bottom-up evaluation immediately offers
a convenient memoizing capability. Although bottom-up evaluation can require more
time and space than top-down evaluation, we believe that bottom-up evaluation is prac-
tical for our application.

The basic operation of the logic interpreter is as for BLF except for term normal-
ization. The interpreter repeatedly examines the database and systematically attempts
to apply every term to every other term. If the application succeeds, then the new result
is normalized and added to the database and the process repeats. Normalization is done
in a module that applies the rules for CiC using code borrowed from Coq.

Although the logic interpreter always terminates on pure Datalog policies, it need
not terminate on policies that make a non-trivial use of CiC. Infinite loops may happen
when applying one dependent type to another results in a more complicated type. For-
tunately, we have not seen this behavior in practice. Moreover, it should be possible to
define a syntactic restriction that guarantees termination. We have such a restriction in
BLF, and believe that we know how to port it to BCiC if it proves necessary.

6 Other System Modules

This section describes the cryptography module and the network module in more detail.

6.1 The Cryptography Module

The cryptography module is based on Xavier Leroy’s library for OCaml,cryptokit ,
a library that provides cryptographic primitives. We use these primitives for generating
keys, for signing, and for verifying signatures. We rely on RSA signatures with a key
length of 1024 bits, and we apply SHA-1 hashing before signing. Each signed logical
statement is accompanied by public-key information about the signer. Verifying that
Alice signs statementX leads to an entry in the fact database, with the formulaAlice
says X . We serialize and deserialize statements using theMarshal standard library
functions of OCaml.

When keys are not managed securely, the integrity of every signature is suspect.
Therefore, following standard practices, we store secret keys in encrypted form, keyed
to the hash of a passphrase supplied by the user. We use AES encryption and SHA-1
hashes for storing secret RSA keys.

6.2 The Network Module

The network module is only in charge of communicating signed statements between
hosts, not determining their logical meaning. When new statements become available,
the logic inference module must decide how they are to be interpreted. When the logic
inference algorithm adds new unquoted conclusions (that is, formulas withoutsays )
to the database, the cryptography module creates new signatures and stores them in the
database, and the network module communicates them to other hosts.

Network communication is done using TCP/IP connections on a specific port. Users
may leave a Unix daemon running at all times waiting for connections, if they wish.
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When two BCiC nodes connect, they follow a protocol to decide which statements
are known to one and not the other. These statements are then transmitted over the
connection. Connections can be scheduled to occur automatically with randomly chosen
partners at regular intervals, or can be requested manually by users. Full-time servers
may run the daemon and automatically communicate with one another, while individual
client machines may rather connect to the nearest server sporadically at a user’s request.

The most interesting aspect of the network module is the algorithm for coordinating
updates. When nodes connect, they must decide who has new statements that need
to be transmitted. Simply transmitting all the statements at every connection would
be tremendously inefficient. A slightly more realistic possibility is a naive protocol in
which each node hashes every statement in its database and communicates the entire
set of hashes to the other node. Then it is easy for each node to decide which statements
it must send. Ifn is the total number of statements known by both sides, then the naive
protocol takesO(n) steps per synchronization.

The naive protocol is likely not to be efficient enough in the long run. The size of the
fact databases will steadily increase over time, if nothing else because expiration and
revocation are rare (and they are not even modeled explicitly in the logic, although the
implementation deals with them). More specifically, we may estimate the performance
of the naive protocol as follows. A large library may be composed of several hundred
functions. The library provider may wish to declare some functions correct by assertion
and to verify other, simpler functions. One way to do this is for the library provider to
sign assertions for each of the functions separately. As new versions of library functions
become available, new statements will be generated. A fairly typical Linux operating
system in our lab currently uses 652 libraries and 2777 applications. If every library
requires 100 statements and releases 10 major versions a year, with each version con-
taining 10 function updates, and every application releases 10 new versions a year, then
the database will initially contain 67977 statements and will increase by 92970 state-
ments each year. After two years the naive protocol will be exchanging 5 Mb at each
connection. Even if one reduces the number of statements at the expense of statement
size by signing one large conjunction that contains statements for all the functions in
a library release, the protocol will still be exchanging 2.7 Mb at each connection after
two years.

There are many possible solutions to the synchronization problem. It is not too hard
to imagine methods that record timestamps or remember which facts have already been
communicated to other servers. We chose to implement a recursive divide-and-conquer
protocol that does not require any extra storage outside the databases themselves. It is
asymptotically efficient for small updates between large databases.

Our approach requires that every statement in every database be hashed and stored
sorted by hash value. Our protocol synchronizes ranges of hash values between two
databases. To synchronize two entire databases, the protocol is performed over the entire
range of possible hash values. To synchronize all hash values betweenL andH, first
both participants extract all hash values in their databases betweenL andH. Each list is
encoded and hashed, then exchanged between the participants. A special token is used
to represent the hash of the empty list. If the hash values agree, then both databases are
already synchronized and the protocol terminates. If one hash is nonempty and one is
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empty, then the protocol terminates and the participant with the nonempty list knows
they must transfer the contents of the list. If both hashes are nonempty and differ, then
the range of hash values is split into two equal subranges,L to M andM to H. The
protocol is then applied recursively on these two subranges. (We could also use more
than two subranges, of course.) Ifn is the total number of statements known by both
sides, andm is the maximum number of statements known by one side that are not
known by the other, then an update takesO(m log n) steps.

Transmitting one large batch of data is often much faster than performing several
rounds of communication to determine which parts of the data should be sent. By com-
municating the number of statements that were hashed at each exchange, the imple-
mentation can switch to the naive protocol when the number falls beneath a threshold.
In experiments we found the optimal threshold to be approximately1200 children for
connections between computers in our lab and a laptop off campus. The network mod-
ule of BCiC uses the naive protocol on databases of size1200 or smaller, and uses the
recursive protocol on larger databases.

7 Integrating BCiC with the Open Verifier

The Open Verifier [6] supports verifying untrusted code using modular verifiers. Pro-
grams are expressed in a low-level assembly language with formally specified seman-
tics. Code producers may provide verification modules for creating proofs of code
safety on demand, rather than actual proofs. Figure 1 illustrates the workings of the
Open Verifier. The code, verifier extension module, and metadata on the right are un-
trusted and provided by the code producer. The trusted components on the left (the fix-
point module, post-condition generator, and checker) communicate with the untrusted
verifier extension in order to generate a conjunction of invariants with proofs.

In this section we explain how BCiC can be connected to the Open Verifier. We
focus on what we have implemented: a scheme in which the Open Verifier can call
BCiC. We also discuss, more briefly, a scheme in which BCiC can call the Open Verifier.

7.1 The Open Verifier calling BCiC

Supplementing the Open Verifier with BCiC makes verification with plug-in verifiers
even more flexible. Instead of requiring that verifiers be able to prove code safety abso-
lutely, we allow the verifiers to use assumptions that are trusted because they have been
asserted by trusted authorities. This arrangement might be necessary for difficult safety
properties. It also allows a verifier to prove something different than required if there is
a trusted assumption that says that the property proved implies the required property. In
particular, the verifier may do a “proof by typechecking”: it may typecheck a program,
and a trusted assumption may declare that typechecked programs are safe.

In the normal operation of the Open Verifier, the fixpoint module collects invariants
that must be verified. First the fixpoint module supplies an initial invariant to the post-
condition generator. The strongest post-condition is calculated and then passed to the
untrusted verifier extension, which responds with weaker invariants and proofs that they
are indeed weaker. These proofs are checked using Coq by the checker module. The
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weaker invariants are collected in the fixpoint module, which continues to calculate a
fixpoint of invariants by possibly sending more invariants back to the post-condition
generator.

The connection between BCiC and the Open Verifier affects the communication be-
tween the post-condition generator, the untrusted verifier extension, and the checker.
We have integrated BCiC so that when the Open Verifier decides that it needs justifica-
tion for a weaker invariant, instead of the Open Verifier asking the extension directly,
BCiC first checks its database of facts. If the statement already appears in the database,
then the extension is never queried and the Open Verifier continues as if the justification
were received. If the statement is not in the database, then the extension is asked for the
justification as usual.

This scheme allows the BCiC database to short-circuit the interactive proof protocol
at any point. Untrusted code can be asserted to be safe without any proof. In this case
there must be an entry in the BCiC database that corresponds to the first query that
the Open Verifier provides to the extension. In particular, this scheme handles “proofs
by typechecking”. When the extension can verify that the code typechecks but cannot
justify the soundness of the typechecking rules, the soundness lemmas can appear in
the BCiC database.

7.2 BCiC calling the Open Verifier

Currently the Open Verifier is limited to verifying a single, generic memory-safety prop-
erty. This focus is reasonable in light of current verification techniques, but allowing
signatures opens the door to handling other properties. BCiC can support reasoning
about those properties, calling the Open Verifier when appropriate.

For this purpose, we envision a mechanism whereby the conclusions of the Open
Verifier can be used as new facts in the BCiC database. More specifically, the conclu-
sions of the Open Verifier are represented as logical facts in BCiC, with a new predicate
verified . We are currently refining our design and implementation of this scheme,
and a mechanism for running programs subject to BCiC policies.

8 Conclusion

In this paper we describe BCiC, a system for reasoning about code that can combine
proofs of code properties and assertions from trusted authorities. We present the un-
derlying logic, show the architecture of the system itself, and describe our method of
integration with the Open Verifier. Going from an abstract logic to an actual system re-
quires a fair amount of work and a number of significant design choices. Although our
system is still experimental, we believe that it shows one possible avenue for progress
in code authentication and verification.

So far we have used BCiC for experimenting with small programs created to exer-
cise various features of theorem provers. Perhaps the most important remaining work is
to apply BCiC to large, useful programs. Clearly BCiC can handle those programs—at
least in uninteresting ways—since it subsumes technologies that scale well (typecheck-
ing, public-key digital signatures). Going further, it would also be interesting to deploy
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the system in an environment where many users may place different amounts of trust in
many programs. This deployment would allow more experimentation with policies and
would test the effectiveness of the network protocol.
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This appendix contains Figures 2 through 5. These figures provide details of the formal
syntax and semantics of BCiC. Some additional background and informal explanations
can be found with the formal presentation of BLF [22].
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〈var, rsvar, termvar, cicvar〉 ::= 〈identifier〉

〈policy〉 ::= [ 〈dform〉. ]+

〈predicate〉 ::= 〈identifier〉

〈principal〉 ::= 〈key〉 | 〈var〉

〈argument〉 ::= 〈identifier〉 | 〈key〉 | 〈var〉 | 〈expr〉
| 〈ruleset〉

〈ruleset〉 ::= 〈rsvar〉 | 〈actualruleset〉 | 〈rsvar〉; 〈ruleset〉

〈actualruleset〉 ::= ruleset( [ 〈identifier〉 : 〈lfterm〉. ]∗ )

〈expr〉 ::= 〈termvar〉 | 〈cicvar〉 | type | set | prop | 〈expr〉 〈expr〉
| 〈expr〉 → 〈expr〉 | {〈cicvar〉 : 〈expr〉} 〈expr〉
| [ 〈cicvar〉 : 〈expr〉] 〈expr〉

〈gform〉 ::= 〈atomic〉 | 〈gform〉, 〈gform〉 | 〈gform〉; 〈gform〉
| exists 〈var〉 〈gform〉
| existrules 〈rsvar〉 : 〈rulesettype〉 〈gform〉
| existsobj 〈termvar〉 : 〈expr〉 〈gform〉
| use 〈ruleset〉 in 〈gform〉 end

〈dform〉 ::= 〈atomic〉 | 〈dform〉, 〈dform〉
| 〈dform〉 :- 〈gform〉 | forall 〈var〉 〈dform〉
| forallrules 〈rsvar〉 : 〈rulesettype〉 〈dform〉
| forallobj 〈termvar〉 : 〈expr〉 〈dform〉
| use 〈ruleset〉 in 〈dform〉 end

〈atomic〉 ::= [ 〈principal〉 says ] sat (〈expr〉)
| [ 〈principal〉 says ] believe (〈expr〉)
| [ 〈principal〉 says ] 〈predicate〉

( [ 〈argument〉 [ , 〈argument〉 ]∗ ] )

〈rulesettype〉 ::= [ 〈identifier〉 [ , 〈identifier〉 ]∗ ]

Fig. 2.Syntax
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[A, B]R = [A]R, [B]R

[A; B]R = [A]R; [B]R

[D :- G]R = [D]R :- [G]R

[forall x D]R = forall x [D]R

[exists x G]R = exists x [G]R

[forallrules r : T D]R = forallrules r : T [D]R

[existrules r : T G]R = existrules r : T [G]R

[forallobj x : T D]R = forallobj ′ R x : T [D]R

[existsobj x : T G]R = existsobj ′ R x : T [G]R

[use R′ in A end ]R = [A]R;R′

[P says X]R = P says [X]R

[sat (T )]R = sat ′(R, T )

[believe (T )]R = believe ′(R, T )

[P(α1, α2, . . . , αn)]R = P(α1, α2, . . . , αn)

Fig. 3.Annotation function

〈gform〉 ::= 〈atomic〉 | 〈gform〉, 〈gform〉 | 〈gform〉; 〈gform〉
| exists 〈var〉 〈gform〉
| existrules 〈rsvar〉 : 〈rulesettype〉 〈gform〉
| existsobj ′ 〈ruleset〉 〈termvar〉 : 〈expr〉 〈gform〉

〈dform〉 ::= 〈atomic〉 | 〈dform〉, 〈dform〉
| 〈dform〉 :- 〈gform〉 | forall 〈var〉 〈dform〉
| forallrules 〈rsvar〉 : 〈rulesettype〉 〈dform〉
| forallobj ′ 〈ruleset〉 〈termvar〉 : 〈expr〉 〈dform〉

〈atomic〉 ::= [ 〈principal〉 says ] sat ′(〈ruleset〉, 〈expr〉)
| [ 〈principal〉 says ] believe ′(〈ruleset〉, 〈expr〉)
| [ 〈principal〉 says ] 〈predicate〉

( [ 〈argument〉 [ , 〈argument〉 ]∗ ] )

...

Fig. 4. Internal syntax
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A, Γ ⇒ ∆, A
A is atomic

φ(Γ ) ⇒ ∆

Γ ⇒ ∆

Γ ⇒ φ(∆)

Γ ⇒ ∆
φ is a permutation

Γ ⇒ ∆

Γ, D ⇒ ∆

Γ ⇒ ∆

Γ ⇒ ∆, G

Γ, D, D ⇒ ∆

Γ, D ⇒ ∆

Γ ⇒ ∆, G, G

Γ ⇒ ∆, G

D1, D2, Γ ⇒ ∆

(D1, D2), Γ ⇒ ∆

Γ ⇒ ∆, G1 Γ ⇒ ∆, G2

Γ ⇒ ∆, (G1, G2)

Γ ⇒ ∆, G D, Γ ⇒ ∆

D :- G, Γ ⇒ ∆

Γ ⇒ ∆, G1, G2

Γ ⇒ ∆, (G1; G2)

D[A/x], forall x D, Γ ⇒ ∆

forall x D, Γ ⇒ ∆

Γ ⇒ ∆, exists x G, G[A/x]

Γ ⇒ ∆, exists x G

D[O/x], forallobj ′ R x : T D, Γ ⇒ ∆ R `CiC O : T

forallobj ′ R x : T D, Γ ⇒ ∆

Γ ⇒ ∆, existsobj ′ R x : T G, G[O/x] R `CiC O : T

Γ ⇒ ∆, existsobj ′ R x : T . G

D[R/r], forallrules r D, Γ ⇒ ∆

forallrules r D, Γ ⇒ ∆

Γ ⇒ ∆, existrules r G, G[R/r]

Γ ⇒ ∆, existrules r G

R `CiC O : T

Γ ⇒ ∆, sat ′(R, T )

Γ ⇒ ∆, sat ′(R, {x : T}B) R `CiC O : T

Γ ⇒ ∆, sat ′(R, B[O/x])

Γ ⇒ ∆, believe ′(R, T ), sat ′(R, T )

Γ ⇒ ∆, believe ′(R, T )

Γ ⇒ ∆, believe ′(R, {x : T}B) R `CiC O : T

Γ ⇒ ∆, believe ′(R, B[O/x])

Γ ⇒ ∆, sat ′(R, {x : T}B) Γ ⇒ ∆, sat ′(R, T )
x does not occur inB

Γ ⇒ ∆, sat ′(R, B)

Γ ⇒ ∆, believe ′(R, {x : T}B) Γ ⇒ ∆, believe ′(R, T )
x does not occur inB

Γ ⇒ ∆, believe ′(R, B)

Γ ⇒ ∆, sat ′(R, T ′)
T andT ′ have the same normal form in rulesetR

Γ ⇒ ∆, sat ′(R, T )

Γ ⇒ ∆, believe ′(R, T ′)
T andT ′ have the same normal form in rulesetR

Γ ⇒ ∆, believe ′(R, T )

Fig. 5.Proof rules
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