
Layout Randomization and Nondeterminism

MARTÍN ABADI

Microsoft Research, Silicon Valley
and UC Santa Cruz

JÉRÉMY PLANUL

Stanford University

GORDON PLOTKIN

LFCS, Informatics, University of Edinburgh
and Microsoft Research, Silicon Valley

Abstract

In security, layout randomization is a popular, effective attack mitigation technique. Recent work
has aimed to explain it rigorously, focusing on deterministic systems. In this paper, we study layout
randomization in the presence of nondeterministic choice. We develop a semantic approach based
on denotational models and simulation relations. This approach abstracts from language details,
and helps manage the delicate interaction between probabilities and nondeterminism.

Keywords: security, semantics, probabilities, nondeterminism, full abstraction.

1 Introduction

Randomization has important applications in security, ranging from proba-
bilistic cryptographic schemes [10] to the introduction of artificial diversity in
low-level software protection [8]. Developing rigorous models and analyses of
the systems that employ randomization can be challenging, not only because
of the intrinsic difficulty of reasoning about probabilities but also because
these systems typically exhibit many other interesting features. Some of these
features, such as assumed bounds on the capabilities and the computational
complexity of attackers, stem directly from security considerations. Others,

such as nondeterminism, need not be specifically related to security, but arise
because of the generality of the ambient computational models, which may
for example include nondeterministic scheduling for concurrent programs and
for network protocols.

The form of randomization that we explore in this paper is layout random-
ization in software systems (e.g., [6,18,7]). Layout randomization refers to a
body of widely used techniques that place data and code randomly in mem-
ory. In practice, these techniques effectively thwart many attacks that assume
knowledge of the location of data and code. Recent research by the authors
and others aims to develop rigorous models and proofs for layout randomiza-
tion [19,3,13,2]. The research to date has focused on deterministic, sequential
programs. Here, we consider layout randomization for programs that may
make nondeterministic choices.

We phrase our study in terms of a high-level language in which variables
are abstract (symbolic) locations, and a low-level language in which they are
mapped to random natural-number addresses in memory. Both languages in-
clude a standard construct for nondeterministic choice. We give models for
the languages. For each language, we also define a contextual implementation
relation. Intuitively, a context may represent an attacker, so contextual imple-
mentation relations may serve, in particular, for expressing standard security
properties. We characterize contextual implementation relations in terms of
semantic simulation relations (so-called logical relations). Throughout, the
low-level relations are probabilistic. Via the simulation relations, we obtain
a semantic correspondence between the high-level and low-level worlds. Ba-
sically, simulation relations in one world induce simulation relations in the
other, and therefore contextual implementation in one world implies contex-
tual implementation in the other.

Thus, our approach emphasizes semantic constructions. In comparison
with prior syntactic work, arguments via models arguably lead to more sat-
isfying security arguments, independent of superficial details of particular
languages (as layout randomization is largely language-agnostic in practice).
They also help reconcile probabilities and nondeterminism, which have a rich
but thorny interaction.

Some of the difficulties of this interaction have been noticed in the past.
For instance, in their development of a framework for the analysis of security
protocols [15, Section 2.7], Lincoln et al. observed:

our intention is to design a language of communicating processes so that an
adversary expressed by a set of processes is restricted to probabilistic poly-
nomial time. However, if we interpret parallel composition in the standard
nondeterministic fashion, then a pair of processes may nondeterministically

“guess” any secret information.

They concluded:

Therefore, although nondeterminism is a useful modeling assumption in
studying correctness of concurrent programs, it does not seem helpful for
analyzing cryptographic protocols.

Thus, they adopted a form of probabilistic scheduling, and excluded nonde-
terminism. In further work, Mitchell et al. [17] refined the framework, in
particular defining protocol executions by reference to any polynomial-time
probabilistic scheduler that operates uniformly over certain kinds of choices.
The uniformity prevents collusion between the scheduler and an attacker. Sim-
ilarly, Canetti et al. [4] resolved nondeterminism by task schedulers, which do
not depend on dynamic information generated during probabilistic executions;
they thus generated sets of trace distributions, one for each task schedule.

From a semantic perspective, a nondeterministic program denotes a func-
tion that produces a set of possible outcomes; equally, a probabilistic program
represents a function that produces a distribution over outcomes. Rigorous
versions of these statements can be cast in terms of powerdomains and prob-
abilistic powerdomains [9]. In principle, a nondeterministic and probabilistic
program may represent either a function producing a set of distributions over
outcomes or else one producing a distribution over sets of outcomes. However
it seems that only the former option, where nondeterministic choice is resolved
before probabilistic choice, leads to a satisfactory theory if, for example, one
wishes to retain all the usual laws for both forms of nondeterminism [16,21,11].

To illustrate these options, imagine a two-player game in which Player I
chooses a bit bI at random, Player II chooses a bit bII nondeterministically,
and Player I wins if and only if bI = bII. The system composed of the two
players may be seen as producing a set of distributions or a distribution on
sets of outcomes.

• With the former view, we can say that, in each possible distribution, Player
I wins with probability 1/2.

• On the other hand, with the latter view, we can say only that, with proba-
bility 1, Player I may win and may lose.

The former view is preferable in a variety of security applications, in which we
may wish to say that no matter what an attacker does, or how nondeterministic
choices are resolved, some expected property holds with high probability.

However, in our work, it does not suffice to resolve nondeterministic choice
before probabilistic choice, as we explain in detail below, fundamentally be-
cause the probabilistic choices that we treat need not be independent. Instead,

we construct a more sophisticated model that employs random variables, here
maps from memory layouts to outcomes. The memory layouts form the sam-
ple space of the random variables, and, as usual, one works relative to a given
distribution over the sample space.

Beyond the study of layout randomization, it seems plausible that an ap-
proach analogous to ours could be helpful elsewhere in security analysis. Our
models may also be of interest on general grounds, as a contribution to a
long line of research on programming-language semantics for languages with
nondeterministic and probabilistic choice. Specifically, the models support a
treatment of dependent probabilistic choice combined with nondeterminism,
which as far as we know has not been addressed in the literature. Finally,
the treatment of contextual implementation relations and simulation relations
belongs in a long line of research on refinement.

Contents

In Section 2 we review some preliminary material on cpos.

In Section 3, we consider a high-level language, with abstract locations,
standard imperative constructs, and nondeterminism, and describe its deno-
tational and operational semantics. We define a contextual implementation
relation with respect to contexts that represent attackers, which we call public
contexts; for this purpose, we distinguish public locations, which attackers can
access directly, from private locations. We also define a simulation relation,
and prove that it coincides with the contextual implementation relation. The
main appeal of the simulation relation, as usual, is that it does not require
reasoning about all possible contexts.

In Section 4, we similarly develop a lower-level language in which programs
may use natural-number memory addresses (rather than abstract locations).
Again, we define a denotational semantics, an operational semantics, a con-
textual implementation relation, and a simulation relation. These definitions
are considerably more delicate than those of the high-level language, in par-
ticular because they refer to layouts, which map abstract locations to concrete
natural-number addresses, and which may be chosen randomly (so we often
make probabilistic statements).

In Section 5, we relate the high-level and the low-level languages. We
define a simple compilation function that maps from the former to the lat-
ter. We then establish that if two high-level commands are in the contextual
implementation relation, then their low-level counterparts are also in the con-
textual implementation relation. The proof leverages simulation relations. In
semantics parlance, this result is a full-abstraction theorem; the use of public
contexts that represent attackers, however, is motivated by security consider-

ations, and enable us to interpret this theorem as providing a formal security
guarantee for the compilation function, modulo a suitable random choice of
memory layouts.

Finally, in Section 6 we conclude by discussing some related and further
work.

2 Preliminaries on cpos

We take a cpo to be a partial order P closed under increasing ω-sups, and
consider sets to be cpos with the discrete ordering. We write P⊥ for the lift
of P , viz. P extended by the addition of a least element, ⊥. Products P ×Q
and function spaces P → Q (which we may also write as QP) are defined as
usual, with the function space consisting of all continuous functions (those
monotonic functions preserving the ω-lubs).

We use the lower, or Hoare, powerdomain H(P) of the nonempty, down-
wards, and ω-sup-closed subsets of P , ordered by inclusion. The lower pow-
erdomain is the simplest of the three powerdomains, and models “may” or
“angelic” nondeterminism; the others (upper and convex) may also be worth
investigating.

For any nonempty subset X of P , we write X ↓ for the downwards closure
{y | ∃x ∈ X. y ≤ x} of X. We also write X∗ for the downwards and ω-sup
closure of X (which is typically the same as X ↓ in the instances that arise
below).

Both H(−) and H(−⊥) are monads (those for lower nondeterminism, and
lower nondeterminism and nontermination, respectively). The unit of the
former is x 7→ {x}↓ and any continuous map f : P → H(Q) has an extension
f † : H(P)→ H(Q) given by:

f †(X) = (
⋃
x∈X

f(x))∗

For the latter the unit is x 7→ {x}↓ and the extension f † : H(P⊥) → H(Q⊥)
of a continuous map f : P → H(Q⊥) is given by:

f †(X) = {⊥} ∪ (
⋃

x∈X\{⊥}

f(x))∗

3 The high-level language

In this section, we define our high-level language. In this language, locations
are symbolic names, and we use an abstract store to link those locations to

their contents, which are natural numbers.

For simplicity, the language lacks data structures and higher-order fea-
tures. Therefore, locations cannot contain arrays or functions (cf. [2]), except
perhaps through encodings. So the language does not provide a direct model
of overflows and code-injection attacks, for instance.

There are many other respects in which our languages and their seman-
tics are not maximally expressive, realistic, and complex. They are however
convenient for our study of nondeterminism and of the semantic approach to
layout randomization.

3.1 Syntax and informal semantics

The syntax of the high-level language includes categories for natural-number
expressions, boolean expressions, and commands:

e ::= k |!lloc | e+ e | e ∗ e

b ::= e ≤ e | ¬b | tt | ff | b ∨ b | b ∧ b

c ::= lloc := e | if b then c else c | skip | c; c | c+ c | while b do c

where k ranges over numerals, and l over a given finite set of store locations
Loc. Natural-number expressions are numerals, dereferencing of memory lo-
cations, sums, or products. Boolean expressions are inequalities on natural-
number expressions, negations, booleans, disjunctions, or conjunctions. Com-
mands are assignments at a location, conditionals, skip, sequences, nondeter-
ministic choices, or loops. Command contexts C[] are commands with holes;
we write C[c] for the command obtained by filling all the holes in C[] with c.
We further use trivial extensions of this language, in particular with additional
boolean and arithmetic expressions.

We assume that the set of store locations Loc is the union of two disjoint
sets of locations PubLoc (public locations) and PriLoc (private locations). Let
c be a command or a command context. We say that c is public if it does
not contain any occurrence of lloc := v or !lloc for l ∈ PriLoc. As in previous
work [3], we model attackers by such public commands and command contexts;
thus, attackers have direct access to public locations but not, by default, to
private locations.

The distinction between public and private locations is directly analo-
gous to that between external and internal state components in automata
and other specification formalisms (e.g., [1]). It also resembles distinc-
tions in information-flow systems, which often categorize variables into levels
(e.g., [20]), and typically aim to prevent flows of information from “high” to

[[lloc := e]](s) = η(s[l 7→ [[e]](s)]) [[skip]](s) = η(s)

[[if b then c else c′]](s) =

[[c]](s) [[b]](s) = tt

[[c′]](s) [[b]](s) = ff

[[c; c′]](s) = [[c′]]†([[c]](s))

[[c+ c′]](s) = [[c]](s) ∪ [[c′]](s)

[[while b do c]] = µ θ : S → H(S⊥). λs : S.

η(s) ([[b]](s) = ff)

θ†([[c]](s)) ([[b]](s) = tt)

Fig. 1. High-level denotational semantics

“low” levels. We do not impose any such information-flow constraint: we per-
mit arbitrary patterns of use of public and private locations. Nevertheless, we
sometimes use h for a private location and l for a public location, and also
associate the symbols H and L with private and public locations, respectively.

3.2 Denotational semantics

A store s is a function from a finite set Loc of store locations to natural
numbers. When Loc consists of h and l, for example, we write (h 7→ m, l 7→ n)
for the store that maps h to m and l to n. A public (private) store is a function
from PubLoc (PriLoc) to natural numbers. We write S for the set of stores,
SL for the set of public stores, and SH for the set of private stores. Note the
natural functions:

SL
L←− S

H−−→ SH

We write sL for L(s) and s =L s
′ when sL = s′L, and similarly for H.

The denotational semantics

[[e]] : Store→ N [[b]] : Store→ B

of expressions are defined as usual with, in particular, [[!lloc]](s) = s(l). The
denotational semantics

[[c]] : S → H(S⊥)

of commands is given in Figure 1, where the semantics of the while loop is the
standard least-fixed point one.

Example 3.1 Consider the two commands:

c0 = (h := tt; l := ¬!l) + (h := ff) c1 = (h := tt; l := tt) + (h := ff; l := ff)

According to the semantics, [[c0]] maps any store mapping l to tt to the set
{(h 7→ tt, l 7→ ff), (h 7→ ff, l 7→ tt)} ↓, and any store where l is ff to the set

〈lloc := e, s〉 → s[l 7→ [[e]]s]
[[b]]s = tt

〈if b then c else c′, s〉 → 〈c, s〉

[[b]]s = ff

〈if b then c else c′, s〉 → 〈c′, s〉
〈skip, s〉 → s

〈c, s〉 → 〈c′, s′〉
〈c; c′′, s〉 → 〈c′; c′′, s′〉

〈c, s〉 → s′

〈c; c′′, s〉 → 〈c′′, s′〉
〈c+ c′, s〉 → 〈c, s〉 〈c+ c′, s〉 → 〈c′, s〉

[[b]]s = ff

〈while b do c, s〉 → s

[[b]]s = tt

〈while b do c, s〉 → 〈c; while b do c, s〉

Fig. 2. High-level operational semantics

{(h 7→ tt, l 7→ tt), (h 7→ ff, l 7→ ff)} ↓, while [[c1]] maps any store to the set
{(h 7→ tt, l 7→ tt), (h 7→ ff, l 7→ ff)}↓. In sum, we may write:

[[c0]](h 7→ , l 7→ tt) = {(h 7→ tt, l 7→ ff), (h 7→ ff, l 7→ tt)}↓

[[c0]](h 7→ , l 7→ ff) = {(h 7→ tt, l 7→ tt), (h 7→ ff, l 7→ ff)}↓

[[c1]](h 7→ , l 7→) = {(h 7→ tt, l 7→ tt), (h 7→ ff, l 7→ ff)}↓

Note that the semantics of the two commands are different. Nevertheless,
below we show that these two commands are in a sense equivalent (with respect
to public contexts). 2

3.3 Operational semantics

The high-level language has a straightforward small-step operational seman-
tics. In this semantics, a high-level state is a pair 〈c, s〉 of a command and a
store or, in case of termination, just a store s. The transition relation → is a
binary relation on such states. Figure 2 gives the rules for →.

Proposition 3.2 (Operational/denotational consistency) Let c be a
command and s be a store. We have

[[c]](s) = {s′|〈c, s〉 →∗ s′} ∪ ⊥

3.4 Implementation relations and equivalences

3.4.1 Contextual pre-order

We introduce a contextual pre-order vL on commands. Intuitively, c vL c′

may be interpreted as saying that c “refines” (or “implements”) c′, in the
sense that the publicly observable outcomes that c can produce are a subset
of those that c′ permits, in every public context and from every initial store.
Thus, let f = [[C[c]]] and f ′ = [[C[c′]]] for an arbitrary public context C, and
let s0 be a store; then for every store s in f(s0) there is a store s′ in f ′(s0)
that coincides with s on public locations. Note that we both restrict attention
to public contexts and compare s and s′ only on public locations.

We define vL and some auxiliary relations as follows:

• For X ∈ H(S⊥), we set:

XL = {sL | s ∈ X\ ⊥} ∪ {⊥}

• For f, f ′ : S → H(S⊥), we write that f ≤L f ′ when, for every store s0, we
have f(s0)L ≤ f ′(s0)L.

• Let c and c′ be two commands. We write that c vL c′ when, for every public
command context C, we have [[C[c]]] ≤L [[C[c′]]].

Straightforwardly, this contextual pre-order relation yields a notion of contex-
tual equivalence with respect to public contexts.

3.4.2 Simulation

In addition to a contextual pre-order, we introduce a simulation relation �
whose main advantage, as usual, is that it does not require reasoning about
contexts.

As in much previous work, one might expect a simulation relation between
two commands c and c′ to be a relation on stores that respects the observable
parts of these stores, and such that if s0 is related to s1 and c can go from s0

to s′0 then there exists s′1 such that s′0 is related to s′1 and c′ can go from s1 to
s′1. In our setting, respecting the observable parts of stores means that related
stores give the same values to public locations (much like refinement mappings
preserve externally visible state components [1], and low-bisimulations require
equivalence on low-security variables [20]).

Although this idea could lead to a sound proof technique for the contextual
pre-order, it does not suffice for completeness. Indeed, forward simulations, of
the kind just described, are typically incomplete on their own for nondetermin-
istic systems. They can be complemented with techniques such as backward

simulation, or generalized (e.g., [1,14,5]).

Here we develop one such generalization. Specifically, we use relations on
sets of stores. We build them from relations over H(SH⊥) as a way of ensuring
the condition that public locations have the same values, mentioned above.
We also require other standard closure conditions. Our relations are similar
to the ND measures of Klarlund and Schneider [14]. Their work takes place in
an automata-theoretic setting; automata consist of states (which, intuitively,
are private) and of transitions between those states, labeled by events (which,
intuitively, are public). ND measures are mappings from states to sets of
finite sets of states, so can be seen as relations between states and finite sets
of states. The finiteness requirement, which we do not need, allows a fine-
grained treatment of infinite execution paths via König’s Lemma.

First, we extend relations R over H(SH⊥) to relations R+ over H(S⊥), as
follows. For any X ∈ H(S⊥) and s ∈ SL, we define Xs ∈ H(SH⊥) by:

Xs = {s′H | s′ ∈ X, s′L = s} ∪ {⊥}

and then we define R+ by:

XR+Y ≡def ∀s ∈ SL. (Xs 6= {⊥} ⇒ Ys 6= {⊥}) ∧XsRYs

If R is reflexive (respectively, is closed under increasing ω-sups; is right-closed
under ≤; is closed under binary unions) the same holds for R+. Also, if XR+Y
then XL ≤ YL.

For any f, f ′ : S⊥ → H(S⊥) and relation R over H(SH⊥) we write that
f �R f ′ when:

∀X, Y ∈ H(S⊥). XR+Y ⇒ f †(X)R+f ′†(Y)

Finally, we write that f � f ′ if f �R f ′ for some reflexive R closed under
increasing ω-sups, right-closed under ≤, and closed under binary unions.

3.4.3 Contextual pre-order vs. simulation

The contextual pre-order coincides with the simulation relation:

Theorem 3.3 Let c and c′ be two commands of the high-level language. Then
c vL c′ holds if and only if [[c]] � [[c′]] does.

Example 3.4 We can verify that c0 and c1, introduced in Example 3.1, are
equivalent (with R the full relation). For instance, let S0 = {(h 7→ ff, l 7→ tt)}↓

and S1 = {(h 7→ tt, l 7→ tt)}↓. We have S0R
+S1, and:

[[c0]]†(S0) = {(h 7→ tt, l 7→ ff), (h 7→ ff, l 7→ tt)}↓

[[c1]]†(S1) = {(h 7→ tt, l 7→ tt), (h 7→ ff, l 7→ ff)}↓

We can then check that:

[[c0]]†(S0)R+[[c1]]†(S1)

2

Example 3.5 In this example, we study the two commands

c2 = ifh = 0 then l := 1 else (h := 0) + (h :=!h− 1)

c3 = ifh = 0 then l := 1 else (h := 0) + skip

which seem to share the same behavior on public variables, but that are in-
herently different because of their behavior on private variables. According to
the semantics, we have:

[[c2]](h 7→ 0, l 7→) = {(h 7→ 0, l 7→ 1)}↓

[[c2]](h 7→ j + 1, l 7→ k) = {(h 7→ j, l 7→ k), (h 7→ 0, l 7→ k)}↓

[[c3]](h 7→ 0, l 7→) = {(h 7→ 0, l 7→ 1)}↓

[[c3]](h 7→ j + 1, l 7→ k) = {(h 7→ j + 1, l 7→ k), (h 7→ 0, l 7→ k)}↓

We can verify that c2 �R c3, with R defined as the smallest relation that
satisfies our conditions (reflexivity, etc.) and such that

{(h 7→ k)}R{(h 7→ k′)} for all k ≤ k′

For instance, suppose S0 = {(h 7→ 5, l 7→ 0)} ↓ and S1 = {(h 7→ 7, l 7→ 0)} ↓.
We have S0R

+S1, and:

[[c2]]†(S0) = {(h 7→ 4, l 7→ 0), (h 7→ 0, l 7→ 0)}↓

[[c3]]†(S1) = {(h 7→ 7, l 7→ 0), (h 7→ 0, l 7→ 0)}↓

We can then check that:

[[c2]]†(S0)R+[[c3]]†(S1)

On the other hand, there is no suitable relation R such that c3 �R c2. If
there were such a relation R, it would be reflexive, so {(h 7→ 1)} R {(h 7→ 1)}.
Suppose that S0 = {(h 7→ 1, l 7→ 0)}↓ and that S1 = {(h 7→ 1, l 7→ 0)}↓. We
have S0R

+S1, and:

[[c3]]†(S0) = {(h 7→ 1, l 7→ 0), (h 7→ 0, l 7→ 0)}↓

[[c2]]†(S1) = {(h 7→ 0, l 7→ 0)}↓

We need

{(h 7→ 1, l 7→ 0), (h 7→ 0, l 7→ 0)}↓ R+{(h 7→ 0, l 7→ 0)}↓

hence {(h 7→ 1)}R{(h 7→ 0)}. Now take S2 = {(h 7→ 1, l 7→ 0)} ↓ and
S3 = {(h 7→ 0, l 7→ 0)}↓. We have S2R

+S3, and:

[[c3]]†(S2) = {(h 7→ 1, l 7→ 0), (h 7→ 0, l 7→ 0)}↓

[[c2]]†(S3) = {(h 7→ 0, l 7→ 1)}↓

Since the values of l do not match, we cannot have [[c3]]†(S2)R+[[c2]]†(S3), hence
c3 6�R c2.

As predicted by Theorem 3.3, we also have c3 6vL c2. Indeed, for C = ;
and s0 = (h 7→ 1, l 7→ 0), we have [[C[c3]]](s0) 6≤L [[C[c2]]](s0). 2

4 The low-level language

In this section, we define our low-level language. In this language, we use
concrete natural-number addresses for memory. We still use abstract location
names, but those are interpreted as natural numbers (according to a memory
layout), and can appear in arithmetic expressions.

4.1 Syntax and informal semantics

The syntax of the low-level language includes categories for natural-number
expressions, boolean expressions, and commands:

e ::= k | lnat |!e | e+ e | e ∗ e

b ::= e ≤ e | ¬b | tt | ff | b ∨ b | b ∧ b

c ::= e := e | if b then c else c | skip | c; c | c+ c | while b do c

where k ranges over numerals, and l over the finite set of store locations.
Boolean expressions are as in the high-level language. Natural-number ex-
pressions and commands are also as in the high-level language, except for the
inclusion of memory locations among the natural-number expressions, and for
the dereferencing construct !e and assignment construct e := e′ where e is an
arbitrary natural-number expression (not necessarily a location).

Importantly, memory addresses are natural numbers, and a memory is a
partial function from those addresses to contents. We assume that accessing
an address at which the memory is undefined constitutes an error that stops
execution immediately. In this respect, our language relies on the “fatal-
error model” of Abadi and Plotkin [3]. With more work, it may be viable to
treat also the alternative “recoverable-error model”, which permits attacks to
continue after such accesses, and therefore requires a bound on the number of
such accesses.

4.2 Denotational semantics

4.2.1 Low-level memories, layouts, and errors

We assume given a natural number r > |Loc| that specifies the size of the
memory. A memory m is a partial function from {1, . . . , r} to natural numbers;
we write Mem for the set of memories. A memory layout w is an injection
from Loc to {1, . . . , r}. We consider only memory layouts that extend a given
public memory layout wp (an injection from PubLoc to {1, . . . , r}), fixed in
the remaining of the paper. We let W be the set of those layouts.

The security of layout randomization depends on the randomization it-
self. We let d be a probability distribution on memory layouts (that extend
wp). When ϕ is a predicate on memory layouts, we write Pd(ϕ(w)) for the
probability that ϕ(w) holds with w sampled according to d.

Given a distribution d on layouts, we write δd for the minimum probability
for a memory address to have no antecedent location (much as in [3]):

δd = min
i∈{1,...,r}\ran(wp)

Pd(i 6∈ ran(w))

We assume that δd > 0. This probability bounds 1 minus the maximum
probability for an adversary to guess a location. For common distributions
(e.g., the uniform distribution), δd approaches 1 as r grows, indicating that
adversaries fail most of the time. We assume d fixed below, and may omit it,
writing δ for δd.

The denotational semantics of the low-level language uses the “error +
nontermination” monad Pξ⊥ =def (P + {ξ})⊥, which first adds an “error”

element ξ to P and then a least element. As the monad is strong, functions
f :P1× . . .×Pn → Qξ⊥ extend to functions f on (P1)ξ⊥× . . .× (Pn)ξ⊥, where
f(x1, . . . , xn) is ξ or ⊥ if some xj, but no previous xi, is; we write f for f .

For any memory layout w and store s, we let w ·s be the memory defined
on ran(w) by:

w·s(i) = s(l) for w(l) = i

The notation w ·s extends to s ∈ Sξ⊥, as above, so that w ·ξ = ξ and w· ⊥=⊥.
A store projection is a function ζ : MemW

ξ⊥ of the form w 7→ w · s, for some
s ∈ Sξ⊥.

4.2.2 What should the denotational semantics be?

We discuss a simple example in order to explain our choice of type of the
low-level denotational semantics. A straightforward semantics might have the
type:

W ×Mem→ H(Memξ⊥)

so that the meaning of a command would be a function from layouts and
memories to sets of memories (modulo the use of the “error + nontermination”
monad). Using our example we argue that this is unsatisfactory, and arrive
at a more satisfactory alternative.

Suppose that there is a unique private location l, and that memory has
four addresses, {1, 2, 3, 4}. We write si for the store (l 7→ i). The 4 possible
layouts are wi = (l 7→ i), for i = 1, . . . , 4. Assume that d is uniform. Consider
the following command:

c4 = (1:=1) + (2:=1) + (3:=1) + (4:=1)

which nondeterministically guesses an address and attempts to write 1 into it.
Intuitively, this command should fail to overwrite l most of the time. However,
in a straightforward semantics of the above type we would have:

[[c4]](wj, wj ·s0) = {ξ, wj ·s1} ↓

and we cannot state any quantitative property of the command, only that it
sometimes fails and that it sometimes terminates.

One can rewrite the type of this semantics as:

Mem→ H(Memξ⊥)W

and view that as a type of functions that yield an H(Memξ⊥)-valued random
variable with sample space W (the set of memory layouts) and distribution d.

Thus, in this semantics, the nondeterministic choice is made after the proba-
bilistic one —the wrong way around, as indicated in the Introduction.

It is therefore natural to reverse matters and look for a semantics of type:

Mem→ H(MemW
ξ⊥)

now yielding a set of Memξ⊥-valued random variables—so, making the nonde-
terministic choice first. Desirable as this may be, there seems to be no good
notion of composition of such functions.

Fortunately, this last problem can be overcome by changing the argument
type to also be that of Memξ⊥-valued random variables:

MemW
ξ⊥ → H(MemW

ξ⊥)

It turns out that with this semantics we have:

[[c4]](ζi) = {ζ1
ξ , ζ

2
ξ , ζ

3
ξ , ζ

4
ξ } ↓

where ζi(w) = w ·si and ζ iξ(w) = wi ·s1 if w = wi and = ξ otherwise. We can
then say that, for every nondeterministic choice, the probability of an error
(or nontermination, as we are using the lower powerdomain) is 0.75.

In a further variant in the definition of the semantics, one might replace
Memξ⊥-valued random variables by the corresponding probability distribu-
tions on Memξ⊥, via the natural map Indd : MemW

ξ⊥ −→ V(Memξ⊥) induced
by the distribution d on W. Such a semantics could have the form:

Mem→ HV(Memξ⊥)

mapping memories to probability distributions on memories, where HV is a
powerdomain for mixed nondeterministic and probabilistic choice as discussed
above. However, such an approach would imply (incorrectly) that a new layout
is chosen independently for each memory operation, rather than once and for
all. In our small example with the single private location l and four addresses,
it would not capture that (1 := 1); (2 := 1) will always fail. It would treat the
two assignments in (1 := 1); (2 := 1) as two separate guesses that may both
succeed. Similarly, it would treat the two assignments in (1 := 1); (1 := 2) as
two separate guesses where the second guess may fail to overwrite l even if the
first one succeeds. With a layout chosen once and for all, on the other hand,
the behavior of the second assignment is completely determined after the first
assignment.

[[c+ c′]](ζ) = [[c]](ζ) ∪ [[c′]](ζ) [[c; c′]] = [[c′]]†◦[[c]] [[skip]] = η

[[e := e′]](ζ) = η(λw :W.Ass(ζ(w), [[e]]wζ(w), [[e
′]]wζ(w)))

[[if b then c else c′]] = Cond([[b]], [[c]], [[c′]])

[[while b do c]] = µθ :MemW
ξ⊥ → H(MemW

ξ⊥).Cond([[b]], θ†◦[[c]], η)

Fig. 3. Low-level denotational semantics

4.2.3 Denotational semantics

The denotational semantics

[[e]] : Mem×W → Nξ⊥ [[b]] : Mem×W → Bξ⊥

of expressions are defined in a standard way, with, in particular, [[lnat]]
w
m = w(l),

and also [[!e]]wm = m([[e]]wm), if [[e]]wm ∈ dom(m), and = ξ, otherwise, using an
obvious notation for functional application. Note that these semantics never
have value ⊥.

As discussed above, the denotational semantics of commands has type:

[[c]] :MemW
ξ⊥ → H(MemW

ξ⊥)

The definition is given in Figure 3; it makes use of two auxiliary definitions.
We first define:

Ass :Memξ⊥ ×Nξ⊥ ×Nξ⊥ → Nξ⊥

by setting Ass(m,x, y) = m[x 7→ y] if x ∈ dom(m) and = ξ, otherwise, for
m ∈ Mem, x, y ∈ N, and then using the function extension associated to the
“error + nontermination” monad. Second, we define

Cond(p, θ, θ′) :MemW
ξ⊥ → H(MemW

ξ⊥)

for any p :Mem×W → Bξ⊥ and θ, θ′ :MemW
ξ⊥ → H(MemW

ξ⊥), by:

Cond(p, θ, θ′)(ζ) = {ζ ′ | ζ ′|Wζ,tt
∈ θ(ζ)|Wζ,tt

, ζ ′|Wζ,ff
∈ θ′(ζ)|Wζ,ff

,

ζ ′(Wζ,ξ) ⊆ {ξ}, and ζ ′(Wζ,⊥) ⊆ {⊥}}

where Wζ,t =def {w | p(ζ(w), w) = t}, for t ∈ Bξ⊥, and we apply restriction
elementwise to sets of functions.

Example 4.1 In this example, we demonstrate our low-level denotational
semantics. Consider the command:

c5 = l′nat := lnat; (!l′nat) := 1; l′nat := 0

This command stores the address of location l at location l′, then reads the
contents of location l′ (the address of l) and writes 1 at this address, and
finally resets the memory at location l′ to 0. Because of this manipulation of
memory locations, this command is not the direct translation of a high-level
command.

Letting:

si,j = (l 7→ i, l′ 7→ j) ζi,j = w 7→ w·si,j ζ ′i = w 7→ w·(l 7→ i, l′ 7→ w(l))

we have:

[[l′nat := lnat]](ζi,j) = {ζ ′i}↓

Note that ζi,j is a store projection, but ζ ′i is not. We also have:

[[(!l′nat) := 1]](ζ ′i) = {ζ ′1}↓ [[l′nat := 0]](ζ ′1) = {ζ1,0}↓

In sum, we have:

[[c5]](ζi,j) = {ζ1,0}↓

2

Looking at the type of the semantics

[[c]] :MemW
ξ⊥ → H(MemW

ξ⊥)

one may be concerned that there is no apparent relation between the layouts
used in the input to [[c]] and those in its output. However, we note that the
semantics could be made parametric. For every W ′ ⊆ W , replace W by W ′

in the definition of [[c]] to obtain:

[[c]]W ′ :MemW ′

ξ⊥ → H(MemW ′

ξ⊥)

There is then a naturality property, that the following diagram commutes

for all W ′′ ⊆ W ′ ⊆ W :

MemW ′

ξ⊥
[[c]]W ′

- H(MemW ′

ξ⊥)

MemW ′′

ξ⊥

Memι
ξ⊥

?

[[c]]W ′′

- H(MemW ′′

ξ⊥)

H(Memι
ξ⊥)

?

where ι :W ′′ ⊆ W ′ is the inclusion map. Taking W ′ = W and W ′′ a singleton
yields the expected relation between input and output: the value of a random
variable in the output at a layout depends only on the value of the input
random variable at that layout. The naturality property suggests re-working
the low level denotational semantics in the category of presheaves over sets of
layouts, and this may prove illuminating (see [12] for relevant background).

4.3 Operational semantics

As a counterpart to the denotational semantics, we give a deterministic op-
erational semantics using oracles to make choices. The oracles are elements
of the set Ω of infinite lists of tokens L (for “left”) and R (for “right”). A
low-level state σ is:

• a triple 〈c,m, π〉 of a command c, a memory m, and an oracle π; or

• a pair 〈m,π〉 of a memory m and an oracle π; or

• the error element ξ.

Transitions are given relative to a layout, so we write:

w |= σ → σ′

The rules are given in Figure 4. This semantics is deterministic for each choice
of layout. We write w |= σ ⇒ σ′ for the transitive closure of the transition
relation (for a given layout).

Example 4.2 Consider the command c4 introduced in Section 4.2.2, with
added parentheses for disambiguation:

c4 = (1:=1) + ((2 :=1) + ((3 :=1) + ((4 :=1))))

[[e]]wm ∈ dom(m) and [[e′]]wm 6= ξ

w |= 〈e := e′,m, π〉 → 〈m[[[e]]wm 7→ [[e′]]wm], π〉
[[e]]wm 6∈ dom(m) or [[e′]]wm = ξ

w |= 〈e := e′,m, π〉 → ξ

[[b]]wm = tt

w |= 〈if b then c else c′,m, π〉 → 〈c,m, π〉

[[b]]wm = ff

w |= 〈if b then c else c′,m, π〉 → 〈c′,m, π〉

[[b]]wm = ξ

w |= 〈if b then c else c′,m, π〉 → ξ
w |= 〈skip,m, π〉 → 〈m,π〉

w |= 〈c,m, π〉 → 〈c′,m′, π′〉
w |= 〈c; c′′,m, π〉 → 〈c′; c′′,m′, π′〉

w |= 〈c,m, π〉 → 〈m′, π′〉
w |= 〈c; c′′,m, π〉 → 〈c′′,m′, π′〉

w |= 〈c,m, π〉 → ξ

w |= 〈c; c′′m,π〉 → ξ
w |= 〈c+ c′,m, Lπ〉 → 〈c,m, π〉

w |= 〈c+ c′,m,Rπ〉 → 〈c′,m, π〉
[[b]]wm = ff

w |= 〈while b do c,m, π〉 → 〈m,π〉

[[b]]wm = tt

w |= 〈while b do c,m, π〉 → 〈c; while b do c,m, π〉

[[b]]wm = ξ

w |= 〈while b do c,m, π〉 → ξ

Fig. 4. Low-level operational semantics

We have:

w1 |= 〈c4, w1 ·sk, Lπ〉 → 〈w1 ·s1, π〉 wj |= 〈c4, wj ·sk, Lπ〉 → ξ (j 6= 1)

w2 |= 〈c4, w2 ·sk, RLπ〉 ⇒ 〈w2 ·s1, π〉 wj |= 〈c4, wj ·sk, RLπ〉 ⇒ ξ (j 6= 2)

w3 |= 〈c4, w3 ·sk, RRLπ〉 ⇒ 〈w3 ·s1, π〉 wj |= 〈c4, wj ·sk, RRLπ〉 ⇒ ξ (j 6= 3)

w4 |= 〈c4, w4 ·sk, RRRπ〉 ⇒ 〈w4 ·s1, π〉 wj |= 〈c4, wj ·sk, RRRπ〉 ⇒ ξ (j 6= 4)

2

Using the operational semantics, we can define an evaluation function:

Eval : Com×W ×Mem× Ω→ Memξ⊥

by:

Eval(c, w,m, π) =


m′ (w |= 〈c,m, π〉 ⇒ 〈m′, π′〉)

ξ (w |= 〈c,m, π〉 ⇒ ξ)

⊥ (otherwise)

We then define

Evalran : Com×MemW
ξ⊥ → Ω→ MemW

ξ⊥

by:

Evalran(c, ζ)(π)(w) =

Eval(w, c, ζ(w), π) (ζ(w) ∈ Mem)

ζ(w) (otherwise)

Making use of the image functional ImX :XΩ → P(X), where ImX(f) = f(Ω),
we can state the consistency of the operational and denotational semantics:

Proposition 4.3 (Operational/denotational consistency) For c a com-
mand and ζ a function in MemW

ξ⊥, we have:

[[c]](ζ) = ImMemW
ξ⊥

(Evalran(c, ζ)) ↓

The evaluation function yields operational correlates of the other possible
denotational semantics discussed in Section 4.2.2, similarly, using image or
induced distribution functionals. For example, for the first of those semantics,
by currying Eval and composing, one obtains:

Com×W ×Mem
curry(Eval)−−−−−−→ MemΩ

ξ⊥
ImMemξ⊥−−−−−→ P(Memξ⊥)

Using such operational correlates, one can verify operational versions of the
assertions made in Section 4.2.2 about the inadequacies of those semantics.

4.4 Implementation relations and equivalences

Much as in the high-level language, we define a contextual implementation
relation and a simulation relation for the low-level language. The low-level
definitions refer to layouts, and in some cases include conditions on induced
probabilities.

4.4.1 Contextual pre-order

Again, the contextual pre-order c vL c′ may be interpreted as saying that
c “refines” (or “implements”) c′, in the sense that the publicly observable
outcomes that c can produce are a subset of those that c′ permits, in every
public context. In comparison with definition for the high-level language,
however, c and c′ are not applied to an arbitrary initial store but rather to a
function from layouts to memories (extended with “error + nontermination”),
and they produce sets of such functions. We restrict attention to argument
functions induced by stores, in the sense that they are store projections of the
form w 7→ w ·s. Thus, let f = [[C[c]]] and f ′ = [[C[c′]]] for an arbitrary public
context C, and let s be a store; then (roughly) for every ζ in f(w 7→ w ·s)
there exists ζ ′ in f ′(w 7→ w ·s) such that, for any w, ζ(w) and ζ ′(w) coincide
on public locations.

The treatment of error and nontermination introduces a further complica-
tion. Specifically, we allow that ζ produces an error or diverges with sufficient
probability (≥ δ), and that ζ ′ produces an error with sufficient probability
(≥ δ), as an alternative to coinciding on public locations.

Therefore, we define vL and some auxiliary notation and relations:

• Set PubMem =def Nran(wp). Then, for any memory m, let mL ∈ PubMem be
the restriction of m to ran(wp), extending the notation to Memξ⊥ as usual.

• For any ζ ∈ MemW
ξ⊥, we define ζL ∈ PubMemW

ξ⊥ by setting ζL(w) = ζ(w)L.

• For X, Y ∈ H(MemW
ξ⊥), we write that X ≤L Y when, for every ζ ∈ X, there

exists ζ ′ ∈ Y such that:
· ζL ≤ ζ ′L, or
· P (ζ(w) ∈ {ξ,⊥}) ≥ δ and P (ζ ′(w) = ξ) ≥ δ.

• For f, f ′ ∈ MemW
ξ⊥ → H(MemW

ξ⊥), we write f ≤L f ′ when, for all s ∈ S, we
have:

f(w 7→ w·s) ≤L f ′(w 7→ w·s)
• Finally, we write c vL c′ when, for every public command context C,

[[C[c]]] ≤L [[C[c′]]].

4.4.2 Simulation

As in the high-level language, we introduce a simulation relation �. This
relation works only on commands whose outcomes on inputs that are store
projections are themselves store projections; nevertheless, simulation remains
a useful tool for proofs.

We define $: Sξ⊥ → H(MemW
ξ⊥) by:

$(⊥) = {w 7→⊥}↓

$(s) = {w 7→ w·s}↓

$(ξ) = {ζ|P (ζ(w) = ξ) ≥ δ}↓

For every X ∈ H(MemW
ξ⊥), we say that X is a store projection set when there

exists Y ∈ H(Sξ⊥) such that

$(Y \ {ξ})↓⊆ X ⊆ $(Y)↓

and

ξ ∈ Y ⇒ ∃ζ ∈ X.P (ζ(w) = ξ) ≥ δ

In that case, we write χ(X) = Y for the unique such Y ; we have s ∈ Y if, and
only if, w 7→ w · s ∈ X and ξ ∈ Y if, and only if, ∃ζ ∈ X,P (ζ(w) = ξ) ≥ δ.
(The uniqueness of Y depends on the assumption that δ > 0.)

The ≤L relation restricted to store projection sets has a pleasant charac-
terization. The notation −L extends from S to Sξ⊥, so that ⊥L=⊥ and ξL = ξ;
with that, for any X in H(Sξ⊥), define XL in H(SLξ⊥) to be {sL | s ∈ X}.
Fact 4.4 Let X and Y be store projection sets. Then:

X ≤L Y ≡ χ(X)L ≤ χ(Y)L

Much as in the high-level language, we extend relations R over H(SHξ⊥)
to relations R× over H(MemW

ξ⊥). First we extend −s to H(Sξ⊥) as follows: for
X ∈ H(Sξ⊥) and s ∈ SL, we let Xs ∈ H(SHξ⊥) be (X \ {ξ})s ∪ {ξ | ξ ∈ X}.
Then, given a relation R over H(SHξ⊥), we first extend it to a relation R+

over H(Sξ⊥) by setting

XR+Y ≡def (ξ ∈ X ⇒ ξ ∈ Y) ∧

∀s ∈ SL. ((Xs \ ξ) 6= {⊥} ⇒ (Ys \ ξ) 6= {⊥}) ∧XsRYs

for X, Y ∈ H(Sξ⊥) and then define R× by setting:

XR×Y ≡def X and Y are store projection sets ∧ χ(X)R+χ(Y)

for X, Y ∈ H(MemW
ξ⊥). (Note that if R ⊆ H(SH⊥), then the high- and low-

level definitions of R+ coincide.)

If R is closed under increasing ω-sups (respectively, is right-closed under
≤, is closed under binary unions) the same holds for R+, and then for R×

(with ≤ restricted to store projection sets). If R is reflexive, then R+ is and
R× is reflexive on store projection sets. We also have, much as before, that,
for X, Y ∈ H(Sξ⊥), if XR+Y then XL ≤ YL. It then follows from Fact 4.4
that, for X, Y ∈ H(MemW

ξ⊥), if XR×Y then X ≤L Y .

For any f, f ′ :MemW
ξ⊥ → H(MemW

ξ⊥) and relation R over H(SH⊥) we write
that f �R f ′ when:

∀X, Y ∈ H(MemW
ξ⊥). XR×Y ⇒ f †(X)R×f ′†(Y)

Finally, we write that f � f ′ if f �R f ′ for some reflexive R closed under
increasing ω-sups, right-closed under ≤, and closed under binary unions.

4.4.3 Contextual pre-order vs. simulation

The contextual pre-order coincides with the simulation relation, but only for
commands whose semantics sends store projections to store projection sets.
Formally, we say that a given function f : MemW

ξ⊥ → H(MemW
ξ⊥) preserves

store projections if, for every s ∈ S, f(w 7→ w·s) is a store projection set. The
coincidence remains quite useful despite this restriction, which in particular
is not an impediment to our overall goal of relating the low-level language to
the high-level language.

Theorem 4.5 Let c and c′ be two commands of the low-level language such
that [[c]] and [[c′]] preserve store projections. Then c vL c′ holds if and only if
[[c]] � [[c′]] does.

Example 4.6 Suppose that there is only one private location, and consider
the two commands:

c4 = (1:=1) + (2:=1) + (3:=1) + (4:=1) c6 = (1:=1); (2 :=1)

As seen above, we have that [[c4]](ζi) = {ζ1
ξ , ζ

2
ξ , ζ

3
ξ , ζ

4
ξ } ↓. We also have that

[[c6]](ζi) = {w 7→ ξ} ↓. Since P (ζ iξ(w) = ξ) ≥ δ, we can verify that c4 and c6

are equivalent. (Thus, a nondeterministic guess is no better than failure.) 2

5 High and low

In this section we investigate the relation between the high-level language and
the low-level language. Specifically, we define a simple translation from the
high-level language to the low-level language, then we study its properties.

We define the compilation of high-level commands c (expressions e, boolean
expressions b) to low-level commands c↓ (expressions e↓ and boolean expres-
sions b↓) by setting: (!lloc)

↓ =!lnat, (lloc := e)↓ = lnat := e↓, and proceeding
homomorphically in all other cases (e.g., (e + e′)↓ = e↓ + e′↓). Crucially, this
compilation function, which is otherwise trivial, transforms high-level memory
access to low-level memory access.

Lemma 5.1 Let c be a high-level command. Then [[c↓]] preserves store pro-
jections.

Theorem 5.2 relates the simulation relations of the two languages. It states
that a high-level command c simulates another high-level command c, with
respect to all public contexts of the high-level language, if and only if the
compilation of c simulates the compilation of c′, with respect to all public
contexts of the low-level language.

Theorem 5.2 Let c and c′ be two high-level commands. Then [[c]] � [[c′]] holds
if and only if [[c↓]] � [[c′↓]] does.

Our main theorem, Theorem 5.3, follows from Theorem 5.2, the two pre-
vious theorems, and the lemma. Theorem 5.3 is analogous to Theorem 5.2,
but refers to the contextual pre-orders: a high-level command c implements
another high-level command c′, with respect to all public contexts of the high-
level language, if and only if the compilation of c implements the compilation
of c′, with respect to all public contexts of the low-level language.

Theorem 5.3 (Main theorem) Let c and c′ be two high-level commands.
Then c vL c′ holds if and only if c↓ vL c′↓ does.

Theorem 5.3 follows from Theorem 5.2, the two previous theorems, and
the lemma. The low-level statement is defined in terms of the probability δ
that depends on the distribution on memory layouts. When δ is close to 1,
the statement indicates that, from the point of view of a public context (that
is, an attacker), the compilation of c behaves like an implementation of the
compilation of c′. This implementation relation holds despite the fact that the
public context may access memory via natural-number addresses, and thereby
(with some probability) read or write private data of the commands. The
public context may behave adaptively, with memory access patterns chosen
dynamically, for instance attempting to exploit correlations in the distribution
of memory layouts. The public context may also give “unexpected” values
to memory addresses, as in practical attacks; the theorem implies that such
behavior is no worse at the low level than at the high level.

For example, for the commands c0 and c1 of Example 3.1, the theorem en-
ables us to compare how their respective compilations behave, in an arbitrary

public low-level context. Assuming that δ is close to 1, the theorem basically
implies that a low-level attacker that may access memory via natural-number
addresses cannot distinguish those compilations. Fundamentally, this prop-
erty holds simply because the attacker can read or write the location h only
with low probability.

6 Conclusion

A few recent papers investigate the formal properties of layout randomization,
like ours [19,3,13,2]. They do not consider nondeterministic choice, and tend
to reason operationally. However, the work of Jagadeesan et al. includes some
semantic elements that partly encouraged our research; specifically, that work
employs trace equivalence as a proof technique for contextual equivalence.

In this paper we develop a semantic approach to the study of layout ran-
domization. Our work concerns nondeterministic languages, for which this
approach has proved valuable in reconciling probabilistic choice with nonde-
terministic choice. However, the approach is potentially more general. In
particular, the study of concurrency with nondeterministic scheduling would
be an attractive next step. Also, extending our work to higher-order compu-
tation presents an interesting challenge.

References

[1] M. Abadi and L. Lamport. The existence of refinement mappings. TCS, 82(2):253–284, 1991.

[2] M. Abadi and J. Planul. On layout randomization for arrays and functions. In POST, volume
7796 of LNCS, pages 167–185. Springer, 2013.

[3] M. Abadi and G. D. Plotkin. On protection by layout randomization. ACM Transactions on
Information and System Security, 15(2):8:1–8:29, 2012.

[4] R. Canetti et al. Analyzing security protocols using time-bounded task-pioas. Discrete Event
Dynamic Systems, 18(1):111–159, 2008.

[5] W. P. de Roever and K. Engelhardt. Data Refinement: Model-oriented Proof Theories and
their Comparison, volume 46 of Cambridge Tracts in Theo. Comp. Sci. CUP, 1998.

[6] P. Druschel and L. L. Peterson. High-performance cross-domain data transfer. Technical
Report TR 92-11, Department of Computer Science, The University of Arizona, 1992.

[7] Ú. Erlingsson. Low-level software security: Attacks and defenses. In FOSAD IV Tutorial
Lectures, volume 4677 of LNCS, pages 92–134. Springer, 2007.

[8] S. Forrest et al. Building diverse computer systems. In 6th Workshop on Hot Topics in
Operating Systems, pages 67–72, 1997.

[9] G. Gierz et al. Continuous lattices and domains, volume 93 of Encyclopaedia of mathematics
and its applications. CUP, 2003.

[10] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28:270–299, 1984.

[11] J. Goubault-Larrecq. Prevision domains and convex powercones. In FoSSaCS, volume 4962 of
LNCS, pages 318–333. Springer, 2008.

[12] M. Jackson. A sheaf theoretic approach to measure theory. PhD thesis, U. Pitt., 2006.

[13] R. Jagadeesan et al. Local memory via layout randomization. In Proc. of the 24th CSFS,
pages 161–174, 2011.

[14] N. Klarlund and F. B. Schneider. Proving nondeterministically specified safety properties using
progress measures. Information and Computation, 107(1):151–170, 1993.

[15] P. Lincoln et al. A probabilistic poly-time framework for protocol analysis. In Proceedings of
the Fifth ACM Conference on Computer and Communications Security, pages 112–121, 1998.

[16] M. W. Mislove. On combining probability and nondeterminism. ENTCS, 162:261–265, 2006.

[17] J. C. Mitchell et al. A probabilistic polynomial-time process calculus for the analysis of
cryptographic protocols. TCS, 353(1-3):118–164, 2006.

[18] PaX Project. The PaX project, 2004. http://pax.grsecurity.net/.

[19] R. Pucella and F. B. Schneider. Independence from obfuscation: A semantic framework for
diversity. Journal of Computer Security, 18(5):701–749, 2010.

[20] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In
CSFW, pages 200–214, 2000.

[21] R. Tix et al. Semantic domains for combining probability and non-determinism. ENTCS,
222:3–99, 2009.

http://pax.grsecurity.net/

	Introduction
	Preliminaries on cpos
	The high-level language
	Syntax and informal semantics
	Denotational semantics
	Operational semantics
	Implementation relations and equivalences

	The low-level language
	Syntax and informal semantics
	Denotational semantics
	Operational semantics
	Implementation relations and equivalences

	High and low
	Conclusion
	References

