GDP Festschrift ENTCS, to appear

Access Control in a
Core Calculus of Dependency

Martin Abadi

Computer Science Department
University of California, Santa Cruz

an
Microsoft Research, Silicon Valley

Abstract

The Dependency Core Calculus (DCC) is an extension of the computational lambda calculus that was
designed in order to capture the notion of dependency that arises in information-flow control, partial eval-
uation, and other programming-language settings. We show that, unexpectedly, DCC can also be used as
a calculus for access control in distributed systems. Initiating the study of DCC from this perspective, we
explore some of its appealing properties.

Keywords: Authorization, Types

1 Introduction

The Dependency Core Calculus (DCC) [3] is a small extension of Moggi’s compu-
tational lambda calculus [22]. DCC was designed in order to capture the common,
central notion of dependency that arises in information-flow control, partial eval-
uation, call-tracking, and other programming-language settings. The paper that
introduces DCC includes six translations from type-based dependency analyses into
DCC. As explained there, this use of the computational lambda calculus in describ-
ing dependency was somewhat surprising.

Usually, the computational lambda calculus describes languages with side ef-
fects [22], or forms the basis of adding side effects like I/O to pure functional
languages [14]. Dependency analyses, in contrast, do not fundamentally change
the values being computed. Nevertheless, there is one common idea underlying
both uses of the computational lambda calculus. In the case of Haskell, there is
no way to compute a value using the I/O type constructor and pass that value
to an expression of non-I/O type. Similarly, in information-flow systems, the
test of a high-security boolean in an “if-then-else” requires that the branches of

the conditional return high-security values. In both cases, the type rules of the
computational lambda calculus enforce the necessary restriction.

In this paper we show that, also unexpectedly, DCC can be used as a calculus
for access control in distributed systems. In this application, the restriction that
DCC imposes implies that there is no way to take evidence that a principal A has
made a statement s and use it non-trivially in evidence that an unrelated principal
B has made a statement ¢.

Access control basically consists in determining whether the principal that issues
a request should be trusted on this request. Accordingly, logics for access control
enable reasoning about principals, their requests, and other statements [4,16,19,9,6].
(See [1] for further discussion of several of those logics and additional references.)
Often, the logics include formulas such as A says s, where A represents a princi-
pal, s represents a statement (a request, a delegation of authority, or some other
utterance), and says is an operator. The use of says abstracts from details of au-
thentication and authorization. One may have that A says s even when A does not
directly utter s. For example, when A is a user and one of its programs includes s
in a message, it may be convenient and appropriate to state that A says s. In this
case, A says s means that A has caused s to be said, that s has been said on A’s
behalf, or that A supports s.

DCC can be seen as an alternative to the core of those previous logics for access
control. DCC promises some appealing features in this respect: simple rules with
useful consequences, a precise semantics, and good fundamental properties.

e The rules imply the “hand-off axiom” [16], which has had an unclear status until
now despite its central role in many access control situations. This axiom basically
asserts that, for two principals A and B, if A says that B speaks for A then B
does speak for A. It was often treated as an add-on, not as a consequence of more
fundamental rules or semantic definitions.

Secondarily, the rules also imply that if s is true then A says s, for every
principal A and statement s. This inference may be desirable but it can give rise
to unexpected conclusions, such as

A says s — (sV (A says §))

for every s and s’ [1]. Here, those conclusions are blocked by the use of construc-
tive reasoning. (Garg and Pfenning [11] found this benefit of constructivity in
the context of a different formal system; see Section 2.)

Of course, constructivity has a price, and it can be hard to motivate. Why
would one abandon the law of the excluded middle? is it not true, for instance,
that a principal A says “delete the file” or that it does not? DCC addresses this
difficulty, in a sense. It is not for reasoning about classical truth, but rather serves
as a type system for evidence, and as such it should not be too surprising that it
is constructive—since one does not always have evidence for a proposition or for
its negation.

e The semantics is the sort of explanation of the calculus provided by the theory
of programming languages (in contrast with classical possible-world semantics

for modal logics [4]). The semantics does not directly explain concepts such as
responsibility and authority, at least in its present form. In the semantics, the
meaning of a statement can be seen roughly as the set of arguments that can lead
to concluding the statement. The arguments might represent digital certificates
and other sorts of evidence, pieced together with logical reasoning.

e The fundamental properties include some of those traditionally proved for type
systems. In particular, one can formulate various consistency, type soundness,
parametricity, and noninterference results.

These results sometimes take new forms and have new applications. For in-
stance, exploring noninterference, we prove a theorem (Theorem 7.6) that limits
the possible influence of the statements of one principal on other principals.

Some of the properties of DCC are already considered in previous work [3,27].
Although we do not attempt a full development of the metatheory of DCC, we
advance it with some simple but important proof-theoretic results.

While these features may not all be unique to DCC, we believe that DCC offers a
rather attractive package, worth investigating. In addition, it seems both interesting
and valuable that DCC is not an ad hoc calculus invented purely for the purposes
of reasoning about access control.

Beyond specific technical results, the main contributions of this paper are the
reconsideration of DCC as a system for access control and, more broadly, the use
of the Curry-Howard isomorphism (“propositions-as-types, proofs-as-programs”) in
access control. The Curry-Howard isomorphism had not, it seems, ever been ex-
ploited in this context, and it appears to have great potential. Throughout, we
focus on the rules of DCC and their interpretation. We leave several opportunities
for further work on extensions and on the relevant theory.

The next section (Section 2) discusses some of the sources of this work. Section 3
revisits DCC, specifically defining a system that we call Simply Typed DCC. This
is a terminating fragment of DCC as it was previously defined, with only superficial
changes of notation. Section 4 considers how to use Simply Typed DCC for access
control. Going further, Section 5 adds polymorphic types, in the style of Girard’s
System F [13,7]; the result is a system that we call Polymorphic DCC. Section 6
shows how this extension enables a new treatment of the “speaks for” relation and
also outlines examples. Section 7 concerns the metatheory of Polymorphic DCC.
Section 8 presents an attractive fragment of Polymorphic DCC. Section 9 concludes
with a brief discussion of the prospects for DCC.

This paper is a revised version of a conference paper [2].

2 Related Work

The main sources of this work include, of course, the original papers on calculi for
access control and on DCC (e.g., [1,3]). Via DCC and the computational lambda
calculus, this work is also related to a large body of research on programming
languages and logics (e.g., [24,10]).

The other important and more immediate influences on this work are an in-

sightful suggestion from Langworthy [18] and an intriguing manuscript by Garg
and Pfenning [11]. In that manuscript, they develop a new logic for access con-
trol. That logic is an intuitionistic variant of previous logics, with an apparently
pleasant proof theory. It is reminiscent of information-flow type systems, and we
discovered that it has similarities with DCC (of which Garg and Pfenning were not
aware). On the other hand, unlike DCC, that logic is not defined as a type system
for a programming language. Furthermore, it lacks a “speaks for” relation with a
hand-off property.

DCC, as we use it here, is not literally as it was originally defined. Technically,
the changes are important but routine. Specifically, we remove non-terminating
programs and the corresponding notion of “pointed types”; non-termination is at-
tractive in a general-purpose type system but not usually in a proof system. On the
other hand, we introduce type quantification in the style of System F. This type
quantification enables us to model the “speaks for” relation. Finally, we change
notations, for example writing A says s instead of Ty(s), with A instead of .
Curiously, this superficial syntactic change may be regarded as a more profound in-
novation than removing non-terminating programs and adding type quantification.

3 Simply Typed DCC

In this section we define Simply Typed DCC and indicate how to read it in logical
terms.

3.1 The Calculus

Three features distinguish Simply Typed DCC from the standard computational
lambda calculus [22]. First, Simply Typed DCC includes sum types. Second, instead
of having one type constructor T’ semantically associated with a monad, the calculus
incorporates multiple type constructors T4 (here written A says ...), one for every
element A € L of a lattice £. (Wadler [28] considered this idea as well.) In our
use of this lattice, the elements of £ will represent principals, with smaller elements
as more trusted principals and greater elements as less trusted ones. Third, the
monadic operation “bind” has a special typing rule that is explained below.

3.1.1 Types
The types of Simply Typed DCC are given by the grammar:

su=true|(sVs)|(sAs)|(s—s)| Asayss
where A ranges over elements of a lattice £, equipped with a partial order C.
Thus, we depart from the original DCC notations: we write
* true instead of unit,
* 51V s9 instead of s1 + so,
* 51 A so instead of s1 X s9, and

* A says s instead of T'4(s).

Table 1
Simply Typed DCC: Typing Rules.

[Var] z:s,I"kFx:s [Unit] I'():true
I''z:s1Fe:ss Fke:(s1—s2) ThHeé:s
[Lam] [App]
L' (Ax:si.e): (s — s9) I'E(eé): sy
I'kei:s I'kFeg:s
[Pair] S S
'k <61,62> : (81/\82)
I'kFe:(s1As I'Fe:(s1As
[Proj 1] (81 1 52) [Proj 2] (1.1 s2)
'+ (proj; e) : s1 I'F (projye) : so
I'ke:s; I'ke:sy
(Ing 1 [t 2]
I'F (injye) : (s1V s2) I'F (injye) : (s1V s2)
FFe:(s1Vsy) Tyx:siher:s T,x:sohbes:s
[Case]
I'F (case e of inj,(x). 1 | injy(x). €2) : s
l'Fe:s
[UnitM|

't (nae): Asayss

. F'ke:Asayss TDyz:ste:t
[BindM] t is protected at level A
'Fbindx=eine : ¢

For each A € L, the says operation induces a subset of types called the types
protected at level A:

e If AC B, then B says s is protected at level A;

e true is protected at level A;

* if s and ¢ are protected at level A, then (s At) is protected at level A;
e if ¢ is protected at level A, then B says t is protected at level A; and
e if ¢ is protected at level A, then (s — t) is protected at level A.

(Tse and Zdancewic [27] have proposed a generalization of this definition, which
may be helpful in the future. The clause that says that true is protected at level A
comes from them.)

3.1.2 Terms
The terms and the typing rules for Simply Typed DCC appear in Table 1.

These rules are for proving typing judgments of the form I' F e : s (read “term
e has type s in typing environment I'”). Here, a typing environment I" denotes a

list of distinct variables with types. The rules for unit, function, product, and sum
types are all standard, as is the rule for the monadic unit operation. The rule for
the monadic bind operation is nonstandard, using the concept of “protected at level
A” for the body of bind expressions.

3.1.83 Semantics

The paper that introduces DCC provides both an operational semantics and a
denotational semantics for the Simply Typed calculus (including constructs not
considered here, in particular term recursion).

The operational semantics is a call-by-name semantics. The term (14 e) reduces
to e, and (bind 2 = e in ¢€) reduces to €'[e/x], where e[e’/x] represents the result of
the capture-free substitution of ¢’ for z in e. The rest of the operational semantics
of Simply Typed DCC is standard.

This operational semantics is not entirely consistent with the type system.
Specifically, the term (n4 e) reduces to e although these two terms have differ-
ent types, and the term (bind z = e in €’) reduces to €'[e/z] although e and
x do not have the same type. This discrepancy is however limited. (Reduction
preserves types modulo applications of the function (-)¥ of Section 7.) An alter-
native operational semantics [27] fits more closely with the type system. In this
semantics, in addition to standard rules from the lambda calculus, we have that
bind z = (n4 e) in €’ reduces to €'[e/x]. Zdancewic has recently checked progress
and subject-reduction properties of this semantics, using the Twelf proof assis-
tant [31]. For our present purposes, either operational semantics is satisfactory.

The denotational semantics of Simply Typed DCC is more intricate. We omit
it here. It may however be useful in further work, in particular because it captures
noninterference properties.

3.2 Logical Reading

We restate the rules of Simply Typed DCC in logical form in Table 2. Here, an
environment I' denotes a list of types. We simply omit all the terms. This move
from type systems to logics is an instance of the Curry-Howard isomorphism. We
show the resulting rules in Table 2 for the sake of clarity.

According to these rules, if a type ¢ is protected at level A, then ¢ and A says ¢
are logically equivalent. Therefore, up to logical equivalence, the types protected at
level A are those of the form A says ¢ for some t.

We write F s, and say that s is a theorem, when I s is derivable by the rules
of Table 2. Equivalently, s is a theorem when there is a term e such that F e : s
is derivable by the rules of Table 1. In this case, we say that e inhabits s, and e
represents a proof of s.

In practice, this proof may be transmitted as evidence of s in requests for access
to a resource [30,5]. For this purpose, it may be useful to decorate terms with
additional type information, so that proof-checking can be as straightforward as
possible. In particular, such type information may help in applying the rule [Bind M|

Table 2
Simply Typed DCC: Logical Reading.

[Var] I's,I"F s [Unit] I' true
I' sy F s9 L'k (sg1—s2) T'Fs
[Lam] — ——————— [App]
't (s1 — s2) I'E sy
I'ks I'ks
[Pair] ! 2
'k (81 AN SQ)
I'E(s1As I'E(s1As
[Proj 1] Th(sins) [Proj 2] Th(sins)
'k S1 'k S92
I+ S1 | 592
[Ing 1] — [Inj 2] _
F|—<81\/82) Fl‘(Sl\/Sg)
F'k(s1Vvsy) IysikFs TI,saks
[Case]
I'ks
I'ks
[UnitM] ———
'+ Asayss
I'FAsayss I,skt
[BindM] t is protected at level A

'kt

backwards—with the rule in its present form, we have to guess A and s in order to
find the hypotheses that yield a conclusion. We resist this and other temptations
to modify the language of proofs, in order to minimize changes to DCC and to
emphasize its surprising applicability to access control.

Simply Typed DCC has the property that every type is inhabited, and therefore
Simply Typed DCC may not be regarded as a very useful logic. Fortunately, it is
easy to enrich Simply Typed DCC with atomic types that represent basic propo-
sitions; those are convenient in applications, and they provide uninhabited types.
We do not introduce them here, though, in order to minimize deviations from the
original definition of DCC and because Polymorphic DCC includes type variables
that can represent basic propositions (see Section 5).

4 Access Control in Simply Typed DCC

Next we suggest how to use Simply Typed DCC for access control. We start with a
basic, general discussion of the use of logics for access control, then focus on some

of the features of Simply Typed DCC.

4.1 Basics

In logical approaches to access control, the problem of deciding whether an operation
should be granted is formulated in logical terms, as the problem of constructing or
checking a proof. For instance, a logical formula s may represent that a particular
operation o should be performed. In this case, s may be written as a proposition of
the form Do(o) (or Ok(o) [29]). The reference monitor in charge of making access
control decisions for o0 may have the policy that a particular principal A is authorized
to perform o. This policy may be represented by the formula:

(A says Do(0)) — Do(o)

Similarly, a request for the operation o from a principal B may be represented by
the formula:

B says Do(o)
The reference monitor may attempt to prove that these two formulas imply Do(o),
and grant access if it succeeds. In general, the proof may exploit relations between A
and B and other facts known to the reference monitor. Alternatively, the reference

monitor may simply check a proof presented by B. Thus, when the proof is a DCC
term, the reference monitor may simply do type-checking.

4.2 Properties of says

In Simply Typed DCC, the operators V, A, and — obey the standard intuitionistic
propositional rules. In addition, we have

Fs— Asayss
with proof term
Az i s.(na x)
and
F(Asays (s — s')) — ((A says 5) — (A says §'))

with proof term

Az : A says (s — §').bind 2’ = z in Ay : A says s.bind 3 =y in (n4 (2'y))
These theorems correspond to the main axioms and rules adopted in previous cal-
culi (despite the switch to intuitionistic reasoning). Therefore, we have enough to
perform much of the typical, basic reasoning about access control.

In fact, the theorem - s — A says s is even stronger than what we usually have.
Usually, we have only the necessitation rule from modal logic, which says only that
if - s then - A says s. The necessitation rule avoids the unexpected consequences
of H s — A says s in a classical-logic context [1].

The theorem - s — A says s suggests that A says s does not mean that A

actually utters s or something that implies it. Rather, we should see all reasoning
from the point of view of a reference monitor that is in charge of making access

control decisions. Informally, we have A says s when, combining the statements

that the reference monitor believes with those that A contributes, the reference

monitor can conclude s. Thus, the reference monitor’s participation is left implicit.
Further, we have

- (A says A says s) — (A says s)
with proof term
Axr: Asays Asays s.bindy =z iny
(cf. [4, Section 3.4]), and also
F (A says B says s) — (B says A says s)
with proof term
Az : A says B says s.bind y =z inbind z = y in (np (N4 2))

These properties sometimes simplify reasoning about chains of says: they imply
that when

A; says Ag ... says A, says s

the order of the principals Ai, ..., A, and how often they occur in the chain do
not matter. In this respect, saying is much like tainting in systems that aim to
guarantee data integrity: the order of taints and how often they happen typically
do not affect the resulting integrity level. However, the commutativity property
(A says B says s) — (B says A says s) is not central to our approach, and in
Section 8 we show how to omit it.

4.3 Using the Partial Order, and its Connection to “Speaks for”

In our application of DCC, the least element of the lattice of levels stands for the
most trusted principal, and greater elements represent less trusted principals, as
indicated in Section 3. The opposite ordering is typically used for obtaining se-
crecy guarantees with information-flow type systems, and with DCC in particular
(e.g., [3]). The present ordering is fairly common in models for integrity. Per-
haps this coincidence should be expected, since reliable access control requires the
integrity of requests and policies.
We have the following theorem:

- (A says s) — (B says s) for AC B

Therefore, we could regard C as a representation of the “speaks for” relation. In-
deed, with that reading, we obtain that if A speaks for B and A says s then
B says s, for every s. This property is characteristic of the “speaks for” relation.

However, Simply Typed DCC is not a rich setting for reasoning about the
“speaks for” relation. In particular, we cannot use the symbol C in expressions
such as A says (B C A): this expression is not even a syntactically legal formula.
A possible solution may be to extend the syntax so that (B C A) is a type, thus
internalizing C. While this approach may be viable, it is somewhat ad hoc. Below
we develop a more principled approach, relying on polymorphism.

4.4 Using Meets and Joins for Combining Principals and Groups

The lattice structure also provides operators M and LI, respectively the meet and
the join operators of the lattice L.
Since AMBC A and AT B C B, we obtain:

(1) F (AN B says s) — (A says s) A (B says s)

for every s. However, the converse does not automatically hold for every s.! Intu-
itively, A1 B may be more trustworthy than A and B, even when A and B happen
to agree. In this sense, a joint signature of a statement may carry more weight than
two separate signatures of the same statement.

Similarly, since AC AL B and B C AU B, we obtain:

(2) F (A says s) V (B says s) — (AU B says s)

for every s, but not the converse. Intuitively, A LI B may be less trustworthy than
each of A and B in isolation. Because saying is closed under logical consequence,
a statement by A U B may be derived from separate statements by A and B, with
results that neither A nor B would have produced alone.

These properties suggest that we may interpret lattice elements as groups, ' as
group intersection, LI as group union, and C as group inclusion. Thus, an individual
element of the lattice £ may not (always) correspond to an atomic subject, but
rather to a group of subjects. It then seems quite reasonable that statements by
AT B may be more trusted than statements by both A and B. For example, a
security policy may refer to two groups, “club members” and “adults”, and require
a certain authorization by an adult club member; a statement by an adult club
member cannot be replaced with identical statements by an arbitrary club member
and an arbitrary adult.

Alternatively, the lattice £ may be a lattice of abstract security levels, of the
kind that may be used in multilevel security (e.g., [8,12]). In such a lattice, the
converses of (1) and (2) can have strong, questionable consequences. For example,
let us consider a five-element lattice with a bottom, a top, and three elements A, B,
and C unrelated to one another. In this lattice, AN B is the bottom element, AL B
is the top element, and hence ATTB C C C AUB. If A says s and B says s implied
AT B says s, then it would also follow that C' says s. Similarly, if AL B says s
implied that A says s or B says s, then C says s would also imply that A says s
or B says s.

In many of these scenarios, and in particular when L is a lattice of groups, the
lattice £ is distributive. In general, the lattice £ is not required to be distributive,
but there is no contradiction in adding that condition; the rules of DCC apply
without change.

L More precisely, the converse cannot be derived as soon as we introduce basic propositions, for example
in the form of type variables. As long as every type is inhabited, the converse can of course be derived, but
not for interesting reasons.

Similar caveats apply to discussions of some other formulas in the rest of Section 4.

Table 3
Polymorphic DCC: Additional Typing Rules.

I'XFe:s I'Fe:VX.s
[TLam] [TApp] (t well-formed in I)

'k (AX.e):VX.s I'F (et): st/ X]

Table 4
Polymorphic DCC: Logical Form of the Additional Typing Rules.

I'ks '-vX.s
[TLam]| ——— (X not free in ') [TApp] ——
-vX.s I'Fs[t/X]

4.5 Conjunctions and Disjunctions on Principals

Despite important differences, the operators M and LI may be reminiscent of the
operators A and V that have in the past been applied to principals. We could
introduce those operators as abbreviations:

AN B says s stands for (A says s) A (B says s)
AV B says s stands for (A says s)V (B says s)

While these abbreviations are convenient, it is worth noting that AA B and AV B
need not behave exactly like lattice elements. For instance, it should not be taken
for granted that

(AV B says (s — §))
—

((AV B says s) — (AV B says §))

holds for every s and s’: when A says s and B says (s — '), we have AV B says s
and AV B says (s — §), but not necessarily A says s’ or B says s'.

4.6 Additional Operations

Going further, we could add other abbreviations and other operators on the lat-
tice, in order to represent useful compound principals. Such extensions have been
explored in previous work (e.g., [4,16]). There, the operator | (“quoting”) plays a
central role, so we revisit it briefly in this section. We leave to further work a more
systematic study of additional operators.

When A and B are two principals, A | B is a principal that represents A quot-
ing B. A fundamental property of A | B (sometimes regarded as its definition) is
the equivalence of A | B says s with A says B says s, for every s.

In the context of Simply Typed DCC, the properties of says listed in Section 4.2
suggest strong axioms for the operator |. Specifically, we may take | to be associative,

commutative, and idempotent. Furthermore, the theorem
- (A says s) — (A’ says s) for AC A

(see Section 4.3) suggests that | could be monotone with respect to C in its first
argument, and by commutativity also in its second argument. It follows that

(4] B)E((AUB) | (AUB)) = (AUB)

Conversely, for all s, if either A says s or B says s then A | B says s. It is
therefore attractive to let (AU B) C (A | B), since one may think of A L B as the
least principal that says everything that either A or B says. This property requires
a substantial strengthening of Simply Typed DCC, since it implies

(AU B) says s — A says B says s

The strengthening might be achieved by relaxing the type system in such a way
that A says B says s is protected at level A U B.

In summary, in the context of Simply Typed DCC, it is tempting to equate the
quoting operator | with the join operator LI. While this equation seems reasonable
and avoids the introduction of new syntax for |, it may lead to significant changes
in Simply Typed DCC.

5 Polymorphic DCC

We extend DCC with polymorphism in the style of System F. We rely on System F
because of its conciseness and power; as usual, one may also consider more restricted
forms of polymorphism.

This extension addresses the shortcoming described in Section 4.3: in Section 6
we show that we can use polymorphism in order to represent and reason about the
“speaks for” relation. We can also use polymorphism in other ways, of course. In
particular, we consider how to use polymorphism for encoding says.

A common practical criticism of polymorphic types is that they introduce serious
complications in type inference. We note that this criticism does not apply for the
present application. Another practical criticism of polymorphic types is that they
can be hard to write and to understand. This criticism does apply. We would not
recommend writing security policies with many quantifiers. In practice, security
policies could often be written in terms of a few idioms whose definitions may rely
on quantifiers, but without explicit quantifiers. In this direction, it is attractive
to explore the development of languages for writing security policies, perhaps in a
logic-programming style (as in SD3 [15], Binder [9], and RT [20]).

5.1 The Calculus

The extension to Polymorphic DCC relies only on standard rules for polymorphism,
introducing universal quantification over types. We review those rules in this sec-
tion.

5.1.1 Types
With polymorphism, the types of DCC are given by the grammar:

su=true|(sVs)|(sAs)|(s—s)|Asayss| X |VX.s

where A ranges over elements of a lattice £, and X ranges over a set of type variables.
The variable X is bound in VX. s, and subject to renaming.

Again, the says operation induces a subset of types called the types protected
at level A. We add one clause to the definition of Section 3.1.1:

e if ¢ is protected at level A, then V.X.t is protected at level A.

This simple clause is motivated by a straightforward analogy between V and A.

5.1.2 Terms
The additional forms of terms and the additional typing rules for Polymorphic DCC
appear in Table 3. These are in addition to those of Table 1.

Here, a typing environment I' denotes a list where each element is either a
distinct type variable or a distinct variable with a type. We require that if the type
of a variable mentions a type variable X, then X occurs further to the left. Thus,

for example, = : X and x : X, X are not well-formed typing environments, while
X,z : X and

X, Y,x: X,y: Asays (X —Y)

are well-formed typing environments.

In rule [TApp], we require that ¢ be a well-formed type in I'. This condition
means that any type variables in ¢ should be declared in I'. Also in rule [TApp], the
expression s[t/X] represents the result of the capture-free substitution of ¢ for X
in s.

5.1.8 Semantics
It is straightforward to extend the operational semantics to Polymorphic DCC,
along standard lines (e.g., [21]). Zdancewic’s proofs, mentioned in Section 3.1.3,
apply to this extension as well.

Extending the denotational semantics is somewhat more challenging. We leave
this extension for further work.

5.2 Logical Reading

The logical reading of Simply Typed DCC, outlined in Section 3.2, generalizes to
Polymorphic DCC.

The additional rules are given in logical form in Table 4. Here, a typing envi-
ronment I" denotes a list of types; type variables may occur free in those types. We
simply omit all the terms, as well as declarations for type variables. For example,
the typing environment

XY z:Y - X y:AsaysY

yields the environment
Y — X, AsaysY
and the typing judgment
X, Y,z:Y - X,y: Asays Y Fbindy =y in (na (zy)) : Asays X
yields
Y - X, AsaysY - Asays X

In judgments such as this one, type variables that are not quantified can be read
and used as basic propositions.

In rule [T'Lam] of Table 4, we make explicit that X should not occur free in I'.
In Table 3, the corresponding requirement is implied by the fact that I', X is a
well-formed typing environment.

Much as in Section 3.2, we write - s, and say that s is a theorem, when F s is
derivable by the rules of Tables 2 and 4. Equivalently, s is a theorem when there
is a list of type variables Xi,...,X,, and a term e such that Xi,..., X, Fe: sis
derivable by the rules of Tables 1 and 3.

In particular, we immediately obtain:
F (A says VX.s) — (VX. A says s)
with proof term
Az : (A says VX.s). AX.bindy =z in (n4 (yX))

but not the converse implication—which may be harmless, but which we do not
seem to need.

5.8 Translating Access Control into Parametricity

Tse and Zdancewic [27] have shown an encoding of Simply Typed DCC into Sys-
tem F. Crucially, they map a type of the form A says s to oy — s, where ay
is a distinct type variable. The translations of other DCC constructs are mostly
straightforward. Tse and Zdancewic do not treat non-termination and related no-
tions, which fortunately we do not need for our present purposes. It seems possible
to extend their encoding to Polymorphic DCC. The end result would be an inter-
esting representation of access control purely in System F.

We leave the study of this representation for further work. Theorems beyond
those of Tse and Zdancewic may be required for justifying this use of their tech-
nique. In particular, although their encoding is type-preserving, typing in System
F is somewhat more liberal than in DCC, and one would want to ensure that the
flexibility of System F' does not yield unexpected results for access control.

Moreover, while encodings into System F can provide useful guidance and se-
mantics, it would be premature to replace DCC with System F. At this point, it
seems more convenient to reason about access control in DCC than in System F. Un-
like System F, Simply Typed DCC provides a simple notation and setting in which
to study logical questions, to develop examples and applications, and to experiment
with alternative concepts and rules. Although Polymorphic DCC includes all the

complexity of System F, it still shares many of the advantages of Simply Typed
DCC from our perspective, particularly since we make only a limited, disciplined
use of quantifiers in this initial exploration.

6 Access Control in Polymorphic DCC

Continuing Section 4, in this section we suggest how to use Polymorphic DCC for
access control.

6.1 “Speaks for”

We encode “speaks for” via polymorphism. In keeping with previous papers, we
write A = B for “A speaks for B”. Here, however, we write A = B as an abbrevi-
ation for

VX. (A says X — B says X)
We immediately obtain a fundamental property of the “speaks for” relation:
(A= B) — ((A says s) — (B says s))
for every s, with proof term
A : A= B.zxs

Remarkably, we also obtain the “hand-off axiom” as a theorem (not as an added
axiom):

- (Asays (B= A4)) - (B=A4)

This theorem can be derived because the definitions imply that B = A is protected
at level A. Its proof is the term:

Ar: Asays (B= A).bindy==xiny
Clearly, A C B implies A = B:
FA=B for AC B

However, the converse is not true: A = B does not imply A C B. In fact, we
can even have A = B and B = A while A and B are different lattice levels. In
this respect, the logic keeps a certain separation between the underlying lattice and
the partial order of the “speaks for” relation. Whether this separation is a feature
or an unfortunate redundancy may be open to debate. It does not seem to have
significant disadvantages, and it does have the advantage of allowing us to develop
the Simply Typed calculus before having a “speaks for” relation, without deviating
from DCC. It also enables the use of the lattice operations M and LI, which would
be harder to define otherwise. Nevertheless, in Section 8 we consider a fragment of
Polymorphic DCC that does not require a lattice of principals.

Restrictions of “speaks for”, similar to ones previously considered (e.g., [17]),
can be defined and studied just as easily. In particular, given a type C(X) with free
type variable X, we can write the type:

VX.(C(X)N Asays X — B says X)

in order to express that A speaks for B on statements X that satisfy C(X). For
instance, when C(X) is s — X for some s, this type means that A speaks for B on
consequences of s.

6.2 Ezamples

Using the encoding of “speaks for”, we sketch some small examples of the use
of Polymorphic DCC for access control. For these examples, as a convenience,
we assume standard data types (such as int), as well as basic propositions for
authorization. We also speculate on more substantial extensions to DCC.

Since DCC is a programming language, it is attractive to consider ways of
integrating traditional programming with DCC-based access control, at the lan-
guage level. The examples are partly intended to suggest avenues for research in
this direction. Going further, it would be interesting to consider the combination
of DCC-based access control with information-flow systems for programming lan-
guages (e.g., [23,25,26]), especially since DCC can capture notions of information
flow.

6.2.1 Access with a Simple Hand-off

The first of our examples is fairly basic. It could be reproduced in a variety of other
logics once the appropriate instance of the “hand-off axiom” is assumed.
Suppose that we have the following formulas:

A says (B = A)
(3) B says Do(0)
(A says Do(0)) — Do(o)

The first represents a hand-off from A to B. As in Section 4.1, the second formula
shows a statement Do(o) supported by B’s authority, and the third reflects that A
is trusted on that statement.

Combining these formulas, we can derive Do(o). Formally, we have:

A says (B = A)
A

| B says Do(o) — Do(o0)

A

(A says Do(0)) — Do(o)

As in Section 4.1, the conclusion Do(o) is intended to mean that operation o should
be granted.
We assume the formulas (3) for the rest of Section 6, as we build on this example.

6.2.2 Proof-Carrying Calls

Next we consider the situation in which we are defining a security-aware interface
for the operation o. This interface should reflect o’s authorization requirements.
For instance, if o expects an integer argument and produces an integer result, then
the type of o might be:

Do(o) — (int — int)

in which we make explicit the requirement Do(o). Thus, when a principal C in-
vokes o, it should pass a proof of Do(0).

For this purpose, we would expect that the caller C would obtain and combine
proofs of the formulas B says Do(0), (4 says Do(0)) — Do(o), and A says (B =
A). The proofs of A says (B = A) and of B says Do(0) may be digitally signed
statements, if we adopt the sensible principle that a digitally signed statement that
can be checked with a principal’s public key constitutes a proof that the principal
says the statement. The proof of (A says Do(0)) — Do(o) may be derived from
a digitally signed statement from an authority trusted on o. We leave for further
work the details of the interface between standard DCC and the world of digital
signatures.

Fundamentally, this example requires viewing a proposition as a type and view-
ing a proof as a language-level expression. Hence, despite its simplicity, it seems to
be beyond the scope of other logics for access control.

6.2.3 Proof Completion and Fvaluation

When (A says Do(o)) — Do(o) represents the access policy for o as specified by
an authority trusted on o, the reference monitor may be willing to assume this
formula, but the caller C may not have a proof of (4 says Do(o)) — Do(o). In

such situations, a more permissive type for o may be appropriate. The type might
be:

(((A says Do(0)) — Do(0)) — Do(0)) — (int — int)
or simply:
(A says Do(0)) — (int — int)
According to this type, C' should provide a proof of
A says Do(o)
The reference monitor can then establish Do(o) for itself, by applying
(A says Do(0)) — Do(0)

Similarly, there are situations in which the evidence for B says Do(0) cannot be
reified into a proof that the caller C' can present and combine with other proofs. For
instance, when C' is actually B, the act of invoking o may include asserting Do(0).
The reference monitor may know what B says, but the evidence in question is not
a bitstring or an expression that can be transferred. Again, a more permissive type
for o may be appropriate. The type might be:

((B says Do(0)) — Do(0)) — (int — int)

According to this type, C should provide a proof of
(B says Do(0)) — Do(o)

The reference monitor can then try to establish Do(o) for itself, in this case by
proving B says Do(o). In particular, the reference monitor may simply assume
B says Do(o) if it has authenticated the caller as B. For other callers, the ref-
erence monitor may fail in its proof of B says Do(o), at run-time. A richer type
system might express that, if the caller speaks for B, then the reference monitor is
guaranteed to grant access.

Such variations lead to the idea that, sometimes, the caller C' should be allowed
to provide only an incomplete proof of Do(0). The incomplete proof may contain
commands that indicate where the reference monitor is expected to do theorem-
proving, consult its local policy, or solicit additional evidence from C or from other
sources. Those commands go beyond what we have studied formally in this paper;
they may for example include input, output, and recursion. They are not guaran-
teed to succeed. For instance, recursion may allow circular reasoning, and requests
for input may not be answered. Therefore, evidence should be evaluated, and the
evaluation process should turn incomplete proofs into complete proofs. The result-
ing system leverages the idea that proofs are programs that can be executed, and
thus further exploits the Curry-Howard isomorphism.

7 Metatheory

In this section we start to explore the metatheory of Polymorphic DCC.

7.1 Basic Results

The metatheory of Polymorphic DCC ought to include traditional consistency, type
soundness, and parametricity results, of the kind common in the study of System F.
In this paper, we start to consider those properties, relying on the metatheory of
System F. More broadly, we expect many existing theorems and techniques to apply
to the study of Polymorphic DCC. In this respect, it is useful that DCC and System
F are not ad hoc formal systems defined solely for the purposes of reasoning about
access control.

Without much effort, we can obtain some basic results by translating Polymor-
phic DCC into System F (specifically, into a version of System F with unit, product,
sum, and function types, as well as universal quantification), even with an encoding
less sophisticated than the one introduced by Tse and Zdancewic (see Section 5.3).
In particular, our encoding may simply delete all occurrences of says. Writing (-)F
for this encoding, we have that

(A says s)F = (s)F
The encoding is trivial for true, V, A, —, V, and type variables.

We extend the function (-)F to environments, applying it component by compo-
nent. Note that if s is well-formed in T' then (s)¥ is well-formed in (I')¥.

The encoding maps typed terms to typed terms:

Proposition 7.1 IfT' e : t in Polymorphic DCC, then there exists €' such that
(D)F Fe : ()Y in System F.

Proof. We construct €’ by translating e, by induction on typing derivations in
Polymorphic DCC. The only non-trivial cases correspond to the rules [UnitM] and
[BindM]. For those, we set:

(na e)f = (&)
(bind z = e in &) = ((\z : t. (¢")F)(e)Y)
for an appropriate type t obtained from the typing derivation for bind x = e in ¢’.
Specifically, if the typing of bind = e in €’ is done in an environment I and relies
on the hypothesis I" - e : A says s, then t is (s)F O

It follows that Polymorphic DCC is consistent:

Proposition 7.2 In Polymorphic DCC, it is not the case that - VX. X, nor that
F A says VX. X.

Proof. If it were the case, we would have a list of type variables Xy, ..., X, and
a term e such that X;,..., X, Fe:VX. X or Xj,...,X,, Fe: A says VX. X in
Polymorphic DCC. By Proposition 7.1, we would then have Xq,..., X, F¢e : VX. X
for some term €’ in System F. Since VX. X is not inhabited in System F, we obtain
a contradiction. O

It may also be seen that the encoding maps reduction steps to reduction steps.
It follows that infinite reduction sequences are not possible in Polymorphic DCC,
since they are not in System F.

7.2 Nomninterference

The metatheory of Polymorphic DCC should also include noninterference results in
the style of previous ones for DCC [3,27] or those of Garg and Pfenning [11]. A
typical noninterference result would imply that if we have a proof e of A says s
and it depends on a proof x of B says ¢, where A and B are unrelated levels, then,
from the point of view of e, it does not matter which actual proof we substitute
for . Even more strongly, we should be able to obtain that e can be constructed
without z (at least under certain hypotheses on e). We devote the rest of this
section to establishing a result in this spirit.
We state a basic proposition as a preliminary:

Proposition 7.3 In Polymorphic DCC, if t is protected at level A and B C A,
then t is protected at level B.

Proof. The argument is by induction on the proof that ¢ is protected at level A.
The base case for a formula of the form C says s with A C C follows from the
transitivity of C, which implies that B £ C. The base case for true is trivial. The
inductive steps are straightforward applications of the induction hypothesis. O

For a type s and B € L, we define (s)? as follows:

(true)® = true
P=(s1)P v (s2)"

(s1Vs2)” =(s1 B
(s1 As2)” =(s1)" A (s2)"
(s1— s9)" = (51)" — (s2)"
true ifBC A

(A says s)% =
A says (s)? otherwise

(X) = X
(VX.s)B=VX. (s)8

Note that type variables are left unchanged by the function (-)?. While a type
variable may eventually be instantiated to a type of the form A says s, and we
cannot predict whether B C A, we need not be concerned with those instantiations
for our purposes. The function (-)® commutes with substitutions for type variables:
(s[t/X])7 = (s)P[()" / X].

Intuitively, (s)? is a variant of s that corresponds to the situation in which
B is completely untrustworthy, so B says t is always true, independently of t.
Theorem 7.6, below, aims to show that B’s untrustworthiness has a limited effect
on other principals.

If s is of the form B says t, then (s)? is trivially provable, since it is true.
More generally, the following proposition shows that formulas of the form (s)? with
s protected at level B are always provable (that is, that these formulas are always
inhabited when viewed as types).

Proposition 7.4 In Polymorphic DCC, if T is a well-formed typing environment,

t is a well-formed type in ', and t is protected at level B, then there exists e such
that T Fe: (1)P.

Proof. The argument is by induction on the proof that ¢ is protected at level B.
e If t is of the form A says s where B C A, then () = true. We take e to be ().

e If t is true, then again (t)? = true and we take e to be ().

e If t is of the form A says s where s is protected at level B, in this case with
B IZ A, then there exists e; such that I' - ey : (s)?, by the induction hypothesis,
so ' (na e1): Asays (s)B, that is, T'F (na e1) : (t)5.

(We can assume that B [Z A in this case, although this condition does not
appear in the definition of “protected”, because the first case applies when B C

A)

o If ¢ is of the form (s A s2) where s; and sy are protected at level B, then there
exist e; and ey such that I' F ey : (s1)® and ' - es : (s2)”, by the induction
hypothesis, so I' - (eq, e2) : (t)5.

e If t is of the form sy — s; where s; is protected at level B, then there exists
e1 such that T,z : (s2)? F ey : (s1)? for a fresh variable x, by the induction

hypothesis, and therefore I' - (Az : (s2)%. e1) : (¢)5.

e If ¢ is of the form V.X. s where s is protected at level B, then there exists e; such
that I', X e; : (s)? (up to renaming of X), by the induction hypothesis, and
therefore I' - (AX. e1) : (¢)%.

O

We extend the function (-)B to environments, applying it component by com-
ponent. Note that if ¢ is well-formed in T' then (¢)? is well-formed in (I')Z. In
addition, we have:

Proposition 7.5 In Polymorphic DCC, if t is protected at level A then so is (t)5.

Proof. The argument is by induction on the proof that t is protected at level A.

e Iftis of the form C says s where A C C, then (¢)? is either true or C says (s)?,
depending on whether B C C. In the former case, it is immediate that (¢)? is
protected at level A; in the latter case, it follows from A C C.

o If t is of the form C says s where s is protected at level A, then (¢)? is either

true or C says (s)?, again depending on whether B C C. In the former case, it
is immediate that (¢)? is protected at level A; in the latter case, it follows from
the induction hypothesis.

e The remaining cases are straightforward applications of the definitions and of the
induction hypothesis.
O

We obtain the following theorem:

Theorem 7.6 In Polymorphic DCC, for every typing environment I', type s, and
Be L, ifT'Fe:s then there exists ¢ such that (T)? - ¢’ : (s)B.

Proof. The proof is by induction on the derivation of I' F e : s, with an argument
by cases on the last rule applied in this derivation.

o [Var]: € is the same variable as e.

[Unit]: €' is (), like e.

o [Lam]: If eis Az : s1. €1 then €’ is Az : (s1
hypothesis.

)B. €} where €] is given by the induction

o [App]: If e is ejeq then €' is €]e), where €] and €}, are given by the induction
hypothesis.

e [Pair], [Proj 1], [Proj 2], [Inj 1], [Inj 2], [Case]: All these cases are also straight-
forward applications of the induction hypothesis.

o [UnitM]: If e is (n4 e1) then ¢’ is () if B C A, and otherwise it is (74 €}) where
e} is given by the induction hypothesis.

e [BindM]: If s is protected at level B, then Proposition 7.4 yields the desired

result. On the other hand, if s is not protected at level B, then it is not protected
at any level A such that B C A, by Proposition 7.3. So, if rule [BindM] is

applied with hypotheses of the form I' - e; : A says s; and ',z : s1 F eg : s,
and the condition that s is protected at level A, then B Z A. It follows that
(A says s1)? = A says (s1)®. We can therefore let ¢/ be bind x = ¢} in €},

where €] and €}, are given by the induction hypothesis. The typing of ¢’ can be
done via rule [BindM] because of the form of (A says s1)? and because (s)” is
protected at level A by Proposition 7.5.

o [TLam]: If e is AX.ey then ¢ is AX.e]| where €] is given by the induction
hypothesis.

o [TApp]: If eis eqt; then € is €/ (t1)” where €] is given by the induction hypothesis.
The typing of €’ can be done via rule [TApp] because of the commutation of (-)?
with substitution: the type of e; must be of the form VX.¢, with s = t[t;/X]| and
(tftr/XDP = ()7[(t1) P/ X].

(The statement of the theorem does not concern itself with characterizing the be-

havior of €’ as a program. An analysis of the proof could give such additional

information.) O

As a special case, we derive the following corollary from the theorem:

Corollary 7.7 In Polymorphic DCC, for every type s and B € L, if - s then
- (s)B.
For example, Corollary 7.7 says that if B [Z A, then
F (B sayst) — (A says VX. X)
implies
F true — (A4 says VX. X)
and therefore

F A says VX. X

Since this judgment is not derivable (by Proposition 7.2), we arrive at a contradic-
tion, inferring that

F (B sayst) — (A says VX. X)
is not derivable either. Thus, no matter what B says, A does not say VX. X.

More generally, suppose that (s)” = s. This condition holds when s mentions
no principal C such that B C C. Corollary 7.7 says that if B [Z A then

- (B says t) — (A says s)
implies
- true — (A says s)
and therefore
F A says s

In this case, the conclusion - A says s may be derivable, in particular when s is a
tautology such as X — X. Thus, if A says s when B says t, then A says s whether
or not B says t.

On the other hand, suppose that (S)B = s need not hold. Corollary 7.7 yields

that if B IZ A then
- (B says t) — (A says s)
implies
+ A says (s)?
We cannot expect to obtain A says s verbatim. Consider, for instance, the case in
which s is B says t. We have that
F (B says t) — (A says (B says t))

but in general we cannot derive A says (B says t) without any hypotheses. Thus,
our results limit the effect that B’s statements can have on A’s statements, but we
cannot expect to show that they have no effect at all: what B says does influence
what A says about B.

Corollary 7.7 applies even if B speaks for A because of a hand-off, but in that
case it does not yield interesting results. Suppose, again, that B [Z A; then

- (A says (B= A)) — ((B says t) — (A says X))
implies
F (A says VY. (true — A says Y)) — (true — (A says X))
and therefore
- (A says VY. Asays Y) — (A says X)

However, this conclusion is fairly obvious.

8 A Fragment of Polymorphic DCC

We close the technical body of this paper by presenting an attractive fragment
of Polymorphic DCC that we call Polymorphic CDD (“Cut-Down DCC”). This
fragment shares many of the properties of Polymorphic DCC, but it is simpler. In
particular, it does not require a notion of protected type, nor a lattice structure
on principals. In these respects, it is a little closer to the computational lambda
calculus [22] and to Garg and Pfenning’s logic [11]. However, it still supports a
“speaks for” relation with a hand-off property.

8.1 The Calculus

Types are given by the grammar:
su=true|(sVs)|(sAs)|(s—s)|Asayss| X |VX.s

much as in Section 5.1.1, but here A ranges over elements of a set, rather than a

lattice.

The terms and the typing rules are exactly as in Table 1, except that rule
[BindM] is simplified (and thereby limited) so that it does not have a side condition

about “protected types” and instead it yields conclusions that always have the form
A says t:

I'te:Asayss Tz:ste:Asayst

l'+bindx=eine : Asayst
In logical form, this rule is:

' Asayss I',sk Asayst

'+ Asayst

8.2 Some Theorems

By design, the modified rule [BindM| does not enable us to type-check the term
Az : A says B says s.bind y = z inbind z = y in (np (n4 2z)) and to derive the
commutativity property (A says B says s) — (B says A says s) (cf. Section 4.2).
Other than this, Polymorphic CDD yields most of the same important theorems
as Polymorphic DCC. In particular, the operators V, A, and — obey the standard
intuitionistic propositional rules, and in addition we have:

Fs— Asayss

F (A says (s — §')) — ((A says s) — (A says §'))

F (A says A says s) — (A says s)

F (A says VX.s) — (VX. A says s)

F(A= B) — ((Asays s) — (B says s))
with the same proofs as above. We also obtain the “hand-off axiom”:

- (Asays (B= A)) - (B=A4)
with the proof term
At : Asays (B= A).AX. \y: Bsays X.bind z =z in (2X) y

which is more complex than the corresponding term in Section 6.

Obviously, we cannot obtain any of the results related to the lattice £. However,
we can obtain some analogues by representing every relation A T B in £ as an
assumption A = B. It is not too hard to turn this idea into a precise encoding
when L is finite. More work on the proof theory of Polymorphic DCC is required
for treating the general case in which £ may be infinite.

Like Polymorphic DCC, Polymorphic CDD is consistent: Proposition 7.2 applies
immediately. Other results from the metatheory of Polymorphic DCC carry over
as well. In particular, Theorem 7.6 has a straightforward analogue, for which we
let (B says s)® = true for every principal B and (A says s)® = A says (s)? for
every other principal A.

9 Conclusion

While the body of this paper suggests several attractive directions for further re-
search, the main questions on this enterprise may concern the usefulness of the
perspective on access control that DCC suggests. Should we use DCC (or a similar
type system) as a logic for access control?

In particular, we may have doubts on the logical rules that DCC induces. Specif-
ically, the “hand-off axiom” embodies a strong form of delegation of authority, which
may seem dangerous. On the other hand, there are safe disciplines for applying the
“hand-off axiom”, in which it is used for justifying only more controlled forms of
delegation. For example, principals may limit their authority by adopting roles
before delegating [16, Section 6.1].

In addition, we may wonder whether the constructive character of DCC will not
occasionally surprise and frustrate. On the other hand, regarding the logic of access
control as a type system for evidence, perhaps this constructive character should be
embraced.

Overall, DCC satisfies several long-standing wishes as a calculus for access con-
trol. That appears to be more than a coincidence.

Acknowledgments

This work was done at Microsoft Research. It benefited from conversations with
Cédric Fournet, Butler Lampson, Dave Langworthy, Greg Morrisett, and Frank
Pfenning, and from comments from anonymous reviewers.

References

[1] Martin Abadi. Logic in access control. In Proceedings of the Eighteenth Annual IEEE Symposium on
Logic in Computer Science, pages 228-233, 2003.

[2] Martin Abadi. Access control in a core calculus of dependency. In Proceedings of the 11th ACM
International Conference on Functional Programming (ICFP 2006), 2006. To appear.

[3] Martin Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus of dependency.
In Proceedings of the 26th ACM Symposium on Principles of Programming Languages, pages 147-160,
January 1999.

[4] Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus for access control
in distributed systems. ACM Transactions on Programming Languages and Systems, 15(4):706-734,
October 1993.

[5] Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In Proceedings of the 5th
ACM Conference on Computer and Communications Security, pages 5262, November 1999.

[6] Lujo Bauer, Scott Garriss, and Michael K. Reiter. Distributed proving in access-control systems. In
Proceedings of the 2005 IEEE Symposium on Security and Privacy, pages 81-95, May 2005.

[7] Luca Cardelli. Type systems. In Allen B. Tucker, editor, The Computer Science and Engineering
Handbook, chapter 103, pages 2208-2236. CRC Press, Boca Raton, FL, 1997.

[8] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, Reading, Mass., 1982.

[9] John DeTreville. Binder, a logic-based security language. In Proceedings of the 2002 IEEE Symposium
on Security and Privacy, pages 105—113, May 2002.

[10] Matt Fairtlough and Michael Mendler. Propositional lax logic. Information and Computation,
137(1):1-33, 1997.

[11] Deepak Garg and Frank Pfenning. Non-interference in constructive authorization logic. A revised
version of this paper appears in the Proceedings of the 19th IEEE Computer Security Foundations
Workshop (CSEW 19). Manuscript, February 2006.

[12] Morrie Gasser. Building a Secure Computer System. Van Nostrand Reinhold Company Inc., New York,
1988.

[13] Jean-Yves Girard. Interprétation Fonctionnelle et Elimination des Coupures de I’Arithmétique d’Ordre
Supérieur. These de doctorat d’état, Université Paris VII, June 1972.

[14] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph Fasel, Marfa M.
Guzmién, Kevin Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will
Partain, and John Peterson. Report on the programming language Haskell: a non-strict, purely
functional language. Version 1.2. ACM SIGPLAN Notices, 27(5):1-164, 1992.

[15] Trevor Jim. SD3: A trust management system with certified evaluation. In Proceedings of the 2001
IEEE Symposium on Security and Privacy, pages 106-115, May 2001.

[16] Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber. Authentication in distributed
systems: Theory and practice. ACM Transactions on Computer Systems, 10(4):265-310, November
1992.

[17] Butler W. Lampson. Computer security in the real world. IEEE Computer, 37(6):37-46, June 2004.

[18] David Langworthy. Private communication. February 2006.

[19] Ninghui Li, Benjamin N. Grosof, and Feigenbaum. Delegation logic: A logic-based approach to

distributed authorization. ACM Transactions on Information and System Security, 6(1):128-171,
February 2003.

[20] Ninghui Li and John C. Mitchell. Datalog with constraints: A foundation for trust-management
languages. In Proceedings of the Fifth International Symposium on Practical Aspects of Declarative
Languages (PADL 2003)(], volume 2562 of Lecture Notes in Computer Science, pages 58—73. Springer-
Verlag, January 2003.

[21] John C. Mitchell. Foundations for Programming Languages. The MIT Press, Cambridge, Mass., 1996.

[22] Eugenio Moggi. Notions of computation and monads. Information and Control, 93(1):55-92, 1991.

[23] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In Proceedings of the 26th
ACM Symposium on Principles of Programming Languages, pages 228241, January 1999.

[24] Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer Science,
1:125-159, 1975.

rancois Pottier and Sylvain Conchon. Information flow inference for free. In Proceedings of the Fift
25| F is Potti d Sylvain Conch Inf ion fl inf for fi In P di f the Fifth
ACM SIGPLAN International Conference on Functional Programming, pages 46-57, September 2000.

[26] Francois Pottier and Vincent Simonet. Information flow inference for ML. ACM Transactions on
Programming Languages and Systems, 25(1):117-158, January 2003.

[27] Stephen Tse and Steve Zdancewic. Translating dependency into parametricity. Journal of Functional
Programming. To appear.

(28] Philip Wadler. The marriage of effects and monads. In Proceedings of the 3rd ACM SIGPLAN
International Conference on Functional Programming, pages 6374, 1998.

[29] Dan S. Wallach, Andrew W. Appel, and Edward W. Felten. SAFKASI: A security mechanism for
language-based systems. ACM Transactions on Software Engineering and Methodology, 9(4):341-378,
2000.

[30] Edward Wobber, Martin Abadi, Michael Burrows, and Butler Lampson. Authentication in the Taos
operating system. ACM Transactions on Computer Systems, 12(1):3-32, February 1994.

[31] Steve Zdancewic. Private communication. August 2006.

	Introduction
	Related Work
	Simply Typed DCC
	The Calculus
	Logical Reading

	Access Control in Simply Typed DCC
	Basics
	Properties of says
	Using the Partial Order, and its Connection to ``Speaks for''
	Using Meets and Joins for Combining Principals and Groups
	Conjunctions and Disjunctions on Principals
	Additional Operations

	Polymorphic DCC
	The Calculus
	Logical Reading
	Translating Access Control into Parametricity

	Access Control in Polymorphic DCC
	``Speaks for''
	Examples

	Metatheory
	Basic Results
	Noninterference

	A Fragment of Polymorphic DCC
	The Calculus
	Some Theorems

	Conclusion
	References

