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Abstract. Both proofs and trust relations play a role in security deci-
sions, in particular in determining whether to execute a piece of code.
We have developed a language, called BCIC, for policies that combine
proofs and trusted assertions about code. In this paper, using BCIC, we
suggest an approach to code auditing that bases auditing decisions on
logical policies and tools.

1 Introduction

Deciding to execute a piece of software can have substantial security implica-
tions. Accordingly, a variety of criteria and techniques have been proposed and
deployed for making such decisions. These include the use of digital signatures (as
in ActiveX [12]) and of code analysis (as in typed low-level languages [5,9,10]).
The digital signatures can be the basis of practical policies that reflect trust
relations—for instance, the trust in certain software authors or distributors.
The code analysis can lead to proofs, and thereby to proof-carrying code [11].
Unfortunately, neither trust relations nor proofs are typically sufficient on their
own. Trust can be wrong, and code analysis is seldom comprehensive.

We are developing a system for defining and evaluating policies that combine
proofs and trusted assertions about code [18-20]. The core of the system is a
logical query language, called BCIC. BCIC is a combination of Binder [4], a
logic-programming language for security policies in distributed systems, with
Coq’s Calculus of Inductive Constructions (CIC) [3], a general-purpose proof
framework.

Whereas the focus of most previous work (including our own) is on the de-
cision to execute pieces of code, similar considerations arise in other situations.
For instance, from a security perspective, installing a piece of code can be much
like executing it. Further upstream, auditing code is also critical to security. Au-
diting can complement other techniques for assurance, in the course of software
production or at various times before execution. Although humans perform the
auditing, they are often guided by policies (e.g., what aspects of the code should
be audited) and sometime supported by tools (e.g., for focusing attention on
questionable parts of the code).

In this paper, using BCIC, we suggest an approach to code auditing that
bases auditing decisions on logical policies and tools. Specifically, we suggest
that policies for auditing may be expressed in BCIC and evaluated by logical
means. Thus, this approach leverages trust relations and proofs, but it also allows



auditing to complement them. We recognize that this approach is still theoretical
and probably incomplete. Nevertheless, it emphasizes the possibility of looking
at techniques for verification and analysis in the context of policy-driven systems,
and the attractiveness of doing so in a logical setting.

We present two small examples. The first example concerns operating system
calls from an application extension language. With a BCIC policy, every oper-
ating system call must be authorized by an audit. A policy rule can allow entire
classes of calls without separate digital signatures from an authority. In the sec-
ond example, we consider an information-flow type system [14], specifically a
type system that tracks trust (much like Perl’s taint mode [6], but statically)
due to Orbazk and Palsberg [13]. The type system includes a form of declassi-
fication, in which expressions can be coerced to be trusted (that is, untainted).
If any program could use declassification indiscriminately, then the type sys-
tem would provide no benefit. With a BCIC policy, a trusted authority must
authorize each declassification. In both examples, security decisions can rely on
nuanced, fine-grained combinations of reason and authority.

We treat these examples in Sections 2 and 3, respectively. We consider im-
plementation details in Section 4. We conclude in Section 5.

2 Example: Auditing Function Calls

In this example we consider the calling behavior of programs in a managed
environment of libraries. A base application may allow extensions that provide
additional functionality not only to the user but also to other extensions. The
extensions may come from many different sources, and accordingly they may
be trusted to varying extents. By constraining calls, the security policy can
selectively allow different functionality to different extensions.

2.1 Language

For simplicity, we study an interpreted extension language. Specifically, we use
an untyped A-calculus with a special call construct that represents operating
system calls and calls to other libraries. All calls take exactly one argument,
which they may ignore. In order to allow primitive data types, we also include a
representation for data constructors (constrO, constrl, and constr2, for con-
structors that take zero, one, and two arguments respectively). These construc-
tors are enough to handle all the data types that appear in our implementation,
including natural numbers, pairs, and lists. Destructors have no special syntax,
but are included among the calls.
In Coq notation [2,3,16], the syntax of the language is:

Inductive exp : Set :=

| var : nat -> exp

| abs : exp -> exp

| app : exp —> exp —-> exp



call : funcname -> exp -> exp

constr0O : constrname -> exp

constrl : constrname -> exp -> exp
constr2 : constrname -> exp -> exp —> exp.

A detailed knowledge of Coq is not required for understanding this and other
definitions in this paper. This definition introduces a class of expressions, induc-
tively by cases with a type for each case; expressions rely on De Bruijn notation,
so variables are numbered and binding occurrences of variables are unnecessary.
Similarly, other definitions introduce other classes of expressions and proposi-
tions, and some parameters for them.

A policy can decide which calls any piece of code may execute. The policy
can be expressed in terms of a parameter audit maycall.

Parameter audit_maycall : exp -> funcname -> Prop.

According to this type, every audit requirement mentions the entire program
exp that is the context of the audit. Mentioning a subexpression in isolation
would not always be satisfactory, and it may be dangerous, as the effects of
a subexpression depend on context. The audit requirement also mentions the
name of the function being called. We omit any restrictions on the arguments to
the function, in order to make static reasoning easier; we assume that the callee
does its own checking of arguments. (Section 3 says more on going further with
static analysis.)

The predicate audited_calls indicates that a piece of code has permission
to make all the calls that it could make. This predicate is defined inductively by:

Inductive audited_calls : exp —> exp —-> Prop :=
| audited_calls_var :
forall e n,
audited_calls e (var n)
| audited_calls_app :
forall e el e2,
audited_calls e el —>
audited_calls e e2 —>
audited_calls e (app el e2)
| audited_calls_abs
forall e el,
audited_calls e el —>
audited_calls e (abs el)
| audited_calls_call :
forall f e el,
audited_calls e el —>
audit_maycall e £ —>
audited_calls e (call f el)



| audited_calls_constrO :
forall e cn,
audited_calls e (constrO cn)
| audited_calls_constrl :
forall e cn el,
audited_calls e el —>
audited_calls e (constrl cn el)
| audited_calls_constr2 :
forall e cn el e2,
audited_calls e el —>
audited_calls e e2 —>
audited_calls e (constr2 cn el e2).

Crucially, the case of audited_calls_call includes an audit maycall require-
ment. Every call statement requires an audit. A code producer may construct a
proof that, given the right audits, the code satisfies the predicate audited_calls.

2.2 Policy

Audit statements do not have proofs. They are provided by authorities and
trusted to be true through BCIC’s policies. The policies employ the special
predicate sat in order to connect Coq statements and assumptions with Binder
rules. Basically, sat(F) will be derivable in BCIC when Coq formula F has a
proof that has been imported into the local context.

The policy writer can express trust in statements that have no proof using a
new believe predicate, and rules such as:

believe(F) :- A says believe(F), trusted(A).

This rule expresses that, when a trusted authority says to believe something, the
entity that evaluates the policy (in other words, the reference monitor) believes
it. In this rule, as in Binder, we use logic-programming constructs plus the special
construct says [1,8] for representing the statements of principals.

In order to allow reasoning on beliefs, some additional rules are useful:

believe(F) :- sat(F).
believe(Q) :- believe(P), believe(<™P -> ~Q>).

Here, the notation <term> includes a CIC term within the policy. The notation
“P within an included CIC term indicates a free variable that is bound in the
policy rule. With these rules, all formulas that have proofs are believed, and
belief is closed under modus ponens. (A generalization of the second rule to
dependent types, of which implication is a special case, might be attractive but
is not needed for our examples.)

Using these constructs and rules, a complete policy of a code consumer may
say that a program is allowed to run if it has been properly audited. The policy



can specify which principals are trusted for the auditing. In addition, the policy
may collect calls into groups, thus authorizing sets of calls with a single statement
from a trusted authority. The complete policy may therefore look as follows:

trusted(alice).

trusted(B) :- A says trusted(B), trusted(A).
believe(F) :- sat(F).

believe(Q) :- believe(P), believe(<"P -> ~Q>).

believe(F) :- A says believe(F), trusted(A).

believe(<audit_maycall “P “F>) :-
A says believe(<audit_maycall “P "F>), trusted(A).

classify(setuid, dangerous).
classify(setgid, dangerous).
classify(sbrk, userlowlevel).
classify(printf, io).

classify(sprintf, dangerous).

believe(<audit_maycall “P “F>) :-
classify(F, C), A says allowgroup(P, C), trusted(A).

mayrun(P) :- believe(<audited_calls "P "P>).

Many variants are of course possible. In particular, a policy may let the audit-
ing requirements depend on CIC proofs about intrinsic properties of the code,
with clauses of the form believe(<audit_maycall ...>) :- sat(...). Fur-
thermore, a policy may concern not only the decision to run a program but also
any requirements for checks during execution.

2.3 Correctness

This example is simple enough that not too much theory is needed, but there
are some subtleties (in part because functions can be higher-order, and recursion
is possible). The main theorem about our analysis says that, if a piece of code
passes the analysis and is executed, every actual call will have been audited
(but it does not say anything about the appropriateness of particular BCIC
policies such as that of Section 2.2). Proving this theorem requires defining the
operational semantics of the language in such a way that a history of calls is
kept. We define a state as a pair that consists of a list of calls and an expression,
then define the single-step reduction relation S — S’ in the usual way. The only
nonstandard rule is for calls: (I,call fv) — (f : [,O(f,v)), where we let the
expression O(f,v) represent the return value of calling function f with value v.
We assume that the returned values do not contain calls themselves. We obtain:
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Theorem 1. For all programs e, if audited_calls e e is true and ([, e) —
(I, €), then audit_maycall e f is true for all function names f in .

The proof relies on a lemma that says if a function name f appears in [ then f
appears in the program e. The proof of the lemma is by induction on reductions,
then by case analysis of all the possible reductions. The substitutions that arise
from G reductions constitute the only difficulty. The proof is in Coq.

3 Example: Trust in the A-Calculus

@Orbak and Palsberg define a simple type system for a A-calculus with trust
annotations [13]. In this system, one may for instance describe applets for a
web server; the type system can help protect the applets from malicious inputs
and the web server from malicious applets. The language includes a construct
trust for untainting, thus supporting a form of declassification. (A dual form of
declassification is turning secret data into public data.) In this example we study
how to impose auditing requirements on declassifications. We started to consider
this example in our work on BLF, a preliminary version of BCIC [20, Appendix
BJ; here we develop it further in BCIC.

3.1 Language

The type system allows a small set of built-in types and function types; in
addition, types include the annotations tr or dis, which indicate trust and
distrust, respectively. Data from unknown outside parties, annotated with dis,
dis

can be treated with the proper suspicion. For instance, int is the type of

distrusted integers, while (intdw — int!") ! is the type of trusted functions
that take distrusted integer inputs and return trusted integer results.

Figure 1 defines the types, annotations, and relations between types. Types
are defined as bare_type, which become annotated_type when annotated by
tr or dis. Subtyping is defined straightforwardly for both bare and annotated
types. Auxiliary functions trust_lte and join represent the partial order of
the trust annotations and give the greatest lower bound of two trust levels,
respectively.

Expressions in the language are similar to those of A<., the simply typed
lambda calculus with subtyping, with the addition of trust, distrust, and
check expressions. Each trust is tagged with an identifier so it can be referenced
by an auditor. We made typecasts explicit in both origin and destination types
for simplicity in the typechecker. We also included int and bool as built-in
types. Figure 2 shows the definition of expressions and typechecking. As usual,
typechecking is done with respect to typing assumptions in a context.

3.2 Policy

By formalizing the type system in Coq, we can write BCIC security policies
that rely on type safety according to this type system. A simple example is the



Inductive trust_type : Set :=
| tr : trust_type
| dis : trust_type.

Inductive bare_type : Set :=
| usertype : nat -> bare_type
| arrow : annotated_type -> annotated_type -> bare_type

with annotated_type : Set :=
| annote : bare_type -> trust_type -> annotated_type.

Inductive trust_lte : trust_type -> trust_type -> Prop :=
| trust_lte_refl : forall (T : trust_type), trust_lte T T
| trust_lte_trdis : trust_lte tr dis.

Inductive bare_lte : bare_type -> bare_type -> Prop :=
| bare_lte_refl :
forall (T : bare_type), bare_lte T T
| bare_lte_arrow :
forall (X Y A B : annotated_type),
ann_lte Y B -> ann_lte A X ->
bare_lte (arrow X Y) (arrow A B)

with ann_lte : annotated_type -> annotated_type -> Prop :=
| ann_lte_refl :
forall (T : annotated_type), ann_lte T T
| ann_lte_annote :
forall (A B : bare_type) (U V : trust_type),
bare_lte A B -> trust_lte UV ->
ann_lte (annote A U) (annote B V).

Definition join (U V : trust_type) : trust_type :=
match U with
| tr =>V
| dis => dis
end.

Fig. 1. Types and relations between types.



Definition trustid : Set := nat.

Inductive expr : Set :=

| const_int : nat -> expr

| const_bool : bool -> expr

| var : nat -> expr

| abs : annotated_type -> expr -> expr

| app : expr -> expr -> expr

| trust : trustid -> expr -> expr

| distrust : expr -> expr

| check : expr -> expr

| cast : expr -> annotated_type -> annotated_type -> expr.

Inductive context : Set :=
| nilctx : context
| cons : annotated_type -> context -> context.

Inductive has_type : context -> expr -> annotated_type -> Prop :

| type_int : forall n C,
has_type C (const_int n) (annote (usertype 0) tr)
| type_bool : forall p C,
has_type C (const_bool p) (annote (usertype 1) tr)
| type_varz : forall T C,
has_type (cons T C) (var 0) T
| type_varn : forall n T T2 C,
has_type C (var n) T ->
has_type (cons T2 C) (var (S n)) T
| type_abs : forall C E T T2,
has_type (cons T C) E T2 ->
has_type C (abs T E) (annote (arrow T T2) tr)
| type_app : forall C E1 E2 T1 T2 U V,
has_type C E1 (annote (arrow T1 (annote T2 U)) V) ->
has_type C E2 T1 ->
has_type C (app E1 E2) (annote T2 (join U V))
| type_trust : forall C E T U id,
has_type C E (annote T U) ->
has_type C (trust id E) (annote T tr)
| type_distrust : forall C E T U,
has_type C E (annote T U) ->
has_type C (distrust E) (annote T dis)
| type_check : forall C E T,
has_type C E (annote T tr) ->
has_type C (check E) (annote T tr)
| type_cast : forall C E T T2,
has_type CE T ->
ann_lte T T2 >
has_type C (cast E T T2) T2.

Fig. 2. Expressions in the language and typechecking rules.



following policy:
mayrun(C, P) :- sat(<has_type “C “P (annote (usertype 0) tr)>)

This policy says that program P may run in context C if it typechecks and has
the trusted type int?". This policy does not exclude the possibility that this
type is trivially obtained by an application of trust, however.

The next step is to require that all applications of the trust operator be
audited. Since the trust operator is basically a way to escape the type system,
the value of the type system for security would be questionable at best if any
program could use trust indiscriminately, hence the desire for auditing.

Figure 3 defines a predicate trusts_audited. This predicate recursively tra-
verses an expression while remembering the entire expression. In this definition,
occurrences of trust impose extra requirements. In particular, every occurrence
of trust must have a corresponding audit statement. The audit predicate is
defined to be satisfied externally, in our case by assertions in the policy rather
than by proofs.

Parameter audit : expr -> trustid -> Prop.

An expression E has all its trusts audited when trusts_audited E E holds.

As a small example, consider the context C that has two elements, a dis-
trusted function £ of type (int! — int’™)¥S and a trusted integer x. The
expression (trust? £) x (which is actually app (trust 0 (var 0)) (var 1)
in our syntax but which we write as (trust? £) x for simplicity) will pass
trusts_audited when there is an audit statement audit ((trust? £) x) 0.
Suppose that the code producer bob provides the code (trust? £) x and a
proof of:

audit ((trusto £f) x) 0
->
trusts_audited ((trusto f) x) ((trusto f) x)

A trusted authority alice signs the statement:
believe(<audit ((trust? £) x) 0>)

The policy of a code consumer may be:

trusted(alice).

believe(F) :- sat(F).
believe(Q) :- believe(P), believe(<"P -> ~Q>).
believe(F) :- A says believe(F), trusted(A).

mayrun(C, P) :-
believe(<has_type “C P (annote (usertype 0) tr)>),
believe(<trusts_audited “P “P>).




Inductive trusts_audited :

audited_int
forall P n,

trusts_audited P (const_int n)

audited_bool :
forall P b,
trusts_audited
audited_var :
forall P n,
trusts_audited
audited_abs
forall PTE,
trusts_audited
trusts_audited
audited_app :
forall P E1 E2,
trusts_audited
trusts_audited
trusts_audited
audited_trust
forall P E id,
audit P id ->
trusts_audited
trusts_audited
audited_distrust
forall P E,
trusts_audited
trusts_audited
audited_check :
forall P E,
trusts_audited
trusts_audited
audited_cast :
forall P E T1 T2,

(const_bool b)

(var n)

E ->
(abs T E)

E1 >
E2 ->
(app E1 E2)

E ->
(trust id E)

E ->
(distrust E)

E ->
(check E)

expr —> expr -> Prop :

trusts_audited P E ->
trusts_audited P (cast E T1 T2).

Fig. 3. Auditing trusts predicate.
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After importing alice’s statement, the code consumer will have:
alice says believe(<audit ((trust? £) x) 0>)
After checking bob’s proof, it will have:

<audit ((trustO £f) x) 0
sat ->
trusts_audited ((trusto f) x) ((trusto f) x)>

With a little reasoning, the code consumer obtains:
mayrun (<(inttr — inttT)3%S . int?T . nil>, <(trust? f) x>>

Going further, as in Section 2, we have much flexibility in defining policies.
In particular, each audit requirement need not be discharged with an explicit
assertion specific to the requirement. We can allow broader assertions. In the
extreme case, once a trusted authority vouches for a program, no auditing is
required. We can express this policy with a BCIC rule:

mayrun(C, P) :- A says vouchfor(C, P), trusted(A).

We can also express policies that distinguish users. First, we modify mayrun
to include an explicit user argument: mayrun(U, C, P) is satisfied when user
U is allowed to run program P in context C. Since not all users might trust
the same auditors and other authorities, we also introduce predicates believes
and trusts as generalizations of believe and trusted, respectively, with user
arguments. Because provability is absolute, not relative to particular users, no
user annotation is needed for sat. With these variants, we may for example write
the policy:

trusts(bob, alice).
trusts(charlie, bob).

believes(U, F) :- sat(F).
believes(U, Q) :- believes(U, P), believes(U, <P -> ~Q>).
believes(U, F) :- A says believe(F), trusts(U, A).

mayrun(U, C, P) :-
believes (U, <has_type “C “P (annote (usertype 0) tr)>),
believes (U, <trusts_audited “P “P>).

However, some classes of policies require more advanced techniques. For in-
stance, we may want to focus the auditing on expressions of certain types, or
to exclude expressions that satisfy a given static condition established by a par-
ticular static-analysis algorithm. While static conditions can certainly be pro-
grammed as Coq predicates, once those predicates are present there need to be
corresponding proofs.
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Fortunately we have a way of encoding decision procedures in Coq signatures
in order to allow BCIC to incorporate those decisions procedures. Our approach
is based on proof by reflection (also known as proof by computation) [2, 7],
a technique applicable to any theorem prover based on typing that includes
convertibility to normal forms. The idea of this technique is that details related
to computations are elided from proof terms themselves, and are instead handled
automatically by the conversion rules. Using this technique, BCIC can integrate
various static analyses. (Some details of our use of proofs by reflection appear
in another document [17].)

3.3 Correctness

Much as in Section 2, the proof of correctness relies on an instrumented opera-
tional semantics for the language. In this semantics, annotations record trust
operations. We define a state as a pair that consists of a list of trust identifiers, [,
and an expression, e. We define the single-step reduction (I,e) — (I, €’) mostly
as usual, ignoring types and type annotations, and eliminating casts, trusts,
distrusts, and checks. The rule for trust records the identifier of the trust:
(I, trustid ¢) — (id :: [,€). We obtain a correctness result that says that, when
programs execute, they perform trust operations only as authorized:

Theorem 2. For all programs e, if trusts_audited e e is true and ([], e) —*

(I, €), then audit e id is true for all identifiers id in (.

While helpful, this theorem does not aim to address the proper criteria for
declassification. The study of those criteria, and the guarantees that they may
offer, is an active research area (e.g., [15]).

4 Implementation

Our implementation of BCIC includes network communication, cryptographic
primitives, a simple user interface, and the machinery for logical queries on
policies [19]. We have used Coq’s automatic program extraction from proofs
to produce a certified correct implementation of the BCIC logic engine [18].
The examples we have presented in this paper are written and work in our
implementation of BCIC.

In order to flesh out the examples, we have created corresponding proof
generators. Given a target program, the proof generators analyze the program
and construct Coq proof terms for it. For the example of Section 2, proof terms
establish that strings of audit requirements imply calls_audited properties. For
the example of Section 3, proof terms yield not only trusts_audited properties
but also well-typing.

Further, in order to execute the programs that have been analyzed, we have
created a simple run-time environment, basically a A-calculus interpreter. During
network communication, statements and proofs must be transmitted between
principals. Given that audit statements include copies of programs, performance
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could be problematic. Therefore, we replace CIC terms with their hashes. Thus,
a set of statements about a single program will need to transmit the program
only once, not once per statement. Additional performance improvements might
be obtained by caching.

Despite poor, exponential bounds, queries in the certified implementation
are reasonably fast in practice. Most policies we have studied require only one
or two steps of reasoning before all possible conclusions have been drawn and a
query can be answered. In practice the biggest bottleneck is typechecking terms
in Coq, not logical deduction. Our implementation caches calls to Coq in order
to avoid redundant typechecking.

The code samples in our implementation come from Scheme programs that
do not use many Scheme language constructs. Going further, one may attempt
to incorporate more of the Scheme language. For the example of Section 3,
which requires static typing, a language such as ML may be a better match
than Scheme. In this context, auditing may also be applied to special language
features that allow a program to break the type system in a potentially unsafe
way (e.g., Obj.magic in OCaml).

5 Conclusion

This paper develops the view that an audit assertion may encapsulate a non-
formal judgment about code in the context of a formal reasoning system. While
this judgment will typically be made by a human, perhaps incorrectly, the formal
reasoning system provides the means to specify how it fits with security policies
and with static code analysis. The formal reasoning system can thus guide the
auditing work and ensure its completeness.

More broadly, our work with BCIC indicates the possibility of looking at
techniques for verification and analysis in the context of logical security policies.
Combinations of reason and authority arise in practice, for instance in systems
with signed and verified code (e.g., [5]), though often with ad hoc policies and
mechanisms. General theories and tools should support such systems.
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